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Abstract

A relation between positive commutators and absolutely continuous spectrum is ob-
tained. If i[Y, Z] = 2Y holds on a core for Z and if Y is positive then we have a system of
imprimitivity for the group R^ on R]J", from which it follows that Y has no singular
continuous spectrum.

Assume that Y and Z are self-adjoint operators on a separable Hilbert space %
and that

i[Y,Z]f=2Yf (1)

for all / belonging to a dense subset D of X. We obtain conditions under which
the relation (1) implies that the singular continuous spectrum of Y is empty.

The argument is simple. We first show that if Y is positive and if

e-iZsYeiZsu - e2sYu (2)

for all u E D(Y) and all s E R, then the singular continuous spectrum of Y is
empty. We then obtain conditions on the subset D that ensure that whenever (1)
holds then (2) holds. We also obtain a converse to this, namely, if Y is a positive
self-adjoint operator with absolutely continuous spectrum on [0, oo) and uniform
spectral multiplicity then there exists a self-adjoint operator Z such that (1) holds.

THEOREM 1. Let Y be a positive self-adjoint operator and Us a unitary representa-
tion of the real line, such that for all u E D(Y) and alls £ R

then if the spectrum of Y is continuous it is absolutely continuous.
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[2) Commutation relation 421

PROOF. For any complex number «,

U~\Y - uI)Usu = e~2s(Y - e2sul)u

for all u & D(Y) and all real s. Therefore, if the imaginary part of w is non-zero,
(Y — ul) is invertible, and

UT\Y-ulYxU, = e2s(Y-e2su>l)~\

This last equation holds as an operator identity in B(%) for all s £ R.
Assume that the continuous spectrum of Y is non-empty and contains the

interval A. The spectral projection EA(Y) is given by Stone's formula

EA(Y)= lim (2

where we have written u = fi + ie and u = n — ie.
Therefore

Us-
lEA(Y)Us = lim e2s(2rn)~l ( \(Y - e2ta)~l - (Y - e^)

e —0+ •'A

= lim (277/)
eo->0+

= *w(r) (3)
where we have put TJ + /e0 = e2su.

Let /S be any Borel subset in the continuous spectrum of Y, then by the usual
construction of Borel subsets from intervals we obtain

% p (4)

Let Rj = (0, oo) denote the multiplicative group of positive real numbers. We
obtain a representation Va of R^ from the representation Us of R by putting
a = e2s for all s £ R , and observing that

By hypothesis Y is positive definite and so its spectrum is contained in [0, oo).
By spectral multiplicity theory, the set of all spectral projections {Ep{Y)\ /? a
Borel subset of [0, oo)} has a separating vector $. In fact, $ is a cyclic vector for
the commutant of this family of projections.

The measure u(A) = ($ , EA(Y)<S>), defined on the Borel subsets of R£ , is
equivalent to the Haar measure of Rj . To see this, first observe that because $ is
separating if Ao is a Borel subset of R^ such that o(A0) = 0 then £A (7) = 0,
and therefore

0 (5)
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for all a E R* . On the other hand when equation (4) is written in terms of the
representation Va of the multiplicative group Rj we obtain

) . Therefore

0 (6)

for all a G R* . This means that v is a Borel measure on R* that is quasi-invariant
with respect to the action of R* on itself, and therefore t; is equivalent to Haar
measure of R* on R+ .

The absolute continuity of the spectrum of Y follows because the Haar measure
of Rj on R+ is absolutely continuous with respect to Lebesgue measure. Let the
Borel subset S of R have Lebesgue measure zero, that is, | S \ = 0. If S is a subset
of R+ , v(S) = 0 and therefore Es(Y)<j> = 0 and ES(Y) = 0 because $ is separat-
ing. If S is not a subset of R* then S = S, U S2 where S2 is a subset of R+ and S,
lies in the complement of R+ . Now ES(Y) = ESi(Y) + ES2(Y) where E$2(Y) = 0
by the argument given above and ES(Y) = 0 by the positivity of Y and the
continuity of spectrum of Y.

This theorem shows that the spectral measure class of the positive operator Y is
equivalent to the Haar measure of the multiplicative group of the positive reals,
R j , on itself. The equation (1) defines a system of imprimitivity of the group
R* . The proof is modelled on Mackey's approach to the representations of the
canonical commutation relations [4].

DEFINITION. Let Y be a positive self-adjoint operator in a Hilbert space %. A
subset Dof% is said to be a domain of integration for the self-adjoint operator Z
with respect to the relation

i[Y,Z]=2Y (7)

if
(YZ- ZY)f= -2iYf (8)

for all f e D implies that

eiZsYe-iZsu _ e-2Syu (9)

for all u G D{Y) and all s G R.

The terminology reflects the fact that equation (8) can be obtained from
equation (9) by differentiating with respect to 5 at s = 0. An immediate conse-
quence of this definition and Theorem 1 is the following result:

THEOREM 2. Let D be a domain of integration for Z and the relation (7) and
suppose that Y is positive definite, then whenever i[Y, Z\f — TYf for all f £ D the
singular continuous spectrum of Y is empty.
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The problem of finding a domain of integration for the operator Z and relation
(7) is related to the problem of lifting a representation of a Lie algebra as
skew-adjoint operators on a Hilbert space to a unitary representation of the
corresponding Lie group. Nelson's theorem [5] gives necessary and sufficient
conditions for the solution of the general problem, and can be used for our
problem. Nevertheless, we present a criterion for D modelled on a result of Kato
[2] for the problem of obtaining the Weyl commutation relations from those of
Heisenberg (see also Cartier [1]).

THEOREM 3. Let D be a subset of D(YZ) n D(ZY) on which equation (8) holds
with Y positive. D is a domain of integration for Z and relation (7) if D is a core for
Z.

PROOF. Since D is a core for Z there is an a ^ 0 such that (Z — ia)D is dense
in %. If e > 0, (Y + el) is strictly positive and symmetric and hence (Y + e)(Z —
ia)D is dense in %.

Let / G D and put u = (Y + e)(Z - /«)/. Then u = (Z - /(a + 2))(Y + e)f
+ 2ief, and hence (Z - ia)~\Y + e)-]u =f= (Y + e)~'(Z - /(a + 2))~'(M

- 2/e/) = (Y+ e)~\Z ~ i(a + 2)ylu + e(Y + e)-1[(Z- /a)"1 - (Z - i(a +
2))-'](y + e)~]u. But M G (Y + e)(Z - ia)D and thus we have the operator
equation

(Z - ia)~\Y + e)"1 - (Y + e ) " ' (Z - i(o + 2))"'

= e(y + e)- ' ( (Z - /«)" ' - (Z - /(« + 2))~')(y + e)-1. (10)

We now prove by induction that

(Z - m)""(y + e)" ' - (y + e)" '(Z - i(a + 2))~"

= e(y + e)" ' (Z - m)"" - (Z - i(o + 2))""(7 + e)"1. (11)
for all positive integers n. It is true for n = 1; assume it is true for n and write
/>0 = (Z - /a)"1, P2 = (Z- i(a + 2))-', and £> = (y + e)"1. Then

P0"+1e - QP2"
+] = Po

n(PoQ - QP2) + (P0"Q - QP2")P2

= e{P0"Q(P0Q - P2Q) + {QP0" - QP2")QP2)

on substituting for P£Q and QP2 in the penultimate line. The argument now goes
exactly as in [2]. Use the Neumann series for (Z — //?)"' and the fact that
(Z - w)"1 is analytic for Imu =£ 0 to extend the validity of (11) from w = ia to
w = /)8 for all real P,P¥=0,ll¥= -2.
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Multiply equation (11) by ( — /a)" and set a — n/s with s ¥= 0. (Z — ia)"
becomes (1 + in~lsZ)~" and (Z - i(a + 2))~" becomes (1 + n~ls(2 + iZ))~n.
Both these expressions have strong limits as n tends to infinity:

(1 + in-lsZ)~" ^ eisZ and

Therefore

e~iZs(Y+ e)"1 - (y + e)~le'Zse-2'

= e(Y + ey\e-'Zs - eiZse'2s)(Y + e)~\
and, for all g(ED(Y),

(Y + e)e~iZsg - e"'Z:te-2s(y + e)g = e(e~iZs - e-'Zse~2s)g,

or

Putting these results together we have the useful corollary of Theorem 3.

COROLLARY. Let Y and Z be self-adjoint operators on a separable Hilbert space
% and suppose that Y is positive. Let D be a subset of D{YZ) n D(ZY) such that
for all/ED

i[Y,Z]f=2Yf

and suppose that D is a core for Z. Then the singular continuous spectrum of Y is
empty.

We will now use this corollary in a number of examples.

EXAMPLES. 1.

%= L2([a,b]), 0<a<b<oo,

Y=—^ on£»(y), Z = T~\x~TJr~Tx) onZ)(z)>

where

D{Y) = {/G DC|/E AC2[a, b],f(a) = 0 = / ( * ) } ,

D(Z) = {/ G %\f G AC[a, b], xf E AC[a, b] and ajf(a) = Jbf(b)},

AC[a, b] = {/G %\f{x) is absolutely continuous on [a, b] and/'(x) G %},

AC2[a,b]={f<=%\f is dif ferentiable,

/ ' is absolutely continuous and / " G %}.
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With these domains, Y and Z are self-adjoint and Y is positive. We take
D C D(YZ) n D(XY) to be C™[a, b], the set of C°° functions with compact
support in [a, b] whose support stays away from the end points. Then for all

i[Y,Z]f=2Yf.

We know that the spectrum of Y is not absolutely continuous, but this does not
contradict Theorem 3 as D is not a core for Z. For any real number a ̂  0,
(Z — ia)D is not dense in L2[a, b], because the function u(x) — Ax"~l/2 is
orthogonal to (Z — ia)D. In fact this function is orthogonal to (Z — ia)(D(YZ)
D D(ZY)).

2.

%=L2([a,b]), 0<a<b<oo,

Y is the multiplicative operator, (Yf)(x) = x2f(x), with D(Y) = %. Z =
-(\/2i)(xd/dx + (d/dx)x) on D(Z) as in example (1).

Both Y and Z are self-adjoint, Y is positive, and if we take D C D(YX) n
D{ZY) to be C^[a, b] as in example (1), then for all/ G D,

i[Y,Z]f=2Yf.

The argument of example (1) yields the result that D is not a core for Z, even
though we know that the spectrum of Y is absolutely continuous. This shows that
the conditions of Theorem 4 are not necessary. What goes wrong in this example
is that it is not true that e'

iZsYeiZsf= e~2sYf for all / E D(Y). This example
should be compared with the usual particle in a box counterexample to the
uniqueness of the representation for the Heisenberg commutation relations.

3.

3C=L2(0,oo),

Y is the operator of multiplication, (Y/)(X) = \f(\) and

D{Y)=i[f<E%\f\2\f(\)\2d\<n

Z— —r h^r + T T ^ I with domain
i \ d\ d\ )

D(Z) = {/ G L2(0, oo) | / G AC[0, oo), \f G AC[0, oo)

and lim {af{a)= lim
a —0+ A-oo

The last condition in the description of the domain of Z should be taken to mean
that both limits exist and are equal.
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With these domains, Y and Z are self-adjoint and Y is positive. Furthermore we
know that the spectrum of X is absolutely continuous. This does follow from
Theorem 4 because if D is taken to be C~[0, oo] with the support of the functions
staying away from zero and infinity, then D is a core for Z; in fact (Z — ia)D is
dense in L2([0, oo)) for any real a =fc 0. This is so because if (Z — ia)D were not
dense there must be an element u ¥= 0 that is perpendicular to (Z — ia)D, but the
only possible w are of the iormAxa~x/2 which are not in L2([0, oo)).

4. In non-relativistic quantum theory, the commutation relation (7) arises with
Y — Ho, the kinetic energy or free Hamiltonian operator, and Z = A, the
generator of the one parameter group of dilations. In the usual Schrodinger
representation for a single particle, Ho = p2, A — j(x • p + p • x) with p repre-
senting the canonical momentum operator and x the canonical position operator.
Further, Ho and A are self-adjoint operators on their natural domains. It is well
known that the spectrum of Ho is [ 0, oo) and is purely absolutely continuous. The
connection with this paper can be made directly but it is more interesting to
notice that in the usual spectral representation of Ho, [3], we have a unitary map
U from L2(R3) to L2(R+ , dX; DC'), where %' = L2(S2, dQ), and S2 is the unit
sphere in R3, and d® its usual surface measure, that sends HQ to multiplication by
X and A to the operator Z = -{\/i)(\d/d\ + (d/dX)X) that is discussed in
example (3). Explicitly if / denotes the Fourier transform of an element of / of
L2(R3) then (Uf)(\; a) = (,/!)-'Xl/4/(*l/2«)-

As a result of these last two examples we are led to the following proposition.

PROPOSITION. Let % be a separable Hilbert space. If Y is a positive self-adjoint
unbounded operator with absolutely continuous spectrum on [0, oo] and uniform
spectral multiplicity then there exists a self-adjoint operator Z such that

i[Y,Z]f=2Yf

for all f belonging to a domain of integration Z.

PROOF. By hypothesis, Y has a spectral representation as multiplication by X a
Hilbert space % = L2(R+ , dX; DC') for some constant fibre %'. But by Example
3 the operator Zo = -(j)(\d/d\ + (d/dX)X), with domain D(Z0) given in that
example, is self-adjoint and for all/ £ C0°°(R

+ ; %')

i[\,Z0]f=2Xf.

Now the pre-image of Zo under the unitary map U of Example 4 gives a
self-adjoint operator Z on D(Z) C % such that i[Y, Z] = 27 on a domain of
integration for Z.
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This proposition gives a partial converse to Theorem 2 and appears to be useful
in non-relativistic scattering theory. We hope to discuss this connection in a
subsequent paper.
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