T-ORTHOGONALITY AND NONLINEAR FUNCTIONALS ON TOPOLOGICAL VECTOR SPACES

K. SUNDARESAN AND O. P. KAPOOR

In recent years the problem of concretely representing a class of nonlinear functionals on Banach spaces has received considerable attention. Suppose B is a Banach space equipped with an orthogonality relation $\perp \subset B \times B$. Denoting $(x, y) \in \perp$ by $x \perp y$, a real valued function F on B is said to be orthogonally additive if

$$
x \perp y \text { implies } F(x+y)=F(x)+F(y) .
$$

For example when B is a vector lattice, a natural orthogonality relation is the lattice theoretic one: $x \perp_{1} y$ if $|x| \wedge|y|=0$. The problem of representing orthogonally additive functions on normed vector lattices of measurable functions has been dealt in Drewnowskii and Orlica [1], Mizel and Sundaresan [2], Friedman and Katz [4], Koshi [5], and several others. If B is the Hilbert space $L_{2}[0,1]$ with the usual concept of orthogonality, i.e., $x \perp_{2} y$ if the inner product $(x, y)=0$, the problem of representing orthogonally additive functionals has been considered by Pinsker [3]. If B is an arbitrary Banach space there are several orthogonality relations which are generalisations of the usual concept of orthogonality when B is a Hilbert space. One such concept of considerable geometric and analytic interest is the following. Let ($B,\| \|$) be a Banach space. If $x, y \in B, x \perp_{3} y$ if $\|x+\lambda y\| \geqq\|x\|$ for all real values of λ. The problem of representing orthogonally additive functionals on B with respect to the relation \perp_{3} has been dealt with in Sundaresan [7].

None of the preceding concepts of orthogonality extend to arbitrary topological vector spaces. We introduce here a useful orthogonality concept in an arbitrary topological vector space. Let E be a Hausdorff topological vector space and let $T: E \rightarrow E^{*}$, where E^{*} is the dual of E, be a linear mapping. If $x, y \in E$, then x is T-orthogonal to y if $T x(y)$, denoted by $(T x, y)$ equals zero. In the present paper we deal with the problem of characterizing T-orthogonally additive functionals on a topological vector space.

In the next section we recall briefly the basic terminology and establish a few results useful in the subsequent discussion. In section 3 we discuss T-orthogonally additive functionals when T-orthogonality is not symmetric. In section 4 we consider the same problem when T-orthogonality is symmetric.

[^0]2. Throughout the paper E is a Hausdorff topological vector space on the real field $R . E^{*}$ is the vector space of continuous linear functionals on E. To avoid trivialities we always assume that $\operatorname{dim} E \geqq 2$. If $T: E \rightarrow E^{*}$ is a linear mapping and $x, y \in E$, then x is T-orthogonal to y or briefly $x \perp y$, when T is understood, if $(T x, y)=0 . T$-orthogonality is said to be symmetric, if $(T x, y)=0$ implies $(T y, x)=0$. A vector x is said to be T-isotropic or simply isotropic if $(T x, x)=0$. The operator T is said to be symmetric if $(T x, y)=(T y, x)$ for all $x, y \in E$. If x, y, z, \ldots are vectors in E, the span of x, y, z, \ldots is denoted by $[x, y, z, \ldots]$.

We conclude this section with a few useful lemmas.
Lemma 1. If $T: E \rightarrow E^{*}$ is a linear mapping such that T-orthogonality is symmetric and if there is a nonisotropic vector, then T is symmetric.

Proof. Let $y, z \in E$. Suppose $(T y, z) \neq(T z, y)$. Since the relation \perp is symmetric $(T y, z) \neq 0 \neq(T z, y)$. If $y \perp y$ it is verified that there is a real number $\alpha \neq 0$, such that $y \perp y+\alpha z$. Hence $y+\alpha z \perp y$. Thus $\alpha(T z, y)=-(T y, y)=$ $\alpha(T y, z)$. Hence $(T y, z)=(T z, y)$. If $z \perp z$ it is verified similarly that $(T y, z)=(T z, y)$. Let now $y \perp y$ and $z \perp z$. Let x be a vector such that $x \perp x$. The preceding observation shows that $(T x, p)=(T p, x)$ for all $p \in E$. Further since $x \Perp x$ either $x+y$ or $x-y$ is not isotropic. Hence $(T(x+y), z)=$ $(T z,(x+y))$ or $(T(x-y), z)=(T z,(x-y))$. Thus $(T y, z)=(T z, y)$ and T is a symmetric mapping.

Lemma 2. If $T: E \rightarrow E^{*}$ is a linear mapping and if the rank of T is an odd integer, then there is at least one non-isotropic vector.

Proof. Suppose every vector is isotropic. The hypothesis of the lemma implies there exists a $(2 K+1)$-dimensional subspace $E^{2 K+1}$ of E, for some positive integer K, such that $T\left(E^{2 K+1}\right)$ is also $(2 K+1)$-dimensional. Thus if T_{1} is the restriction of T to $E^{2 K+1}, T_{1}$ might be considered as a linear isomorphism on $E^{2 K+1}$ to $E^{2 K+1}$ such that the inner-product $\left(T_{1} x, x\right)=0$ for all $x \in E^{2 K+1}$. Thus there exists continuous nonvanishing tangential vector field on the sphere in $E^{2 K+1}$, contradicting Poincare-Brouwer theorem [6].

Lemma 3. If $T: E \rightarrow E^{*}$ is a 1-dimensional linear mapping then the following two statements are equivalent.
(1) T-orthogonality is symmetric.
(2) There is a nonisotropic vector x such that $x \perp y$ implies $T y=0$.

Proof. Let $x \Perp x$. Let $y \in T x^{-1}(0)$. Then (1) implies $y \perp x$. Since T is 1 -dimensional and $T x \neq 0, T y \in[T x]$. Let $T y=\lambda T x$. Then since $y \perp x$ it is verified that either, $\lambda=0$ or $(T x, x)=0$. Since $x \perp x, \lambda=0$. Hence $T y=0$. Thus (1) implies (2). Conversely suppose (2) holds and $x \in E$ such that $x \perp y$ implies $T y=0$. Since $T x$ is a non-zero member of $E^{*}, T x^{-1}(0)$ is a subspace of E of codimension 1 . Thus each $\xi \in E$ determines uniquely a real number λ and a vector $h, x \perp h$, such that $\xi=\lambda x+h$. Thus if $\xi_{i}=\lambda_{i} x+h_{i}, i=1,2$, then $\xi_{1} \perp \xi_{2}$ if and only if $\lambda_{1} \lambda_{2}=0$ since $T h_{i}=0$. Hence \perp is symmetric.

Remark 1. From the proof of the preceding lemma it is clear that (2) could as well be replaced by "for every nonisotropic vector $x, x \perp y$ implies $T y=0$."
3. Let $T: E \rightarrow E^{*}$ be a linear mapping such that \perp is not symmetric. Let the rank of $T=1$. Then from Lemma 2 it is inferred that there is a nonisotropic vector. Let x be one such vector. Let $M=T x^{-1}(0)$. If $y, z \in M$ then since $T x \neq 0$ and $\operatorname{rank} T=1, T y, T z \in[T x]$. Since $(T x, z)=0$ it is verified that $y \perp z$. In particular for all $y \in M, y \perp y$. Now if F is a continuous T-orthogonally additive functional on E then the preceding observation implies that F is homogeneous and additive on M. Thus $F \mid M$ is a continuous linear functional on M. Since \perp is not symmetric it follows from Lemma 3 that there is a vector $y \in M$ such that $T y \neq 0$. Since M is a subspace and $T y \in[T x]$ we can as well assume that $T y=T x$. Thus $x-y \perp x$. Hence if $F(\lambda x)=\varphi(\lambda)$ then since $\lambda(x-y) \perp \mu x$ for all pairs of real numbers λ, μ it is verified from the orthogonal additivity of F and linearity of F on M that $\varphi(\lambda+\mu)=\varphi(\lambda)+\varphi(\mu)$. Since F is a continuous function, $\varphi: R \rightarrow R$ is a continuous additive function. Thus φ is linear. Now if $\xi \in E$ and $\xi=\lambda x+y, y \in M$, then $F(\lambda x+y)=\varphi(\lambda)$ $+F(y)$. Since φ is linear on R it follows that $F \in E^{*}$. Since every linear functional on E is orthogonally additive it is proved that under the above hypothesis on T that a continuous function $F: E \rightarrow R$ is T-orthogonally additive if and only if $F \in E^{*}$.

Next we proceed to the case when rank $T>1$. First we deal with the case of $\operatorname{dim} E=2$ or 3 .

Proposition 1. If $\operatorname{dim} E=2$ or 3 and if $T: E \rightarrow E^{*}$ is a linear mapping such that rank $T>1$ and T-orthogonality is not symmetric, then every continuous orthogonally additive functional on E is linear.

Proof. Let $\operatorname{dim} E=2$. Suppose that $e_{1}, e_{2} \in E$ such that $e_{1} \perp e_{2}$ but $e_{2} \perp e_{1}$. Thus e_{1}, e_{2} are linearly independent. Since the rank $T=2, T e_{1} \neq 0$. Hence $\left(T e_{1}, e_{2}\right)=0$ implies that $\left(T e_{1}, e_{1}\right) \neq 0$. Thus, there is a real number $a \neq 0$ such that $a e_{1}+e_{2} \perp e_{1}$. Hence if λ, μ are two real numbers then $\lambda\left(a e_{1}+e_{2}\right)$ $\perp \mu e_{1}$. Hence $F\left(\lambda a e_{1}+\lambda e_{2}+\mu e_{1}\right)=F\left(\lambda\left(a e_{1}+e_{2}\right)\right)+F\left(\mu e_{1}\right)$. Since $e_{1} \perp e_{2}$, $F\left((\lambda a+\mu) e_{1}+\lambda e_{2}\right)=F\left((\lambda a+\mu) e_{1}\right)+F\left(\lambda e_{2}\right)$. Thus

$$
\begin{aligned}
F\left((\lambda a+\mu) e_{1}\right)+F\left(\lambda e_{2}\right) & =F\left(\lambda\left(a e_{1}+e_{2}\right)\right)+F\left(\mu e_{1}\right) \\
& =F\left(\lambda a e_{1}\right)+F\left(\lambda e_{2}\right)+F\left(\mu e_{1}\right) .
\end{aligned}
$$

Hence F is additive on $\left[e_{1}\right]$. Since F is also continuous, F is homogeneous on $\left[e_{1}\right]$. Further noting that $a e_{1}+e_{2} \perp e_{1}, e_{1} \perp a e_{1}+e_{2}$, arguing as in the preceding sentences with e_{1}, e_{2} replaced respectively by $a e_{1}+e_{2}$, and e_{1}, it follows that F is additive and homogeneous on $\left[a e_{1}+e_{2}\right]$. Since $a e_{1}+e_{2} \perp e_{1}$, the T orthogonal additivity of F at once implies that F is a linear functional on E.

Next we proceed to the case when $\operatorname{dim} E=3$. Let the $\operatorname{rank} T=2$ and $e_{1}, e_{2} \in E$ such that $e_{1} \perp e_{2}$ and $e_{2} \perp e_{1}$. If $\left(T e_{1}, e_{1}\right) \neq 0$ or $\left(T e_{2}, e_{2}\right) \neq 0$, then
as in the preceding case it is verified that F is linear on $\left[e_{1}, e_{2}\right]$. If $\left(T e_{1}, e_{1}\right)=0$, and $\left(T e_{2}, e_{2}\right)=0$, then F is homogeneous on $\left[e_{1}\right]$, and $\left[e_{2}\right]$. Since $e_{1} \perp e_{2}$, is linear on the subspace $\left[e_{1}, e_{2}\right]$. Thus in either case F is linear on $\left[e_{1}, e_{2}\right]$. Now if $T e_{1}, T e_{2}$ are linearly independent then since the rank $T=2$ there exists a vector $e_{3} \notin\left[e_{1}, e_{2}\right]$ such that $T e_{3}=0$. Since $e_{3} \perp e_{3}, F$ is homogeneous on $\left[e_{3}\right]$. Further since $e_{3} \perp\left[e_{1}, e_{2}\right]$ and F is linear on $\left[e_{1}, e_{2}\right]$ it is verified that F is a linear functional. If $T e_{1}, T e_{2}$ are linearly dependent then either $T e_{1}=0$ or $T e_{1}=\lambda T e_{2}, \lambda \neq 0$. If $\left(T e_{2}, e_{3}\right)=0$ then $e_{2} \perp e_{3}$. If $\left(T e_{2}, e_{3}\right) \neq 0$, then there are real numbers $a \neq 0 \neq b$ such that $\left(T e_{2}, a e_{1}+b e_{3}\right)=0$, since $\left(T e_{2}, e_{1}\right) \neq 0$. Thus there is $x \notin\left[e_{1}, e_{2}\right]$, such that $e_{2} \perp x$. Thus if $T e_{1}=0$, then $e_{1} \perp x$. If $x \perp e_{2}$ or $x \perp e_{1}$ then as in the case of $\operatorname{dim} E=2$, it is verified that F is homogeneous on $[x]$. Since [e_{1}, e_{2}] $\perp x, F$ is a linear functional. If $x \perp e_{2}$ and $x \perp e_{1}$, then, since $e_{2} \perp e_{1}, x+e_{2} \perp e_{1}$. However since $e_{1} \perp e_{2}, e_{1} \perp x+e_{2}$. Once again F is verified to be homogeneous on $\left[x+e_{2}\right]$. Since $x \perp e_{2}$ and F is homogeneous on $\left[e_{2}\right]$ it is verified that F is homogeneous on $[x]$. Thus F is linear. Next suppose $T e_{1} \neq 0$. Then since $T e_{1}=\lambda T e_{2}$ for some $\lambda \neq 0$, and $e_{2} \Perp e_{1}$ there is a vector $x \notin\left[e_{1}, e_{2}\right]$ such that $\left[e_{1}, e_{2}\right] \perp x$. If $x \perp\left[e_{1}, e_{2}\right]$ then once again F is homogeneous on $[x]$ and F is a linear functional. If $x \perp\left[e_{1}, e_{2}\right]$, since the rank $T=2,(T x, x) \neq 0$. Further since $T e_{1} \neq 0$, and $e_{1} \perp\left[x, e_{2}\right]$ it follows that $\left(T e_{1}, e_{1}\right) \neq 0$. Since $e_{1} \perp x, x \perp e_{1}$ and $\left(T e_{1}, e_{1}\right) \neq 0 \neq(T x, x)$, it follows that
(*) there is a real number $a \neq 0$, such that $x+a e_{1} \perp x+a e_{1}$

$$
\text { or } x+a e_{1} \perp x-a e_{1} .
$$

In the case of the first alternative, F is homogeneous on $\left[x+a e_{1}\right]$. Then since $x \perp e_{1}$ and F is homogeneous on $\left[e_{1}\right]$, it is verified that F is homogeneous in $[x]$. Thus F is linear. If $x+a e_{1} \perp x-a e_{1}$ then if λ, μ are two real numbers $F\left((\lambda+\mu) x+\lambda a e_{1}-\mu a e_{1}\right)=F\left(\lambda\left(x+a e_{1}\right)\right)+F\left(\mu\left(x-a e_{1}\right)\right)=F(\lambda x)+F(\mu x)$ $+F\left(\lambda a e_{1}\right)-F\left(\mu a e_{1}\right)$, since $\lambda\left(x+a e_{1}\right) \perp \mu\left(x-a e_{1}\right)$. Since $x \perp e_{1}, F((\lambda+\mu) x$ $\left.+\lambda a e_{1}-\mu a e_{1}\right)=F((\lambda+\mu) x)+F\left(\lambda a e_{1}-\mu a e_{1}\right)$. From the preceding equations it is verified that

$$
F((\lambda+\mu) x)=F(\lambda x)+F(\mu x)
$$

after noting that F is homogeneous on $\left[e_{1}\right]$. Since F is continuous, F is homogeneous on $[x]$. Hence F is a linear functional completing the proof in the case rank $T=2$.

Next suppose $\operatorname{dim} E=3$, and rank $T=3$. Since T-orthogonality is not symmetric there exist linearly independent vectors e_{1}, e_{2} such that $e_{1} \perp e_{2}$ and $e_{2} \perp e_{1}$. Thus as in the case of $\operatorname{dim} E=2$ it is verified that F is linear on [$\left.e_{1}, e_{2}\right]$. Suppose there is a vector $e_{3} \notin\left[e_{1}, e_{2}\right]$ such that $e_{3} \perp\left[e_{1}, e_{2}\right]$. If $e_{1} \perp e_{3}$ or $e_{2} \swarrow e_{3}$ then F is homogeneous on [e_{3}] and F is a linear functional. Next let $e_{1} \perp e_{3}$ and $e_{2} \perp e_{3}$ or equivalently $\left[e_{1}, e_{2}\right] \perp e_{3}$. Since $e_{3} \perp\left[e_{1}, e_{2}\right], e_{3} \notin\left[e_{1}, e_{2}\right]$ and rank $T=3,\left(T e_{3}, e_{3}\right) \neq 0$. Similarly since $e_{1} \perp e_{2}, e_{1} \perp e_{3}$ it is verified that ($\left.T e_{1}, e_{1}\right) \neq 0$. Thus since $e_{1} \perp e_{3}, e_{3} \perp e_{1}$ there is a nonzero real number a such that
either $a e_{1}+e_{3} \perp a e_{1}+e_{3}$ or $e_{3}+a e_{1} \perp e_{3}-a e_{1}$. Thus as in the case of $\left({ }^{*}\right)$ in the preceding paragraph it follows that F is homogeneous on $\left[e_{3}\right]$. Hence F is a linear functional. Next suppose there is no vector $e_{3} \notin\left[e_{1}, e_{2}\right]$ such that $e_{3} \perp\left[e_{1}, e_{2}\right]$. Since rank $T=3$, there is a vector $x \neq 0$ such that $x \perp\left[e_{1}, e_{2}\right]$ and $x \notin\left[e_{1}\right]$. Since such a vector $x \in\left[e_{1}, e_{2}\right]$ there are real numbers $a, b, b \neq 0$ such that $a e_{1}+b e_{2} \perp e_{2}$, and $a e_{1}+b e_{2} \perp e_{1}$. Thus since $e_{1} \perp e_{2}$ and $e_{2} \perp e_{1}$ it is verified that $\left(T e_{2}, e_{2}\right)=0=\left(T e_{1}, e_{1}\right)$. Hence we are in the case $e_{1} \perp e_{1}$, $e_{2} \perp e_{2}, e_{1} \perp e_{2}$ and $e_{2} \perp e_{1}$. Since $e_{1} \perp\left[e_{1}, e_{2}\right]$, and $T e_{1}, T e_{2}$ are linearly independent there is a vector $e_{3} \notin\left[e_{1}, e_{2}\right]$ such that $e_{2} \perp e_{3}$. Identifying linear functionals f on E with points in E by the mapping

$$
f \leftrightarrow \sum_{i=1}^{3} f\left(e_{i}\right) e_{i}
$$

it is verified that there are real numbers $a_{3}, b_{1}, c_{1}, c_{2}$, and c_{3} such that $T e_{1}=a_{3} c_{3}$, $T e_{2}=b_{1} e_{1}, T e_{3}=\sum_{i=1}^{3} c_{i} e_{i}$. Since the rank $T=3, a_{3}, b_{1}, c_{3}, c_{2}$ are nonzero real numbers. Thus $e_{3} \perp e_{2}$ while $e_{2} \perp e_{3}$. Hence F is homogeneous on [e_{3}]. Further it is verified that $e_{3} \perp c_{2} e_{3}-c_{3} e_{2}$ and $c_{2} e_{3}-c_{3} e_{2} \perp e_{3}$. Hence F is linear on $\left[e_{3}, c_{2} e_{3}-c_{3} e_{2}\right]$. Now since $e_{2} \perp\left[e_{3}, c_{2} e_{3}-c_{3} e_{2}\right]$ and F is homogeneous on [$\left.e_{2}\right]$ it follows that F is linear on E.

Next we proceed to the main theorem of this section.
Theorem 1. Let E be a real Hausdorf topological vector space and $T: E \rightarrow E^{*}$ be a linear mapping such that the T-orthogonality is not symmetric. Then every continuous orthogonally additive functional on E is linear.

Proof. In view of the introductory comments in this section we may assume that rank $T \geqq 2$. Since the range of T is of dimension at least 2 , and orthogonality is not symmetric we claim that there exist two vectors $e_{1}, e_{2} \in E$ such that $e_{1} \perp e_{2}, e_{2} \perp e_{1}$ and $T e_{1}, T e_{2}$ are linearly independent. For let x, y be two vectors such that $x \perp y$, and $y \perp x$. If $T x, T y$ are linearly dependent let $p \in E$ be such that $T p, T y$ are linearly independent. If $y \perp p$ then since $y \perp x$ there exists a real number a such that $y \perp p+a x$. If $p+a x \perp y$ then since $x \perp y, p \perp y$. Thus $y \perp p$ and $p \perp y$ and $T p, T y$ are linearly independent. Next, if $p+a x \perp y$, then $p+a x, y$ are vectors of the required type. If $y \perp p$, then if $p \perp y, p, y$ have the desired properties. If $p \perp y$ then $p+x \perp y$ and $p+x, y$ have the desired properties. Thus there exist vectors e_{1}, e as claimed. Let now $x \in E \sim\left[e_{1}, e_{2}\right]$. Consider the linear mapping $T \mid\left[x, e_{1}, e_{2}\right]=T_{1}$. Then applying Proposition 1 to T_{1} and the function F it follows $F \mid\left[x, e_{1}, e_{2}\right]$ is linear. This also implies in particular that F is linear on $[x]$ for all $x \in E$. Next, let x, y be two linearly independent vectors, $x, y \notin\left[e_{1}, e_{2}\right]$. If $x \perp y(y \perp x) F$ is verified to be linear on $[x, y]$ from the preceding observation. Next if $x \Perp y$ and $y \perp x$, then if $(T x, x) \neq 0$ or $(T y, y) \neq 0$ it is possible to find a real number a such that $x \perp x+a y$ or $y \perp y+a x$. Then in either case as before F is
linear on the span of $[x, y]$. If $(T x, x)=0=(T y, y)$, then since $(T x, y) \neq 0 \neq$ ($T y, x$) it is verified that there is a real number a such that $x=a y \perp y+x$, once again verifying F is linear on $[x, y]$. Thus in any case F is linear on $[x, y]$. Hence F is a linear functional.
4. We discuss here the case when the T-orthogonality is symmetric. We note that if $F: E \rightarrow R$ is orthogonally additive then the even and odd parts F_{1}, F_{2} of F are also orthogonally additive. This is verified from the equations $F_{1}(x)=$ $\frac{1}{2}[F(x)+F(-x)]$ and $F_{2}(x)=\frac{1}{2}[F(x)-F(-x)]$.

As in the preceding sections we assume that $\operatorname{dim} E \geqq 2$. Further we note that if $\operatorname{dim} T=1$ then as observed in Lemma 2 there is a $x \in E$ such that $(T x, x) \neq 0$. Now as in the case when T-orthogonality is not symmetric, $\operatorname{dim} T=1$ (see first paragraph in section 3) it is verified that if F is a orthogonally additive functional on E and $M=T x^{-1}(0)$ then $F \mid M$ is linear. Since $E=M \oplus[x]$ it is verified that F determines a unique continuous function $\varphi: R \rightarrow R, \varphi(0)=0$ such that $F(\lambda x+y)=\varphi(\lambda)+l(y)$ if $y \in M$ and $F \mid M=l$. Conversely if $l \in E^{*}$ and $\varphi: R \rightarrow R$ is a continuous function, $\varphi(0)=0$, then the function $F: E \rightarrow R$ defined by $F(\xi)=\varphi(\lambda)+l(y)$, if $\xi=\lambda x+y, y \in M$, determines a continuous orthogonally additive function. The preceding fact is verified by noting that for $y, z \in M, \lambda x+y \perp \mu x+z$ if and only if $\lambda \mu=0$ since orthogonality is symmetric and $y \perp z$.

We proceed to discuss the case when rank $T \geqq 2$.
Proposition 2. Let $\operatorname{dim} E=2$. If $T: E \rightarrow E^{*}$ is a linear mapping, rank $T=2$, and if T-orthogonality is symmetric, then a continuous function $F: E \rightarrow R$ is even and orthogonally additive if and only if $F(x)=c(T x, x)$ for some real number c

Proof. If $(T x, x)=0$ for all $x \in E$, then since F is even orthogonally additive functional it follows that $F(x)=F(-x)$, and $F(x)+F(-x)=F(0)=0$. Thus $F(x)=0$ for all $x \in E$.

Next if for some $x(T x, x) \neq 0$, then from Lemma 1 it follows that T is a symmetric mapping. Let e_{1} be a vector such that $e_{1} \Perp e_{1}$. Then there is a vector $e_{2}, e_{2} \notin\left[e_{1}\right]$ such that $e_{1} \perp e_{2}$. Since T is of rank $2, T e_{2} \neq 0$. Thus $e_{2} \perp e_{1}$ implies $e_{2} \perp e_{2}$. Hence we can assume that there are real numbers $a \neq 0 \neq b$, such that $T e_{1}=a e_{1}$ and $T e_{2}=b e_{2}$. We can assume without loss of generality that $a>0$. It is verified that $x_{1} e_{1}+x_{2} e_{2} \perp y_{1} e_{1}+y_{2} e_{2}$ if and only if $a x_{1} y_{1}+$ $b x_{2} y_{2}=0$. Now if $b>0$ then there are vectors $x, y, x \in\left[e_{1}\right], y \in\left[e_{2}\right]$ such that $(T x, x)=1=(T y, y)$. If $b<0$ then there are vectors x, y, as above such that $(T x, x)=1=-(T y, y)$. For such a pair x, y, for all real numbers K, $K(x+y) \perp K(x-y)$ or $K(x+y) \perp K(x+y)$ according as $b>0$ or $b<0$. Since F is even and $K x \perp K y$, it is verified from the orthogonal additivity of F that $F(K x)=F(K y)$ or $F(K x)=-F(K y)$. Now it follows that there is a real number c such that for all $K, F(K z)=c(T K z, K z)$ where $z=x$ or $z=y$, noting that $F(K x)=F(K y)$ and $F(K x)=-F(K y)$ according as $(T x, x)=$ $(T y, y)$ or $(T x, x)=-(T y, y)$. Now let ξ be an arbitrary vector in E. Let $\xi=$
$\lambda x+\mu y$. Then from the orthogonal additivity of F it follows that

$$
\begin{aligned}
F(\lambda x+\mu y) & =F(\lambda x)+F(\mu y)=c(T \lambda x, \mu x)+c(T \mu y, \mu y) \\
& =c(T(\lambda x+\mu y), \lambda x+\mu y) .
\end{aligned}
$$

Hence $F(\xi)=c(T \xi, \xi)$.
Theorem 2. Let $\operatorname{dim} E \geqq 2$ and $T: E \rightarrow E^{*}$ be a linear mapping such that rank $T \geqq 2$. If T-orthogonality is symmetric, then a continuous real valued function F on E is even and orthogonally additive only if there is a real number c such that for all $\xi \in E$,

$$
F(\xi)=c(T \xi, \xi) .
$$

Proof. If $(T x, x)=0$ for all $x \in E$, then since $x \perp x$ for all x, F is linear on [x]. Since F is also even $F(x)=0$ for all $x \in E$ and it follows that $F(x)=$ $c(T x, x)$ for all x, where c is an arbitrary real number.

Next let x be a vector such that $(T x, x) \neq 0$. Let F be a continuous orthogonally additive function, and let $M=T x^{-1}(0)$. There exists a $y \in M$ such that $(T y, y) \neq 0$. For, let every vector in M be isotropic. Since the $\operatorname{rank} T \geqq 2$ there is a vector $p \in M$ such that $T p \notin[T x]$. Thus there exists a $z \in M$ such that $p \perp z$. Now $p+z \in M$. Since $p+z \perp p+z,(T p, z)+(T z, p)=0$, since every vector in M is isotropic. Since the mapping T is symmetric the preceding equation implies $p \perp z$ contradicting the choice of z. Thus there is a vector $y \in M$ with $(T y, y) \neq 0$. Let $T_{1}=T \mid[x, y]$. Since $(T y, y) \neq 0$ and $(T y, y)=0, T_{1} y, T_{1} x$ are linearly independent and the rank $T_{1}=2$. Noting that T-orthogonality coincides with T_{1}-orthogonality on the plane $[x, y]$ it follows from the preceding proposition that $F(\xi)=c(T \xi, \xi)$ for all $\xi \in[x, y]$ where c is independent of ξ. In particular $F(K x)=K^{2} F(x)$ for all $K \neq 0$. Now let $z \in E$, and write $z=\lambda x+\eta$ where $x \perp \eta$ and λ is a real number. Then

$$
F(z)=F(\lambda x+\eta)=F(\lambda x)+F(\eta)=\lambda^{2} F(x)+F(\eta) .
$$

If $(T \eta, \eta)=0$ then $F(\eta)=0$. If $(T \eta, \eta) \neq 0$, from the preceding it follows that $F(\eta)=c(T \eta, \eta)$ where c is such that $F(x)=c(T x, x)$. Thus

$$
F(z)=\lambda^{2} F(x)+c(T \eta, \eta)=c(T(\lambda x+\eta), \lambda x+\eta) .
$$

This completes the proof of the theorem.
Next we proceed to the case when T-orthogonality is symmetric and F is an odd functional. In this case if $x \perp x$, then F is linear on $[x]$. Thus, if $(T x, x)=0$ for all x, we expect F to be a linear functional. However we provide an example to show that this need not be the case when every vector x in E is isotropic and rank $T=2$.

Theorem 3. Let $T: E \rightarrow E^{*}$ be a linear mapping such that T-orthogonality is symmetric and rank $T \geqq 2$. Then every odd continuous T-orthogonally additive real valued function on E is linear if there is at least one nonisotropic vector.

Proof. Since there is a nonisotropic vector and T-orthogonality is symmetric, the linear mapping T is symmetric. Further we note that since F is an odd orthogonally additive function, F is linear on $[x]$ if x is isotropic. We proceed to verify that F is linear on $[x]$ even if x is nonisotropic. As already noted in the second paragraph of the proof of the preceding theorem there is a vector $y \perp x$ such that $(T y, y) \neq 0$. We may even assume that $(T y, y)= \pm(T x, x)$. If $(T y, y)=(T x, x)$ then since $x \perp y, K(x+y) \perp K(x-y)$ for all real numbers K. Thus noting that F is an odd function it is verified that $F(2 K x)=$ $2 F(K x)$ and $F(2 K y)=2 F(K y)$. Further since for any real number m, $m(x+y) \perp(x-y)$ it is verified that

$$
F((m+1) x)+F((m-1) y)=F(m x)+F(x)+F(m y)-F(y) .
$$

Now by straightforward induction it is verified that for integers $m, F(m x)=$ $m F(x)$ and $F(m y)=m F(y)$. Since x, y could be replaced by $r x, r y, r$ a real number, $F(m r x)=m F(r x)$ for all real numbers r and integers m. Hence for rationals m / n we have

$$
F\left(\frac{m}{n} x\right)=\frac{m}{n} F(x)
$$

Since F is continuous F is linear on $[x]$. If $(T x, x)=-(T y, y)$, since $x \perp y$, $x+y, x-y$ are isotropic vectors. Thus for any real number $\lambda, F(\lambda(x+y))=$ $\lambda(F(x)+F(y))$ and $F(\lambda(x-y))=\lambda[F(x)-F(y)]$. Hence $F(\lambda x)+F(\lambda y)=$ $\lambda(F(x)+F(y))$ and $F(\lambda x)-F(\lambda y)=\lambda[F(x)-F(y)]$. Thus $F(\lambda x)=\lambda F(x)$. Hence F is linear on all 1-dimensional subspaces of E.

We proceed to show that F is indeed linear on E. Since F is linear on each line in E and orthogonally additive it is enough to show that in any two dimensional subspace $[x, y]$ there are two linearly independent orthogonal vectors. Let x, y be two linearly independent vectors. If $x \perp y$ we have two orthogonal vectors in $[x, y]$. If $x \perp y$, but $(T x, x) \neq 0((T y, y) \neq 0)$ the pair $x, x+a y(y, y+a x)$ where $a=-(T x, x) /(T x, y)(a=-(T y, y)(T x, x))$ is verified to be a pair of of the required type in the subspace (x, y). If $(T x, x)=0=(T y, y)$ then the pair $x+y, x-y$ is one such since T is symmetric. This completes the proof of linearity of F. Thus $F \in E^{*}$.

Before proceeding to the case when every vector is T-isotropic let us recall that according to Lemma 2 , if the rank of T is an odd integer $\geqq 3$ then there is at least one non-isotropic vector. We start with a preliminary result dealing with the case when rank $T=4$.

Proposition 3. If $\operatorname{dim} E=4$ and $T: E \rightarrow E^{*}$ is a symmetric linear isomorphism and if every vector is isotropic, then every odd orthogonally additive continuous real valued function on E is linear.

Proof. Let $e_{1} \in E \sim\{0\}$. Since $T e_{1} \neq 0$, the subspace $M=T e_{1}^{-1}(0)$ is 3 -dimensional. Let e_{2} be a vector in $T e_{1}^{-1}(0)$ such that e_{1}, e_{2} are linearly
independent. Since $T e_{2}$ and $T e_{1}$ are linearly independent there is a vector e_{3} such that $e_{1} \perp e_{3}$ and $\left(T e_{2}, e_{3}\right)=1$ and a vector e_{4} such that $e_{2} \perp e_{4}$ and $\left(T e_{1}, e_{4}\right)=1$. It is verified that $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ is a base for E and representing linear functionals f on E with vectors in E by the isomorphism

$$
f \leftrightarrow\left(f\left(e_{1}\right), f\left(e_{2}\right), f\left(e_{3}\right), f\left(e_{4}\right)\right) .
$$

It follows from the properties that every vector is isotropic, and orthogonality is symmetric, that

$$
T e_{1}=e_{4}, T e_{2}=e_{3}, T e_{3}=-e_{2}, \text { and } T e_{4}=-e_{1} .
$$

Since for every $x \in E, x \perp x$ it follows that F is linear on $[x]$ for every $x \in E$. Thus if $x \perp y$ then F is linear on the subspace $[x, y]$. Since $e_{1} \perp\left[e_{1}, e_{2}, e_{3}\right]$, $e_{2} \perp\left[e_{1}, e_{2}, e_{4}\right], e_{3} \perp\left[e_{1}, e_{3}, e_{4}\right], e_{4} \perp\left[e_{2}, e_{3}, e_{4}\right]$ and $\left[e_{2}, e_{3}\right] \perp\left[e_{1}, e_{4}\right]$ it is enough to verify that F is linear on the subspaces $\left[e_{2}, e_{3}\right]$ and $\left[e_{1}, e_{4}\right]$. Consider a typical vector, say $\lambda e_{2}+\mu e_{3}$ in $\left[e_{2}, e_{3}\right]$. It is verified that $e_{1}+\lambda e_{2} \perp \mu e_{3}-\lambda \mu e_{4}$ and $e_{1}-\lambda \mu e_{4} \perp \lambda e_{2}+\mu e_{3}$. Thus

$$
F\left(e_{1}+\lambda e_{2}+\mu e_{3}-\lambda \mu e_{4}\right)=F\left(e_{1}+\lambda e_{2}\right)+F\left(\mu e_{3}-\lambda \mu e_{4}\right) .
$$

Since $e_{1} \perp e_{2}$ and $e_{3} \perp e_{4}$,
(1) $F\left(e_{1}-\lambda \mu e_{4}\right)+F\left(\lambda e_{2}+\mu e_{3}\right)=F\left(e_{1}\right)+F\left(\lambda e_{2}\right)+F\left(\mu e_{3}\right)-F\left(\lambda \mu e_{4}\right)$.

Once again since $e_{1}+\lambda e_{2}+\mu e_{3} \perp \lambda e_{2}+\lambda \mu e_{4}$ and $e_{3} \perp e_{1}-\lambda \mu e_{4}$ it follows that

$$
\begin{aligned}
F\left(e_{1}+\mu e_{3}-\lambda \mu e_{4}\right) & =F\left(\mu e_{3}\right)+F\left(e_{1}-\lambda \mu e_{4}\right) \\
& =F\left(e_{1}+\lambda e_{2}+\mu e_{3}\right)-F\left(\lambda e_{2}+\lambda \mu e_{4}\right) \\
& =F\left(e_{1}\right)+F\left(\lambda e_{2}+\mu e_{3}\right)-\left[F\left(\lambda e_{2}\right)+F\left(\lambda \mu e_{4}\right)\right] .
\end{aligned}
$$

Thus
(2) $\quad F\left(e_{1}-\lambda \mu e_{4}\right)-F\left(\lambda e_{2}+\mu e_{3}\right)=F\left(e_{1}\right)-F\left(\lambda \mu e_{4}\right)-F\left(\lambda e_{2}\right)-F\left(\mu e_{3}\right)$.

From equations (1) and (2) and from the linearity of F on each line in E it follows that

$$
F\left(\lambda e_{2}+\mu e_{3}\right)=F\left(\lambda e_{2}\right)+F\left(\mu e_{3}\right)=\lambda F\left(e_{2}\right)+\mu F\left(e_{3}\right)
$$

and

$$
F\left(e_{1}-\lambda \mu e_{4}\right)=F\left(e_{1}\right)-\lambda \mu F\left(e_{4}\right) .
$$

Thus F is verified to be linear on the subspaces $\left[e_{2}, e_{3}\right]$ and $\left[e_{1}, e_{4}\right]$. Hence F is a linear functional on E.

Theorem 4. Let E be an arbitrary topological vector space, and let $T: E \rightarrow E^{*}$ be a linear mapping such that rank $T \geqq 3$ and $(T x, x)=0$ for all $x \in E$, and T-orthogonality is symmetric. If F is a continuous orthogonally additive functional on E, then F is linear.

Proof. Let e_{1}, e_{4} be an arbitrary pair of linearly independent vectors. If
$e_{1} \perp e_{4}$ then since F is linear on $[x]$ for each $x \in E, F$ is linear on the subspace $\left[e_{1}, e_{4}\right]$. Next let $e_{1} \perp e_{4}$. Since $e_{1} \perp e_{4}, e_{4} \perp e_{4}$ and $T e_{1} \neq 0 \neq T e_{4}$ it is verified that $T e_{1}, T e_{2}$ are linearly independent. Since $x \perp x$ for all $x \in E$ and dim $T \geqq 3$, it follows from the remarks preceding Proposition 3 that $\operatorname{dim} T \geqq 4$. Thus there exists a vector ξ, say $\xi=\lambda e_{4}+h$, where $h \in T e_{1}^{-1}(0)$ such that $T \xi \notin\left[T e_{1}, T e_{4}\right]$. Now let $h=\mu e_{1}+e_{2}$ where $e_{2} \perp e_{1}$. Then it is verified that $T e_{2} \notin\left[T e_{1}, T e_{4}\right]$ and $e_{1} \perp e_{2}, e_{4} \perp e_{2}$.

Now let e_{3} be a vector in $T e_{1}^{-1}(0) \cap T e_{4}^{-1}(0)$ such that $e_{2} \perp e_{3}$. It follows that $T e_{3} \notin\left[T e_{1}, T e_{2}, T e_{4}\right]$. Further it is verified that the rank of $T_{1}=T \mid E^{4}$ is 4 , where $\mathrm{E}^{4}=\left[e_{1}, e_{2}, e_{3}, e_{4}\right]$ and the T-orthogonality restricted to E^{4} coincides with T_{1}-orthogonality. Thus applying the preceding proposition, it is inferred that $F \mid E^{4}$ is linear. Hence F is linear on $\left[e_{1}, e_{2}\right]$, completing the proof of the theorem.

Before summarizing the results we discuss an example showing that the preceding theorem cannot be improved.

Example. Consider $E=R^{2}$. Let $\left\{e_{1}, e_{2}\right\}$ be a base of E. Let T be the operator defined by $T e_{1}=e_{2}$ and $T e_{2}=-e_{1}$. Then it is verified that $(T x, x)=0$ for $x \in R^{2}$. Let $F: R^{2} \rightarrow R$ be defined by,

$$
F\left(a e_{1}+b e_{2}\right)=\left(a^{3}+b^{3}\right)^{1 / 3} .
$$

It is verified that F is a continuous T-orthogonally additive odd functional on R^{2}. Thus in the preceding theorem rank $T \geqq 3$ cannot be replaced by rank $T \geqq 2$.

Since every orthogonally additive functional F is the sum of an even and an odd orthogonally additive functional we can summarize the results of this section as follows.

Theorem 5. Let $T: E \rightarrow E^{*}$ be a linear mapping such that $\operatorname{dim} T \geqq 2$. If T-orthogonality is symmetric and if there is at least one non-isotropic vector, then a continuous function $F: E \rightarrow R$ is orthogonally additive only if there are a real number c and a functional $l \in E^{*}$ such that

$$
F(x)=c(T x, x)+l(x)
$$

for all $x \in E$. If T is as above except that every vector in E is isotropic, then if $\operatorname{dim} T \geqq 3$ every continuous orthogonally additive functional is linear.

In conclusion it might be remarked that if the quadratic form associated with the linear mapping T is not continuous on E, then $c=0$ in Theorems 2 and 5.

Some applications of the concept of T-orthogonality to harmonic analysis will be indicated elsewhere.

References

1. L. Drewnowski and W. Orlicz, On representation of orthogonally additive functionals, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 17 (1969), 647-653.
2. V. Mizel and K. Sundaresan, Representation of vector-valued nonlinear functions, Trans. Amer. Math. Soc. 159 (1971), 11-27.
3. A. G. Pinsker, Sur une functionelle dans l-espace de Hilbert,' Comptes Rendus (Doklady) de l'Academie des Sciences de l'USSR. $X X$ (1938), 411-414.
4. N. Friedman and M. Katz, A representation theorem for additive functionals, Arch. Rational Mech. Anal. 21 (1966), 49-57.
5. S. Koshi, On additive functionals of measurable function spaces, Math. J. Okayama Univ. 13 (1968), 119-127.
6. J. Dugundji, Topology (Allyn and Bacon, New York, 1966).
7. K. Sundaresan, Orthogonality and nonlinear functionals on Banach spaces, Proc. Amer. Math. Soc. 34 (1972), 187-190.
8. K. Sundaresan and W. A. Woyczynski, L-orthogonally scattered measures, Pacific J. Math. 48 (1972), 785-797.

University of Pittsburgh,
Pittsburgh, Pennsylvania

[^0]: Received August 19, 1971 and in revised form, October 17, 1973. The research work of the first named author was supported in part by a Scaife Faculty Grant administered by CarnegieMellon University.

