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SUMMARY

This paper deals with the instability of a hovering helicopter with
controls fixed The generalized simple stabilization system, which is
composed ot rods, springs, dampers and masses and uses the rotor shaft to
generate gyroscopic forces, has been analysed Special cases of a Second
Order System have been considered and show that good stability can be
achieved, thus overcoming the limitations ot First Order Systems

1 Introduction

One of the helicopter's greatest assets is its ability to hover However,
in this condition it is dynamically unstable with the controls fixed In other
words, a disturbance from the equilibrium position grows with time This
means that the aircraft controls must be operated continuously with resulting
pilot fatigue and increased possibility of accident

The alleviation of this instability has been investigated over the past
few vears Searches have been made for an automatic control device which
could be fitted to the helicopter such that, with the controls fixed, a distur-
bance would decay and the aircraft return to its equilibrium position Of
such devices there are those that use as the basis of gyroscopic couples the
rotor shaft in contrast to other methods where a separate gyroscope has to be
installed At the present time there exist two types which belong to the
first category , they are the Bell Stabilizing Bar and the Hiller Servo Blade
control Although they do improve the stability they are not completely
satisfactory At best they give neutral stability In this paper the principle
of their mechanism has been generalized and the possibilities of a more
satisfactory device have been investigated
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Attention has been focussed mainly on the Sikorsky R-4B since tor this
configuration the results can be compared with past investigations We
have considered too only the longitudinal motion for it is known that if the
criterion for longitudinal stabihtv is satisfied then that for the lateral motion
follows

The results are given in terms of the automatic control component in
phase with the attitude, that in phase with the rate of change of attitude
and their ratio For convenience the dimensionless term Oqil is used
From these results the stability characteristics are deduced

2 Stability in Hovering Flight
Sissingh m reference 1 has shown that by considering a helicopter of

arbitrarv design and allowing it to have two degrees of freedom, viz, attitude
and horizontal linear velocity, the equation of longitudinal motion lead to a
frequency equation of the form

A3v
i + A2u

2 + AlV + Ao = 0 (2 1)

where the A's are known for a particular aircraft configuration The
disturbances in the degrees of freedom are assumed to be of exponential
form and the coupling between lateral and longitudinal motion has been
neglected Given also are stability charts so that the times to either double
or halve the amplitude of the oscillations together with the period can be
determined for given values of the constants A, in equation (2 1)

Attention is focussed mainly on the Sikorsky R-4B and for this type
the value of AJAg is nearlv zero From the stability charts it can be seen
that the helicopter is unstable and that if Aj/Ag could be increased stability
would be improved

If we introduce a hypothetical autopilot which will impose upon the
mean blade setting Ho a cyclic pitch —(0aa. + 0qq) sin ifi the constants of
the frequency equation Ax and A2 now become functions of the arbitrary
parameters 0a and 6q respectively Physically this procedure corresponds
to a cyclic pitch variation which is dependent on the attitude and the rate
of change of attitude with time

Reference 1 shows that suitable stability can be obtained for 6a = 0 12
and qQ = 3 25 This converts the unstable helicopter into one where
the disturbance is halved in 3 sees with period 11 sees

It is the purpose of the generalized simple stabilization system to use
the rotor shaft as the basis of gyroscopic forces in order to obtain the required
values of 6U and 6qil

3 The Generalized ' Simple' Stabilization System
Unlike fixed wing aircraft the helicopter does not have to be installed

with a special gyroscope in order to obtain gyroscopic couples, for it can
utilize its own rotor Let us consider therefore a system which is fitted to
and rotating with the rotorshaft and which can transmit the required cyclic
pitch variation to the rotor blades to give good stability following a disturbance
from equilibrium In dealing with ' simple' systems we are considering
ones where masses, springs, rods and dampers are used as the fundamental
units of the control mechamsm The simple system is attached to the
shaft and a rod leads from the control device to a mechamsm at the hub

78 The Journal of the Helicopter

https://doi.org/10.1017/S2753447200003127 Published online by Cambridge University Press

https://doi.org/10.1017/S2753447200003127


which vanes the pitch of the blades Following a disturbance of the
rotor shaft therefore a change in angle A6 will be effected The system
is represented diagrammatically in Fig 1

When the shaft is in its initial position (t = 0) an arbitrary point on this
connecting rod will be at fo (say) If following a disturbance the mechanism
were allowed to rollow the rotor without hinderance the arbitrary point
would have moved to iJ

0 Owing to the gyroscopic fcrces, the control
device does not follow the rotor immediately Let us assume the position
of the point be at f, after time t sees

The response therefore to the disturbance is

S = (& - g\) (3 1)
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We shall suppose that the mechanism governing the actual pitch variation
ac*s in a manner such that

\0 =-- Gb (3 2)

where G is a constant and that for a two-bladed rotor the pitch variations
are equal but of opposite sign (see Fig 2)

DIAGRAMMATIC REPRESENTATION Of= THE

HUB MECHANISM

FIG 2

We shall consider the generalized ' simple ' system to be composed of
n rods hinged at the axis of rotation and connected to some form of mass
The mass may or may not be designed to have any special aerodynamic
characteristics The rods are damped at the hinge, between which, and the
rotor shaft, springs are attached The rods are also mutually interlinked by
springs and dampers and are connected to the main control rod which feeds
the response into the mechamsm governing the blade pitch angle

The automatic control response is denned by

(3 3)
i = l

where nt are constants and the 8:'s are the angular displacements of the
respective rods

By considering the equation of motion about the hinge of the i th rod
taking into account aerodynamic, mass, hinge damping and interconnecting
moments and neglecting feedback due to the other rods through and due to
the attachment to the main control, as well as the inertia of the blades about
their longitudinal axis we obtain n equations of the form

n n
8, + 2Q1A1)S) + i22iB1J8) + 2D. q sin (</- + <A,)

- = i ( 3 4 )

—q cos (ji + i/,) — 2qK,O cos (i// + ^ ) = 0

where l = 1, 2,
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The derivation of these equations is given m Appendix I It is a simple
extension to prove that the form of the equations is unaltered if we consider
additional rods which instead of being attached to the shaft are hinged at
points along the present rods

It is assumed too that the moments due to the linking of the rods by
springs and dampers act in the same plane as the other moments If there-
fore two rods, 1 and j , are at a large angle the interlinking moment would
act in a plane nearly orthogonal to the planes of the other moments This

ILLUSTRATION! THE CONNECTION BETWEEN THE

ot,h AND | tU gODS

has no advantage from the response point of view and it may provide struc-
tural worries If therefore | ifit — i/t, | is large the appropriate coefficients in
equation (3 4) will be small (see Fig 3)

Equations (3 2-4) define the response of the control system to a disturb-
bance in pitch of the helicopter in the hovering condition In general
A0 will be of the form

Ad = ds sin </J + 6C cos (3 5)

with 6S, fic non-zero This corresponds to displacements in the longi-
tudinal and lateral control The lateral component 6C will be neglected,
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i e, we shall neglect coupling between the two motions This lateral
component can m fact be used to compensate for the already existing coupling

The component in the longitudinal plane 0» is itself composed of two
parts Firstly a component in phase with the change of attitude and secondly
a part in phase with the rate of change of attitude with time

Adopting the frequency response technique we consider the response
to a sinusoidal variation in a

a= a0 sin vt (3 6)

We can then obtain on solving equations 3 2—6

6a = 9a (v, A,,, BI)5 K,, &, n,, G, O) (3 7)
and

0q = 6q (y, \ , B,,, K,, &, n,, G, Q) (3 8)

The method is itself a first approximation We should strictly consider a
decreasing or increasing oscillation for «. but the above assumption (3 6)
simplifies the mathematics involved and investigations have shown (Ref 1)
that the introduction of a varying amplitude has only a small effect on ca
and 0q

Equations 3 7—8 show that 0u, 0q are functions of the parameters of
the system By their appropriate choice we can obtain the desired values
of ba, 6q to give the type of stability required In this paper we are looking
at the problem from the theoretical viewpoint and it will be shown later
that the desired values of 8a, 0q can be achieved In practice, however,
the constants of the system will not be independent but will functionally be
related by either engineering limitations or factors intrinsic to a proposed
design Here we are content to show that good stability is possible using
simple systems as denned

No attempt has been made to solve the equation 3 2—6 generally but
concentration has been fixed on particular values of n, i e, for systems with
given degrees of freedom

Let us first consider the simplest case

4 First Order Systems (n = 1)

For a system with one degree of freedom the equation of motion becomes

8 + 2AnQS + O2Bn8 + 2Oq sin (</- + fa) — q cos (</< + 0,)

—2KjqQ cos (0 + 02) = 0

and the change in the pitch angle of the blade is given by

A0 = GS = — (9aa + 0qq) sm 0 (4 2)

The systems in current use can be divided into two classes Firstly there
are those that incorporate only mechanical damping at the hinge and httle
aerodynimic damping and secondly there are those where the aerodynamic
moment forms the major contribution
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The first case is the well-known Bell Stabilizing Bar and in effect is
governed by the equation

te

8 + 2KSO + Q2S + 2Qq cos </< + q sin xfi = 0 .

K 0 B l A K J » /

The second class is typified by the Hiller Servo Blade Control and the
equation of motion here becomes

8 + 2K8D. + D.2S + 2Oq cos </< + q sin </< + 2KqQ sin i/i = o (4 ^

te A 1 1 = K 1 = K , B u = l , h="l2

In each case it has been shown (Refs 1 and 2) that the values of 0a, #qfi
are given approximately by

0 a = - . 2 / ( K 2 + »2) (45)

0qQ = K / (K2 + I2) (4 6)

Figs 4 and 5 show the variation of fin and #q£2 with the damping constant
K for a frequency ratio of v = 0 01 This value is of the same order of
magnitude as that experienced by a helicopter when slightly disturbed from
the equilibrium position It can be seen that 6a decreases rapidly with
increasing K and that 0qQ reaches a maximum and then decays

From the stability charts of Ref 1 we see that Aj/Ag and hence 6a
must be greater than zero Therefore since the decrease of 0a with K is
fast we must have a small value of K This leads to a large 0qQ The
minimum practical value for K is of the order 0 03

In the first of the two cases the excitement due to the gyroscopic forces
associated with the mass of the bar has a frequency which is practically equal
to its natural frequency Thus the motion must contain damping

In the second case the damping is provided by the air forces The
specific damping of a typical rotor blade considering only air forces is
approximately K = yoj\6 The damping is still too large even if we use
very heavy blades, i e, for small values of yo In order therefore to obtain
the necessary small amount of damping the servo-blade, located at the
outer part of the radius, is relatively short, i e, of small aspect ratio

For the value of K = 0 03 we see that 6a = 0 10 and 0qQ = 30
Unfortunately these values only serve to give neutral stability This can
be seen from the stability charts of Ref 1 where for a given value of Ax/A3
and A0/A3 an increase in A2/A3 leads to an increase in the time for a distur-
bance oscillation to decay to half its initial amplitude

The large value of 0qQ has also a detrimental effect upon the control
sensitivity In his lecture to the Helicopter Association of Great Britain m
1948 (Ref 3) Sissingh gives a plot of control effectiveness against 0a for
various values of 6<tll It is shown that control displacements in phase
with the rate of change of attitude #q play the major part in determining
the effectiveness of the pilot's controls An increase in 0q causes a decrease
in the effectiveness Although the definition of control sensitivity used,
viz, the ratio of the amplitude of the forced oscillation of the helicopter to
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the amplitude of the manual control displacement when the pilot applies a
manual periodic control of period 4 sees , is not a completely satisfactory
criterion for judging the response of an automatically stabilized helicopter,
it does show in a simple way that loss in control sensitivity is mainly caused
by the component 0q becoming too large

T h e limitations of the system in current use can be summarized thus
1 tin is too small

li 0qU is too large
For these systems the ratio 0qQ is of the order of 300 , good stability can

K
be obtained if this ratio is about 30

These limitations are caused through the minimum practical value of
K being too great, so let us consider the properties of a system with an
additional degree of freedom

5 Second Ordei Systems ( n = 2)
The equations of motion for a second order system are

51 + 2OAH8! + 2£2A12S2 + a2Bn8x + Q2B12S2

+ 2Q. q sin (</J + fa) — q cos (tj> + fa) — iq^D. cos (fa + < / > ) = 0

and (51)

52 + 2OA2 181 + 2£2A2282 + Q.%^ + Q2B2 282

f 212 q sin (</< ] fa) — q cos (</, + fa) — 2 q K 2 O cos (ift 4 fa) = 0

and the variations of the blade pitch angle are given by

A0 -= G (8, + nS2) -_ G (0lg + n92s) sin«/, (5 2)

where n = n 2 /n !

From these equations we obtain

P + Q"2 , n ^ (5 4)

where the constants P , M , Q and N are functions of the parameters of the
system defined by (5 1) They are to be chosen such that terms in powers
of v greater than the third can be neglected T h e detailed account of the
derivation of equations 5 3 and 4 is given in Appendix I I

From these equations it is seen that in order to reduce the magnitude of
0qQ in comparison with fta we have to make P small since it is generally
impossible to make L sufficiently large W e shall put P = 0 and consider
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the position where we have only mechanical damping at the hinge with no
interconnecting moments but with varying azimuth angles Afterwards we
shall introduce springs and aerodynamic damping and consider their effect
on the results

Equations (5 1) become for a system with only mechanical damping

8j + 2DAHSJ + Q.% + 2Oq sin (^ + fa) — q cos (</. + fa) = 0
and (5 5)

82 + 2QA2282 + O2S2 + 2Qq sin (</. + fa,) — q cos (>/. + fa) = 0

In Appendix III it is shown that

-2 (A22 — A n ) sin fa sin fa + |A n A 2 2 sin (i^ — fa)
v = A n A 2 2 W 2

( 5 6 )

and

/A A \
6 f i /G D2 =

 A22Sin>A2Cos^1 — A u s i n ^ 1 c o s 0 2 + f^11 — ^ J sin ^ sin ^

A2u A22 sin fa
(5 7)

where we also neglect NC2 when compared with M and the value of n
required to give P = 0 is

n = - A 2 2 S m *' (58)
A n sin i/>2

The constant G m these equations is a gearing ratio and increases the value
of 6a and 0qQ whilst leaving the ratio 6»q£l/0u constant It is considered
to be positive

The neglected terms in the series expansions used to determine 6a and
0qi2 have no significant effect This is because of the low value of v which
is approximately 0 01 for a typical helicopter

From the form of equations (5 6) and (5 7) we see that 0a and <9qQ
are not necessarily positive It can be seen from the stability charts of
Ref 1 that for the values of the coefficients of the stability equation (2 1)
used, we must have both 6a and 8qQ, positive in order to improve the dynamic
stability

Let us therefore consider the boundaries where 6a and 0qQ are zero
in both the (fa — ^2) plane and the (An — A22) plane The areas in these
planes where t)a and frqQ are both greater than zero will be called ' available
regions'

Figs 6 and 7 show the boundaries and available regions for the range
— "72 <fa, <A2 <"ZU We have plotted for convenience tan fa and tan ^2
It can be seen that for A2 2>An there are regions for ^v \f/2 <0, ipv i/r2 > 0
and fa > 0, i{/2 < 0 For A22 < A u the only region occurs when fa < 0
and î 2 > 0
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FIG 6

AVAILABUE PE6IONS FOR ~\ < f, , f£ <: 4f AND ?n. >-

In Figs 8 and 9 we have moved the origin of the azimuth angle through
a right angle by substituting

•Ai = <t>i + "/a

and ^ =

(5 9)

(510)

From these diagrams we see that for A22 > A n , regions occur for ^ < ^/^
^2 < «/2 and ^ < »/2, ^2 > »/2 For A22 < A n we have regions for
fi > nlv ^2 > "U and ^ > »/2, ^2 < -»/2

The diagrams are only sketches of the shape of the boundaries which
are expected The position and gradients are functions of both A u and
AM The theory behind the curves is given in Appendix IV If we now
plot the boundaries in the damping plane for given values of ij/1 and ^2 we
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have only to consider positive values of A u and A22 Figs (10—16) show
the available regions when A22/Au is plotted against A n Fig 10 is for
the case where — "72 < fa < fa < 0, Fig 11 shows the regions when
— "U < ti < 0 < iA» < "'U and fa + fa < 0 The region for both
— T/2 < fa < 0 < fa <"U, fa + «A2 < 0 and 0 < ^ < ^ < f2 < TT,
I^! + \JJ2 < IT is shown in Fig 12 In Fig 13 we show the region for
0 < il/2 < tij < "72 and in Fig 14 the region for 0 < ^ < ^ < "7.,
When 0 < </f2 < "/2 <«/-!< 7T and fa + ifi2 > •* the available region is
given in Fig 15 Finally in this section, Fig 16 shows the region for
T/2 < "A2 < «Ai < "• These results follow from the data in Appendix V
and it can be shown that there are no available regions for the following

FIG T

TAN 41-

•> TAN V

AVAIL.ABL.E REGIONS FOR - \ ^ f, , te ^ i •ftr~ID
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- "12 < h < 0i < o

— 72 < 01 < 0 < 02 < 72 W"11 01 + 02 > 0

— 72 < 02 < 0 < 01 < 72 W l t h 01 + 02 > °

0 < 01 < 72 < 02 < "" W l t h 01 + 02 > "•
0 < 02 < 72 < 01 < w Wlth 01 + 02 < "•

and ""/j < 0! < ^2 < 7T

On comparing Figs 6—9 with Figs 10—16 we see that they correspond
very closely The regions for A22 > A u given in Fig 6 correspond to

FIG. 8

TAN

\

AVAILABLE gESIONS FOP O< f, , 'fj < TT AND m.
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Figs 10, 12, 13 and 14 The region for A u > A22 given in Fig 7 corres-
ponds to Fig 11 The regions of Fig 8 correspond to Figs 12, 13 and 14
whilst those of Fig 9 are equivalent to Figs 15 and 16 It can be seen
also that the regions given above where no available regions exist corres-
pond to similar regions in Figs 6—9

6 Three Special Cases
Let us now consider some special cases Firstly let A u = 0 30 and

A22 = 0 35 Fig 17 shows the available regions near the origin and it can
be seen that it is of the form predicted by Fig 6 The assumption that the
second term in the denominator of the expressions (5 3) and (5 4) for #a/G
and 8qQ,IG is justified for, with the given values of A u and A22 and a

KEY
'inn

r
AVAILABLE

a* -o

- 9!, + ^ 2 = 0

F?ESION

FIG 9

T A N

AVAILABLE FOR O < <- TT
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frequency ratio of about 0 01, it can easily be proved that N7<2/M is of the
order of 0 005 Effects of this order of magnitude can be neglected

For the second example we have chosen ^ = — "j3 and ifiz = — "/6
In Fig 18 m = A^/Aj, is plotted against A u and the available region
corresponds to the expected area given by Fig 10

Thirdly, we have chosen >ji1 = "ja and i/r2 = "73 The available
region Fig 19 agrees with the predicted region Fig 14 If we now choose
A22 = 2An and plot 6JG12, 0qli/GL2 and tfqfi/0a against AU we obtain
Fig 20 From this figure it can be seen that small values of the ratio
Hqii/Pa are possible and hence good stability characteristics can be obtained
We now introduce springs and aerodynamic damping into the system and
investigate their effect Let us first consider the spring effect

n

i 0

ulU<jjauiuuiuau.'UwuuiwJi

AVAILABLE FOR ~\ <% <

FIG IO

KEY

V////J' AVAIl-ABUE PEGION

f O

AVAIL-ABLE REGION FQg ~f <f, < O < f 2 < - | ,vfl+fe<O

Fi<S i i
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7 Effect of Spring Restraint
The equation of motion can now be written in the form

8, + 2QAUS, + O2(l +ABU)S, + 2fiq sin (0 + 0,) — q cos (0 + 0t) = 0
( i - l , 2 ) (7 1)

The original Bu of equations (5 1) has been replaced by (1 4 ABU) for
convenience in the algebra and because ABU = 0 reduces (7 1) to the
equations (5 5) where the spring effect is absent By conducting a similar
analysis as performed in Appendix III it can be shown that both 6a and
0qQ are of the form

(a: tan i/ij tan 02 + a2 tan >pl + a3 tan i/>2 + a4) cos 0X

ft 4 0, tan 02 *•

where », and /?k are functions of both An and ABn () - 1 4, k - 1, 2,
i = 1, 2)

Thus the major changes in the picture for the available regions in the
(015 02) plane are that the curve 8a = 0q£2 = 0 suffer changes in their
asymptotes Let us consider a numerical example Taking

A n = 0 30 , A22 = 0 35 , ABU = 0 , AB22 =- 0 10

and considering that part of the 0 plane where 0 < 0l3 02 < "V2 w e obtain
Fig 21 From this figure we see that larger values of ip1 may now be used
and that the previous values when the spring effect is absent are no longer
' available'

In Fig 22 we have plotted OJGir, <9qi2/G72 and 6qLll8a against tan 0j
for tfi, = "74 The figure shows that in the new available region the
desired value of O^iljOn necessary for good dynamic stability can be achieved
Thus we see that the introduction of the spring effect does not harm the
system's ability to produce the desired ratio but only alters the position
of the available areas

8 Effect of Aerodynamic Damping
On the introduction of damping due to air forces and neglecting spring

effects the equation of motion becomes

8, + 2O (Au + KJ 8X + &% + 2Qq sin (0 + 0,) (8 1)

- q cos (0 + 00 - 2qKIO cos (0 + 0.) = 0 (1 = 1, 2)

The aerodynamic effect is given by the K, terms and it can be seen that
when Kx = K2 = 0, equation (8 1) reduces to equations (5 5) where only
mechanical damping at the hinge is considered

The effect on the boundaries 6a = 0qi2 — 0 is the same as in the
case of the introduction of springs into the system

Let us consider the case where

A u = 0 30 , A22 = 0 , K, = 0 , K3 = 0 35
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This corresponds to a system where one rod is mechanically damped at the
hinge and the other is damped aero dynamically Fig 23 shows the changes
produced in the $ plane where 0 < tp13 iji2 < -n It can be seen that the
available region before the introduction of aerodynamic damping has dis-
appeared and has been replaced by two larger regions The reason why
the new curves fail to degenerate into straight lines as in the case of pure
mechanical damping, is because of the introduction of the at term in equation
(7 2) In Fig 24 we have plotted ^,/G27, 0qQ/Gv2 and <9qfi/#a against
tan 4>i for <f>2 = T/4, i e, >p2 = %* We see again that the required value
of Oqil/Oa for good stability can be obtained

9 Conclusions

1 Theoretically a helicopter can be fitted with an automatic control device
utilizing the rotor shaft as the origin of gyroscopic couples to give any
required stability characteristic with controls fixed A second order system
will give the small values of the ratio #qQ/(9a required for good stability

K E Y

FIG 24

, o

VARIATIONS OF

FOR A|: - 0 30 , A i 2= O, Kf =O, K2- O 3 5 , TAM <p =1
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2 The position of the bars must be in ' available ' regions The location
of these regions can be changed by the introduction of aerodynamic damping
and elastic restraint
3 The results are sufficient to indicate how mechanical apparatus should
be designed for practical application of the principle
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APPENDIX I

The Generalized ' Simple ' Stabilization System
We shall consider the system to be composed of n rods hinged at the

axis of rotation and connected to some form of mass If we neglect the
moment of inertia of the blades about their axes, the forces in the blade
setting device which oppose the motion h, i e, friction and feedback to the
separate rods due to their connection with the main control bar, the moments
about the hinge give for the l th rod,

Mai + M , + ^ M,, = 0 (A 1)

and Ma = Moment due to Aerodynamic forces
Mm, = Moment due to Mass forces
M,, = Moment due to the connection of ) th rod with l th rod
Mu = Moment due to the connection of I th rod to the shaft

It is to be noted that in general M1( + M;1

These separate moments are given by

Maj = 2Q2KJIS1[S,/Q + C'8, - (q/£2) cos (0 + ft)] (A 2)

where

Isl = Moment of Inertia of l th mass about hinge
Ki = Specific damping and
C = coupling between the incidence of the l th mass and its

angular displacement

Mmi = ISI[S, + n\ + 2Dq sin (0 + ft) — q cos (<A + ft)] (A 3)

M,, = 2^01 ,3 , + e&I^2 (A 4)
The Journal of the Helicopter
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where

K', = specific damping at hinge of 1 th rod

e, = specific elastic constant

M,, = S,,(1,S, - 1,8,) + D,,(1,S, -1,8,) (A 5)

= Q2IS1; S,,(1,S, -1,8,) + | d,,(l,S, -1,8,) (A 6)

assuming I2, + I2, — 21,1, cos (0, — ^ ) < (1,8, — 1,S,)2 (A 7)

where S,, and d,, are specific spring and damping constants The condition
A 7 is imposed in order that the moment due to the interlinking forces acts
in the same plane as the other moments Fig 3 illustrates the situation

Substituting these expressions into (A 1) gives equations of the form

S, + 2Q1A,,S, + O21B,,8, + 2Dq sin (0 + &)
i = i j = l

— q cos {xjj + &) — 2qK,0 cos (</- + 4>d = 0 (A 8)

(1 = 1,2, n)

APPENDIX II

The equations of motion for a Second Order System with no inter-
connecting moments are

Sj + 2 0 8 ^ ! ! + OF (1 + ABj^Si + 2Qq sin («/r + ^ ) — q cos (0 + ^ )

— 2K!0q cos 0 + </,{) = 0 (A 9)

82 + 2QS2A22 + Q? (1+AB22)S2 + 2Dq sin (̂ r + r̂2) — q cos (<fi + <p2)

—2K2Dq cos (<A + i/r2) = 0 (A 10)

Substituting 8, = 0,s sin tfi + ©,c cos >jj (l = 1, 2) (A 11)

and a = ao
lUt

©ls = 0,se'Ut (A 12)

©,c = 0,ce'u'

we obtain

•Z!*_ 'v2(Z'0H'2 + Z^X 'Q + IZZ'QX', + iv>(Z'&!3 + X ' t Z ^ — X ' ^ i
ao Z'o

2 + ? (Z ' :
2 + 2Z'0Z'2)

(A 13)

<4ssofifl/iow o/ T/ Britain ^7
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neglecting the terms in higher powers of v,

where Z'o = AB 2
n + 4A2

n (A 14)

Z'2 = — 2ABn — 4A2
U — 4 (A 15)

Z\ =r 4AU AB n + 8AU (A 16)

X'2 = (— 4 — AB n — 4AnK!) sin t^

+ (— 2AU + 4KX) cos 4-! (A 17)

X'j = (4An + 2ABHKJ) sin <J>X + (— 4AUK! + 2ABn) cos ^ (A 18)

and X'3 = (— 2An — 2KX) sin ^ (A 19)

Similarly we obtain #2s/an

Now 0la = - R e (0ls/afl) (A 20)

0lqfiv = — Im (0ls/ao) (A 21)

and A0 = G (Sx + nS2) (A 22)

so that 6a = G (0la + n02a) (A 23)

0qQ = G (0lq + n82q) a (A 24)

Hence we can write 0a/G = Lu2/(M + NU2) (A 25)

P +QZ2

and 0q£i/G = — ^ (A 26)

where L = [Z0"2(Z'0X'2 + Z\X.\) + HZ'2O (Z"0X"2 + Z'^X'^] (A 27)

P = Z'0Z"0fX',Z"0 + nZ'oX"!] (A 28)

Q = [Z"c
2(Z'0X'3 + Z'2X'X - Z'XX'2) + Z'oX'i (Zx"2 + 2Z"0Z"2)

+ n A o-X- l(,^ 1 i - ^ 0^ 2j "T n ^ o V 0-̂ - 3 i X 1^ 2 — A 2 Z j j j

(A 29)

M = Z'20Z0"2 (A 30)

and N = Z'2O ( Z / ' 2 + 2Z"0Z"2) + Z0"2 (Z'2X + 2Z'0Z'2) (A 31)
The double primed terms are the equivalent expressions of A (14—19) when
the second bar is considered

Since, from A 14, Z ' ^ 0 except when both ABU and A u are zero, we
must have, for P = 0,

X'jZ",, + nZ'oX"! = 0 (A 32)

PS I he loin ml of the 11 hcopter

https://doi.org/10.1017/S2753447200003127 Published online by Cambridge University Press

https://doi.org/10.1017/S2753447200003127


APPENDIX III
When we consider only damping at the hinge A

Z'o = 4A2
n

Z'2 = - 4 ( 1 + A 2
n )

Z 3 = 8An

X'2 = — 4 sin fa — 2An cos t/

X' j -— 4 A n sin (J/j

X'3 = — 2An sin i).

14—19 become

(A 33)

(A 34)

(A 35)

'1 (A 36)

(A 37)

(A 38)and

and the condition that P should be zero is that

h = — A77 sin <bi
T1 T
A a sin ^2

When these expressions are substituted into equations A 27—30,

Ja (A22 — A u ) sm ^ sin ty2 + |AUA2 2 sin ( ^ — <|;2)n A22 sin <J/
and

Gtr ~ A 2
n A22 sin

(A A \
-11_-B\ sin ^ sin ^

-^-2 A22 A n /
A2

n A22 sin $2

(A 41)
It is assumed that the ratio Nu2/M is small and can be neglected

APPENDIX IV

The Regions of Possible Azimuth Angles <J/13 ^2
Let us consider the regions in the ^15 ij/2 plane where both 0a and 0qil

are positive
Let us write

F = (m — 1) tan ^l tan <\i2 + 2 m ^ n ( t a n "K — t a n ^2) (A 42)

and f = — tan ^ + m tan ^ + 1 — 1 — ) t a n tyi t a n ^2 (A 43)
\ m A n /

where m = A22/An (A 44)

Then ^ F^AiCos^
G AnA22 sin fa

and g a Q = / y c o . 4 > 1 c o . f e
G A U A 2 2 sin ^2

^ssoctufion 0/ G/ Britain 9^
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Range I ~J< ^ ' ^ < f

Here cos ^ cos <p2 > 0 (A 47)

Let e = |mA,,/(m — 1) and h = ™ A u (A 48)

The boundaries are given by

F == 0 l e tan ^2 = C t a ° *\ (A 49)
Y2 e — tan ^ K '

and / = 0 I e tan <J,2 =
 h t a n ^ (A 50)

J mh — tan i^ v

Considering G > 0 and using (A 47) we can write

0a = y2F/sin<k (A 51)
and 0q = y'2//sin <j/2 (A 52)

where y and y are real quantities

The condition G > 0 corresponds to &0 being in the same sense as S
The available areas are found by considering the various ^IJ ^2

(a) m > 1 I e A22 > A n The results are shown in fig 6

(b) m < l le A n > A22 The results are shown in fig 7

Range II

Let 4i = <£i + ^'2 (A 53)

and <\i2 = <j>2 + 7r/2 (A 54)

Then 0a/G"2 = — ^ - ^ (A 55)

and 0qQ/Gu2 = ^ °°S ^l (A 56)

where F ' = (m — l) + | m A n (tan ^j — tan <f>2) (A 57)

/ ' = tan <f>2 — m tan (f,x + ( — — m) /An (A 58)
\m /

100 The Journal of the Helicopter

https://doi.org/10.1017/S2753447200003127 Published online by Cambridge University Press

https://doi.org/10.1017/S2753447200003127


and the boundaries are given by

F' = 0 1 c tan <j>2 = fa + 7e (A 59)

and / ' •= 0 l e tan <f>2 = m tan fa + '/i, (A 60)

Ihe results are illustrated in Fig 8 and 9 The regions arc found by
inspection

By writing

and

we see that

and

By consideung

2

3

4

5

6

7

8

9

10

we obtain Figs

lssociation of Gt lnliiin

APPENDIX V

a

b = \ sin

c — sin i]

d =

H - — a4

= s i n <|<i

(^j — <\> ) / s in

^ cos ij/i'sin <J;:

= COS Jjj

- ma + I vahy

2

l b

H' = — c \ mA-\-(1-— m)a/An
Vm /

G

the groups—

- 7 2 -
- 7 2 « f
- 72 <4

0 < , ^

0« |< 2

0 <(|>! <

0 <ij;2 <

/2 <

72 <
10—16

H,2

AnA22

_ H '^2

AnA22

<4>2 <<l'i < o

'! < 0 <J/2 <",

.2 <o «h <-
<~+2 < 7 2

<-+! <"k
-72 <fe <^
C"/2 «W <rr

*, <+2 < T

^2 < + ! <rr

(A 61)

(A 62)

(A 63)

(A 64)

(A 65)

(A 66)

(A 67)

(A 68)
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A,
8a

£2
S
3,
A6

Oo
G

<!*

A.,
B.,
K,

es
<'c

u
u

n, 11

Y°

LIST OF SYMBOLS

Coefficients of frequency equation (1 = 0, 1, 2, 3)
automatic control component in phase with attitude
automatic control component in phase with rate of change of attitude
angle in pitch (in radians)
rate of change of attitude with respect to time (in rads/sec )
azimuth angle measured from rear position in direction of rotation
(in radians)
angular velocity of rotor (in rads/sec )
automatic control device response
angular displacement of 1 th rod of the device (in radians)
change of pitch setting (in radians)
mean pitch setting of rotor blade (in radians)
gearing ratio
azimuth angle of 1 th rod measured from blade I (in radians)
specific damping coefficient in generalized equations
specific spring constant in generalized equations
specific aerodynamic damping in generalized equations
cyclic pitch component (in radians)

ditto
frequency of the oscillation (in sec -1)
= u/£l frequency ratio
linkage ratios
inertia number

Other symbols are defined in the text as required
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