THE COMMUTATION RELATION $i[Y, Z]=2 Y$ AND THE ABSOLUTELY CONTINUOUS SPECTRUM OF Y

J. V. CORBETT
(Received 13 February 1981)
(Revised 25 June 1981)

Abstract

A relation between positive commutators and absolutely continuous spectrum is obtained. If $i[Y, Z]=2 Y$ holds on a core for Z and if Y is positive then we have a system of imprimitivity for the group \mathbf{R}_{*}^{+}on \mathbf{R}_{*}^{+}, from which it follows that Y has no singular continuous spectrum.

Assume that Y and Z are self-adjoint operators on a separable Hilbert space \mathcal{H} and that

$$
\begin{equation*}
i[Y, Z] f=2 Y f \tag{1}
\end{equation*}
$$

for all f belonging to a dense subset D of \mathcal{H}. We obtain conditions under which the relation (1) implies that the singular continuous spectrum of Y is empty.

The argument is simple. We first show that if Y is positive and if

$$
\begin{equation*}
e^{-i Z s} Y e^{i Z s} u=e^{2 s} Y u \tag{2}
\end{equation*}
$$

for all $u \in D(Y)$ and all $s \in \mathbf{R}$, then the singular continuous spectrum of Y is empty. We then obtain conditions on the subset D that ensure that whenever (1) holds then (2) holds. We also obtain a converse to this, namely, if Y is a positive self-adjoint operator with absolutely continuous spectrum on $[0, \infty)$ and uniform spectral multiplicity then there exists a self-adjoint operator Z such that (1) holds.

Theorem 1. Let Y be a positive self-adjoint operator and U_{s} a unitary representation of the real line, such that for all $u \in D(Y)$ and all $s \in \mathbf{R}$

$$
U_{s}^{-1} Y U_{s} u=e^{-2 s} Y u
$$

then if the spectrum of Y is continuous it is absolutely continuous.

[^0]Proof. For any complex number ω,

$$
U_{s}^{-1}(Y-\omega I) U_{s} u=e^{-2 s}\left(Y-e^{2 s} \omega I\right) u
$$

for all $u \in D(Y)$ and all real s. Therefore, if the imaginary part of ω is non-zero, $(Y-\omega I)$ is invertible, and

$$
U_{s}^{-1}(Y-\omega I)^{-1} U_{s}=e^{2 s}\left(Y-e^{2 s} \omega I\right)^{-1}
$$

This last equation holds as an operator identity in $B(\mathscr{K})$ for all $s \in \mathbf{R}$.
Assume that the continuous spectrum of Y is non-empty and contains the interval Δ. The spectral projection $E_{\Delta}(Y)$ is given by Stone's formula

$$
E_{\Delta}(Y)=\lim _{\varepsilon \rightarrow 0+}(2 \pi i)^{-1} \int_{\Delta}\left[(Y-\omega I)^{-1}-(Y-\bar{\omega} I)^{-1}\right] d \mu
$$

where we have written $\omega=\mu+i \varepsilon$ and $\bar{\omega}=\mu-i \varepsilon$.
Therefore

$$
\begin{align*}
& U_{s}^{-1} E_{\Delta}(Y) U_{s}=\lim _{\varepsilon \rightarrow 0+} e^{2 s}(2 \pi i)^{-1} \int_{\Delta}\left[\left(Y-e^{2 s} \omega\right)^{-1}-\left(Y-e^{2 s} \bar{\omega}\right)^{-1}\right] d \mu \\
& \quad=\lim _{\varepsilon_{0} \rightarrow 0+}(2 \pi i)^{-1} \int_{e^{2 s_{\Delta}}}\left[\left(Y-\eta-i \varepsilon_{0}\right)^{-1}-\left(Y-\eta+i \varepsilon_{0}\right)^{-}\right] d \eta \\
& =E_{e^{2 s \Delta}}(Y) \tag{3}
\end{align*}
$$

where we have put $\eta+i \varepsilon_{0}=e^{2 s} \omega$.
Let β be any Borel subset in the continuous spectrum of Y, then by the usual construction of Borel subsets from intervals we obtain

$$
\begin{equation*}
U_{s}^{-1} E_{\beta}(Y) U_{s}=E_{e^{2 s} \beta}(Y) \tag{4}
\end{equation*}
$$

Let $\mathbf{R}_{*}^{+}=(0, \infty)$ denote the multiplicative group of positive real numbers. We obtain a representation V_{a} of \mathbf{R}_{*}^{+}from the representation U_{s} of \mathbf{R} by putting $a=e^{2 s}$ for all $s \in \mathbf{R}$, and observing that

$$
V_{a}=U_{\frac{1}{2} \ln a} \text { for all } a \in \mathbf{R}_{*}^{+}
$$

By hypothesis Y is positive definite and so its spectrum is contained in $[0, \infty)$. By spectral multiplicity theory, the set of all spectral projections $\left\{E_{\beta}(Y) ; \beta\right.$ a Borel subset of $[0, \infty)\}$ has a separating vector Φ. In fact, Φ is a cyclic vector for the commutant of this family of projections.

The measure $v(\Delta)=\left\langle\Phi, E_{\Delta}(Y) \Phi\right\rangle$, defined on the Borel subsets of R_{*}^{+}, is equivalent to the Haar measure of \mathbf{R}_{*}^{+}. To see this, first observe that because Φ is separating if Δ_{0} is a Borel subset of \mathbf{R}_{*}^{+}such that $v\left(\Delta_{0}\right)=0$ then $E_{\Delta_{0}}(Y)=0$, and therefore

$$
\begin{equation*}
\left\langle\Phi, V_{a}^{-1} E_{\Delta_{0}}(Y) V_{a} \Phi\right\rangle=0 \tag{5}
\end{equation*}
$$

for all $a \in \mathbf{R}_{*}^{+}$. On the other hand when equation (4) is written in terms of the representation V_{a} of the multiplicative group \mathbf{R}_{*}^{+}we obtain $V_{a}^{-1} E_{\Delta_{0}}(Y) V_{a}=$ $E_{a \Delta_{0}}(Y)$. Therefore

$$
\begin{equation*}
v\left(a \Delta_{0}\right)=\left\langle\Phi, E_{a \Delta_{0}}(Y) \Phi\right\rangle=0 \tag{6}
\end{equation*}
$$

for all $a \in \mathbf{R}_{*}^{+}$. This means that v is a Borel measure on \mathbf{R}_{*}^{+}that is quasi-invariant with respect to the action of \mathbf{R}_{*}^{+}on itself, and therefore v is equivalent to Haar measure of \mathbf{R}_{*}^{+}on \mathbf{R}_{*}^{+}.

The absolute continuity of the spectrum of Y follows because the Haar measure of \mathbf{R}_{*}^{+}on \mathbf{R}_{*}^{+}is absolutely continuous with respect to Lebesgue measure. Let the Borel subset S of \mathbf{R} have Lebesgue measure zero, that is, $|S|=0$. If S is a subset of $\mathbf{R}_{*}^{+}, v(S)=0$ and therefore $E_{S}(Y) \phi=0$ and $E_{S}(Y)=0$ because Φ is separating. If S is not a subset of \mathbf{R}_{*}^{+}then $S=S_{1} \cup S_{2}$ where S_{2} is a subset of \mathbf{R}_{*}^{+}and S_{1} lies in the complement of \mathbf{R}_{*}^{+}. Now $E_{S}(Y)=E_{S_{1}}(Y)+E_{S_{2}}(Y)$ where $E_{S_{2}}(Y)=0$ by the argument given above and $E_{S}(Y)=0$ by the positivity of Y and the continuity of spectrum of Y.

This theorem shows that the spectral measure class of the positive operator Y is equivalent to the Haar measure of the multiplicative group of the positive reals, \mathbf{R}_{*}^{+}, on itself. The equation (1) defines a system of imprimitivity of the group \mathbf{R}_{*}^{+}. The proof is modelled on Mackey's approach to the representations of the canonical commutation relations [4].

Definition. Let Y be a positive self-adjoint operator in a Hilbert space ©. . A subset D of \mathcal{K} is said to be a domain of integration for the self-adjoint operator Z with respect to the relation

$$
\begin{equation*}
i[Y, Z]=2 Y \tag{7}
\end{equation*}
$$

if

$$
\begin{equation*}
(Y Z-Z Y) f=-2 i Y f \tag{8}
\end{equation*}
$$

for all $f \in D$ implies that

$$
\begin{equation*}
e^{i Z s} Y e^{-i Z s} u=e^{-2 s} Y u \tag{9}
\end{equation*}
$$

for all $u \in D(Y)$ and all $s \in \mathbf{R}$.
The terminology reflects the fact that equation (8) can be obtained from equation (9) by differentiating with respect to s at $s=0$. An immediate consequence of this definition and Theorem 1 is the following result:

Theorem 2. Let D be a domain of integration for Z and the relation (7) and suppose that Y is positive definite, then whenever $i[Y, Z] f=2 Y f$ for all $f \in D$ the singular continuous spectrum of Y is empty.

The problem of finding a domain of integration for the operator Z and relation (7) is related to the problem of lifting a representation of a Lie algebra as skew-adjoint operators on a Hilbert space to a unitary representation of the corresponding Lie group. Nelson's theorem [5] gives necessary and sufficient conditions for the solution of the general problem, and can be used for our problem. Nevertheless, we present a criterion for D modelled on a result of Kato [2] for the problem of obtaining the Weyl commutation relations from those of Heisenberg (see also Cartier [1]).

Theorem 3. Let D be a subset of $D(Y Z) \cap D(Z Y)$ on which equation (8) holds with Y positive. D is a domain of integration for Z and relation (7) if D is a core for Z.

Proof. Since D is a core for Z there is an $\alpha \neq 0$ such that $(Z-i \alpha) D$ is dense in \mathscr{H}. If $\varepsilon>0,(Y+\varepsilon I)$ is strictly positive and symmetric and hence $(Y+\varepsilon)(Z-$ $i \alpha) D$ is dense in \mathscr{K}.

Let $f \in D$ and put $u=(Y+\varepsilon)(Z-i \alpha) f$. Then $u=(Z-i(\alpha+2))(Y+\varepsilon) f$ $+2 i \varepsilon f$, and hence $(Z-i \alpha)^{-1}(Y+\varepsilon)^{-1} u=f=(Y+\varepsilon)^{-1}(Z-i(\alpha+2))^{-1}(u$ $-2 i \varepsilon f)=(Y+\varepsilon)^{-1}(Z-i(\alpha+2))^{-1} u+\varepsilon(Y+\varepsilon)^{-1}\left[(Z-i \alpha)^{-1}-(Z-i(\alpha+\right.$ 2) $\left.)^{-1}\right](Y+\varepsilon)^{-1} u$. But $u \in(Y+\varepsilon)(Z-i \alpha) D$ and thus we have the operator equation

$$
\begin{align*}
& (Z-i \alpha)^{-1}(Y+\varepsilon)^{-1}-(Y+\varepsilon)^{-1}(Z-i(\alpha+2))^{-1} \\
& \quad=\varepsilon(Y+\varepsilon)^{-1}\left((Z-i \alpha)^{-1}-(Z-i(\alpha+2))^{-1}\right)(Y+\varepsilon)^{-1} \tag{10}
\end{align*}
$$

We now prove by induction that

$$
\begin{align*}
& (Z-i \alpha)^{-n}(Y+\varepsilon)^{-1}-(Y+\varepsilon)^{-1}(Z-i(\alpha+2))^{-n} \\
& \quad=\varepsilon(Y+\varepsilon)^{-1}(Z-i \alpha)^{-n}-(Z-i(\alpha+2))^{-n}(Y+\varepsilon)^{-1} \tag{11}
\end{align*}
$$

for all positive integers n. It is true for $n=1$; assume it is true for n and write $P_{0}=(Z-i \alpha)^{-1}, P_{2}=(Z-i(\alpha+2))^{-1}$, and $Q=(Y+\varepsilon)^{-1}$. Then

$$
\begin{aligned}
P_{0}^{n+1} Q-Q P_{2}^{n+1} & =P_{0}^{n}\left(P_{0} Q-Q P_{2}\right)+\left(P_{0}^{n} Q-Q P_{2}^{n}\right) P_{2} \\
& =\varepsilon\left\{P_{0}^{n} Q\left(P_{0} Q-P_{2} Q\right)+\left(Q P_{0}^{n}-Q P_{2}^{n}\right) Q P_{2}\right\} \\
& =\varepsilon\left\{Q P_{0}^{n-1} Q-Q P_{2}^{n+1} Q\right\}
\end{aligned}
$$

on substituting for $P_{0}^{n} Q$ and $Q P_{2}$ in the penultimate line. The argument now goes exactly as in [2]. Use the Neumann series for $(Z-i \beta)^{-1}$ and the fact that $(Z-\omega)^{-1}$ is analytic for $\operatorname{Im} \omega \neq 0$ to extend the validity of (11) from $\omega=i \alpha$ to $\omega=i \beta$ for all real $\beta, \beta \neq 0, \beta \neq-2$.

Multiply equation (11) by $(-i \alpha)^{n}$ and set $\alpha=n / s$ with $s \neq 0$. $(Z-i \alpha)^{n}$ becomes $\left(1+i n^{-1} s Z\right)^{-n}$ and $(Z-i(\alpha+2))^{-n}$ becomes $\left(1+n^{-1} s(2+i Z)\right)^{-n}$. Both these expressions have strong limits as n tends to infinity:

$$
\begin{aligned}
& \left(1+i n^{-1} s Z\right)^{-n} \rightarrow e^{i s Z} \quad \text { and } \\
& \left(1+n^{-1} s(2+i Z)\right)^{-n} \rightarrow e^{-2 s} e^{-i Z s}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
e^{-i Z s}(Y & +\varepsilon)^{-1}-(Y+\varepsilon)^{-1} e^{i Z s} e^{-2 s} \\
& =\varepsilon(Y+\varepsilon)^{-1}\left(e^{-i Z s}-e^{i Z s} e^{-2 s}\right)(Y+\varepsilon)^{-1}
\end{aligned}
$$

and, for all $g \in D(Y)$,

$$
(Y+\varepsilon) e^{-i Z s} g-e^{-i Z s} e^{-2 s}(Y+\varepsilon) g=\varepsilon\left(e^{-i Z s}-e^{-i Z s} e^{-2 s}\right) g
$$

or

$$
e^{i Z s} Y e^{-i Z s} g=e^{-2 s} Y g
$$

Putting these results together we have the useful corollary of Theorem 3.

Corollary. Let Y and Z be self-adjoint operators on a separable Hilbert space \mathcal{H} and suppose that Y is positive. Let D be a subset of $D(Y Z) \cap D(Z Y)$ such that for all $f \in D$

$$
i[Y, Z] f=2 Y f
$$

and suppose that D is a core for Z. Then the singular continuous spectrum of Y is empty.

We will now use this corollary in a number of examples.
Examples. 1.

$$
\begin{gathered}
\mathscr{K}=L^{2}([a, b]), \quad 0<a<b<\infty \\
Y=-\frac{d^{2}}{d x^{2}} \quad \text { on } D(Y), \quad Z=\frac{1}{2 i}\left(x \frac{d}{d x}+\frac{d}{d x} x\right) \quad \text { on } D(Z)
\end{gathered}
$$

where

$$
\begin{aligned}
& D(Y)=\left\{f \in \mathscr{K} \mid f \in A C^{2}[a, b], f(a)=0=f(b)\right\} \\
& D(Z)=\{f \in \mathscr{H} \mid f \in A C[a, b], x f \in A C[a, b] \text { and } a \sqrt{f(a)}=\sqrt{b} f(b)\}
\end{aligned}
$$

$A C[a, b]=\left\{f \in \mathscr{K} \mid f(x)\right.$ is absolutely continuous on $[a, b]$ and $\left.f^{\prime}(x) \in \mathscr{K}\right\}$, $A C^{2}[a, b]=\{f \in \mathcal{H} \mid f$ is differentiable,
f^{\prime} is absolutely continuous and $\left.f^{\prime \prime} \in \mathcal{H}\right\}$.

With these domains, Y and Z are self-adjoint and Y is positive. We take $D \subset D(Y Z) \cap D(X Y)$ to be $C_{0}^{\infty}[a, b]$, the set of C^{∞} functions with compact support in $[a, b]$ whose support stays away from the end points. Then for all $f \in D$,

$$
i[Y, Z] f=2 Y f .
$$

We know that the spectrum of Y is not absolutely continuous, but this does not contradict Theorem 3 as D is not a core for Z. For any real number $\alpha \neq 0$, $(Z-i \alpha) D$ is not dense in $L^{2}[a, b]$, because the function $u(x)=A x^{\alpha-1 / 2}$ is orthogonal to $(Z-i \alpha) D$. In fact this function is orthogonal to $(Z-i \alpha)(D(Y Z)$ $\cap D(Z Y)$).
2.

$$
\mathscr{K}=L^{2}([a, b]), \quad 0<a<b<\infty
$$

Y is the multiplicative operator, $(Y f)(x)=x^{2} f(x)$, with $D(Y)=\mathscr{H} . Z=$ $-(1 / 2 i)(x d / d x+(d / d x) x)$ on $D(Z)$ as in example (1).

Both Y and Z are self-adjoint, Y is positive, and if we take $D \subset D(Y X) \cap$ $D(Z Y)$ to be $C_{0}^{\infty}[a, b]$ as in example (1), then for all $f \in D$,

$$
i[Y, Z] f=2 Y f
$$

The argument of example (1) yields the result that D is not a core for Z, even though we know that the spectrum of Y is absolutely continuous. This shows that the conditions of Theorem 4 are not necessary. What goes wrong in this example is that it is not true that $e^{-i Z s} Y e^{i Z s} f=e^{-2 s} Y f$ for all $f \in D(Y)$. This example should be compared with the usual particle in a box counterexample to the uniqueness of the representation for the Heisenberg commutation relations.
3.

$$
\mathscr{H}=L^{2}(0, \infty)
$$

Y is the operator of multiplication, $(Y f)(\lambda)=\lambda f(\lambda)$ and

$$
\begin{array}{r}
D(Y)=\left\{\left.f \in \mathscr{H}\left|\int_{0}^{\infty} \lambda^{2}\right| f(\lambda)\right|^{2} d \lambda<\infty\right\} \\
Z=-\frac{1}{i}\left(\lambda \frac{d}{d \lambda}+\frac{d}{d \lambda} \lambda\right) \text { with domain } \\
D(Z)=\left\{f \in L^{2}(0, \infty) \mid f \in A C[0, \infty), \lambda f \in A C[0, \infty)\right. \\
\text { and } \left.\lim _{a \rightarrow 0+} \sqrt{a} f(a)=\lim _{b \rightarrow \infty} \sqrt{b} f(b)\right\}
\end{array}
$$

The last condition in the description of the domain of Z should be taken to mean that both limits exist and are equal.

With these domains, Y and Z are self-adjoint and Y is positive. Furthermore we know that the spectrum of λ is absolutely continuous. This does follow from Theorem 4 because if D is taken to be $C_{0}^{\infty}[0, \infty]$ with the support of the functions staying away from zero and infinity, then D is a core for Z; in fact $(Z-i \alpha) D$ is dense in $L^{2}([0, \infty))$ for any real $\alpha \neq 0$. This is so because if ($\left.Z-i \alpha\right) D$ were not dense there must be an element $\omega \neq 0$ that is perpendicular to $(Z-i \alpha) D$, but the only possible ω are of the form $A x^{\alpha-1 / 2}$ which are not in $L^{2}([0, \infty))$.
4. In non-relativistic quantum theory, the commutation relation (7) arises with $Y=H_{0}$, the kinetic energy or free Hamiltonian operator, and $Z=A$, the generator of the one parameter group of dilations. In the usual Schrödinger representation for a single particle, $H_{0}=\mathbf{p}^{2}, A=\frac{1}{2}(\mathbf{x} \cdot \mathbf{p}+\mathbf{p} \cdot \mathbf{x})$ with \mathbf{p} representing the canonical momentum operator and \mathbf{x} the canonical position operator. Further, H_{0} and A are self-adjoint operators on their natural domains. It is well known that the spectrum of H_{0} is $[0, \infty)$ and is purely absolutely continuous. The connection with this paper can be made directly but it is more interesting to notice that in the usual spectral representation of H_{0}, [3], we have a unitary map U from $L^{2}\left(\mathbf{R}^{3}\right)$ to $L^{2}\left(\mathbf{R}_{+}, d \lambda ; \mathcal{H}^{\prime}\right)$, where $\mathscr{K}^{\prime}=L^{2}\left(S^{2}, d \Omega\right)$, and S^{2} is the unit sphere in \mathbf{R}^{3}, and $d \Omega$ its usual surface measure, that sends H_{0} to multiplication by λ and A to the operator $Z=-(1 / i)(\lambda d / d \lambda+(d / d \lambda) \lambda)$ that is discussed in example (3). Explicitly if \hat{f} denotes the Fourier transform of an element of f of $L^{2}\left(\mathbf{R}^{3}\right)$ then $(U f)(\lambda ; \omega)=(\sqrt{2})^{-1} \lambda^{1 / 4} \hat{f}\left(\lambda^{1 / 2} \omega\right)$.

As a result of these last two examples we are led to the following proposition.

Proposition. Let \mathfrak{H} be a separable Hilbert space. If Y is a positive self-adjoint unbounded operator with absolutely continuous spectrum on $[0, \infty]$ and uniform spectral multiplicity then there exists a self-adjoint operator Z such that

$$
i[Y, Z] f=2 Y f
$$

for all f belonging to a domain of integration Z.
Proof. By hypothesis, Y has a spectral representation as multiplication by λ a Hilbert space $\mathscr{K}=L^{2}\left(\mathbf{R}^{+}, d \lambda ; \mathscr{H}^{\prime}\right)$ for some constant fibre \mathscr{K}^{\prime}. But by Example 3 the operator $Z_{0}=-\left(\frac{1}{i}\right)(\lambda d / d \lambda+(d / d \lambda) \lambda)$, with domain $D\left(Z_{0}\right)$ given in that example, is self-adjoint and for all $f \in C_{0}^{\infty}\left(\mathbf{R}^{+} ; \mathscr{K}^{\prime}\right)$

$$
i\left[\lambda, Z_{0}\right] f=2 \lambda f
$$

Now the pre-image of Z_{0} under the unitary map U of Example 4 gives a self-adjoint operator Z on $D(Z) \subset \mathscr{H}$ such that $i[Y, Z]=2 Y$ on a domain of integration for Z.

This proposition gives a partial converse to Theorem 2 and appears to be useful in non-relativistic scattering theory. We hope to discuss this connection in a subsequent paper.

References

[1] P. Cartier, "Quantum mechanical commutation relations and theta functions", Proc. Sympos. Pure Math. 9 (Amer. Math. Soc., Providence, R. I., 1966), 361-383.
[2] T. Kato, "On the commutation relation $A B-B A=C$ ", Arch. Rat. Mech. Anal. 10 (1962), 273-275
[3] T. Kato, "Scattering theory", in Studies in applied mathematics, (ed. A. H. Taub) (Math. Assoc. Amer., Buffalo, N. Y., 1971).
[4] G. Mackey, "A theorem of Stone and von Neumann", Duke Math. J. 16 (1949), 313-326.
[5] E. Nelson, "Analytic vectors", Ann. of Math. 70 (1959), 572-615.

School of Mathematics and Physics
Macquarie University
North Ryde
N. S. W. 2113

[^0]: ©Copyright Australian Mathematical Society 1982

