SOME THEOREMS ON A VOLTERRA EQUATION OF THE SECOND KIND

BY
D. E. THOMPSON

In this paper we state and prove three theorems on positive solutions of a Volterra equation of the second kind. The equation considered is

$$
\begin{equation*}
u(x)=f(x)+\int_{0}^{x} K(x, t) u(t) d t \tag{1}
\end{equation*}
$$

where $K(x, t)$ is a Volterra type kernel, that is, $K(x, t)=0$ for $t>x$. Unless otherwise stated, we will assume that $f \in L_{2}^{+}(I)$ and $K \in L_{2}^{+}(I \times I)$, where $I=\{x: 0 \leq x \leq \infty\}$ and $L_{2}^{+}(I)=\left\{f: f \in L_{2}(I)\right.$ and $f(x) \geq 0$ for $\left.x \in I\right\}$.

Define $K_{1}(x, t)=K(x, t)$ and for $n \geq 2$,

$$
K_{n}(x, t)=\int_{t}^{x} K(x, s) K_{n-1}(s, t) d s
$$

By the resolvent kernel we mean $H(x, t)=\sum_{i=1}^{\infty} K_{i}(x, t)$. This series converges in the $L_{2}(I \times I)$ norm.

For completeness we state without proof the principal theorem for Volterra equations.

Theorem 0. Let $f \in L_{2}(I)$ and $K \in L_{2}(I \times I)$ then the equation

$$
u(x)=f(x)+\int_{0}^{x} K(x, t) u(t) d t
$$

has a unique L_{2}-solution given by

$$
u(x)=f(x)+\int_{0}^{x} H(x, t) f(t) d t \quad \text { a.e. on } I .
$$

For the proof of this theorem the reader is referred to [2].
We will need the following lemmas. The reader is referred to [1] for the proofs.
Lemma 1. Let $f \in L_{2}^{+}(I)$ and $K \in L_{2}^{+}(I \times I)$ in (1), then $u(x) \geq 0$ a.e. on I.
Lemma 2. Let $v \in L_{2}(I)$, and let $v(x) \leq f(x)+\int_{0}^{x} K(x, t) v(t) d t$ a.e. on I. If u is the unique L_{2}-solution of (1), then $v(x) \leq u(x)$ a.e. on I.

Theorem 1. Let $f_{i} \in L_{2}^{+}(I)$ and let $K_{i} \in L_{2}^{+}(I \times I)$, and let u_{i} be the unique L_{2}-solution of

$$
u_{i}(x)=f_{i}(x)+\int_{0}^{x} K_{i}(x, t) u_{i}(t) d t
$$

where $i=1, \ldots, n$. If

$$
F(x)=\sum_{i=1}^{n} f_{i}(x) \quad \text { for } x \in I \quad \text { and } \quad K(x, t)=\sum_{i=1}^{n} K_{i}(x, t) \quad \text { for }(x, t) \in I \times I
$$

then the unique L_{2}-solution u of $u(x)=F(x)+\int_{0}^{x} K(x, t) u(t) d t$ exists, and $\sum_{i=1}^{n}$ $u_{i}(x) \leq u(x)$ a.e. on I.

Proof. Since $f_{i} \in L_{2}(I)$ and $K_{i} \in L_{2}(I \times I)$ then $F \in L_{2}(I)$ and $K \in L_{2}(I \times I)$, and so, from Theorem $0, u(x)$ exists. The proof that $\sum_{i=1}^{n} u_{i}(x) \leq u(x)$ a.e. on I is by induction on n.

The theorem is obvious for $n=1$. Assume its truth for $i=1, \ldots, n-1$. Let

$$
v(x)=\sum_{i=1}^{n-1} f_{i}(x)+\int_{0}^{x} \sum_{i=1}^{n-1} K_{i}(x, t) v(t) d t
$$

Therefore

$$
\begin{aligned}
u_{n}(x)+v(x)= & f_{n}(x)+\sum_{i=1}^{n-1} f_{i}(x)+\int_{0}^{x} K_{n}(x, t) u_{n}(t) d t \\
& +\int_{0}^{x} \sum_{i=1}^{n-1} K_{i}(x, t) v(t) d t \quad \text { a.e. on } I .
\end{aligned}
$$

From Lemma $1, u_{i}(x) \geq 0$ a.e. on I for $i=1, \ldots, n$. Therefore

$$
u_{n}(x)+v(x) \leq \sum_{i=1}^{n} f_{i}(x)+\int_{0}^{x} \sum_{i=1}^{n} K_{i}(x, t)\left[u_{n}(t)+v(t)\right] d t
$$

or

$$
u_{n}(x)+v(x) \leq F(x)+\int_{0}^{x} K(x, t)\left[u_{n}(t)+v(t)\right] d t \quad \text { a.e. on } I .
$$

Therefore, from Lemma 2 we have $u_{n}(x)+v(x) \leq u(x)$. But by our inductive assumption

$$
\sum_{i=1}^{n-1} u_{i}(x) \leq v(x) \quad \text { a.e. on } I .
$$

Therefore

$$
\sum_{i=1}^{n} u_{i}(x) \leq u(x) \quad \text { a.e. on } I .
$$

This completes the proof.
We need the following definition before we state and prove the second theorem.
Definition 1. y is a δ-approximate solution of (1) iff

$$
\left|y(x)-f(x)-\int_{0}^{x} K(x, t) y(t) d t\right| \leq \delta(x) \quad \text { a.e. on } I .
$$

Theorem 2. Let $G \in L_{2}^{+}(I \times I)$, and let $G(x, t) \geq K(x, t) \geq 0$ on $I \times I$, and let y be a δ-approximate solution of (1). If $\delta \in L_{2}^{+}(I), u$ is the unique L_{2}-solution of (1), and v is the unique L_{2}-solution of

$$
v(x)=\delta(x)+\int_{0}^{x} G(x, t) v(t) d t
$$

then

$$
|y(x)-u(x)| \leq v(x) \quad \text { a.e. on } I .
$$

Proof. Now

$$
y(x) \leq \delta(x)+f(x)+\int_{0}^{x} K(x, t) y(t) d t \quad \text { a.e. on } I .
$$

Since u is the unique L_{2} solution of (1),

$$
y(x)-u(x) \leq \delta(x)+\int_{0}^{x} K(x, t)[y(t)-u(t)] d t \text { a.e. on } I .
$$

Let

$$
w(x)=\delta(x)+\int_{0}^{x} K(x, t) w(t) d t
$$

Then

$$
w(x) \leq \delta(x)+\int_{0}^{x} G(x, t) w(t) d t
$$

by Lemma 1. Therefore from Lemma 2 we have

$$
y(x)-u(x) \leq w(x) \leq v(x), \quad \text { or } \quad y(x)-u(x) \leq v(x) \quad \text { a.e. on } I .
$$

Similarly a.e. on I

$$
y(x) \geq-\delta(x)+f(x)+\int_{0}^{x} K(x, t) y(t) d t
$$

and hence by Lemmas 1 and 2 we have

$$
u(x)-y(x) \leq v(x) \quad \text { a.e. on } I
$$

Therefore $|y(x)-u(x)| \leq v(x)$ a.e. on I. This completes the proof.

We can see from Lemma 1 that it is impossible to obtain a solution u of (1) such that $0 \leq u(x) \leq f(x)$ on I when $K(x, t) \geq 0$ on $I \times I$. The natural question therefore arises: Under what conditions will (1) have a solution u such that $0 \leq u(x) \leq f(x)$ on I ? Clearly $K(x, t)$ must be negative - at least for x near zero and $0 \leq t \leq x$.

In our next theorem we give conditions for such a solution. Instead of (1) with $K(x, t) \leq 0$ on $I \times I$ we will consider

$$
\begin{equation*}
u(x)=f(x)-\int_{0}^{x} K(x, t) u(t) d t \tag{2}
\end{equation*}
$$

with $K(x, t) \geq 0$.
Theorem 3. Let $f \in C(I)$ with $f(x)>0$ on I, and let $K \in C(T)$ with $K(x, t)>0$ on

$$
T=\{(x, t): 0 \leq t \leq x \leq \infty\} .
$$

lf

$$
\frac{f(x)}{f(y)} \leq \frac{K(x, t)}{K(y, t)} \text { for } 0 \leq t \leq x \leq y
$$

then the unique solution u of (2) satisfies $f(x) \geq u(x) \geq 0$ on I.
Proof. If $u(x) \geq 0$ then it follows from (2) that $f(x) \geq u(x) \geq 0$. It therefore remains to show that $u(x)$ cannot be negative anywhere on I.

Suppose the theorem is false. Then since $u(0)=f(0)>0$, by continuity there exist $x_{1}>0$ and $\delta>0$ such that

$$
\begin{aligned}
u(x) & \geq 0, & & 0<x<x_{1} \\
& =0, & & x=x_{1} \\
& <0, & & x_{1}<x \leq x_{1}+\delta .
\end{aligned}
$$

Therefore for $x_{1}<x \leq x_{1}+\delta$ we have

$$
\begin{aligned}
0 & >u(x)>f(x)-\int_{0}^{x_{1}} K(x, t) u(t) d t \\
& =\frac{f(x)}{f\left(x_{1}\right)}\left\{f\left(x_{1}\right)-\frac{f\left(x_{1}\right)}{f(x)} \int_{0}^{x_{1}} K(x, t) u(t) d t\right\} \\
& \geq \frac{f(x)}{f\left(x_{1}\right)}\left\{f\left(x_{1}\right)-\int_{0}^{x_{1}} K\left(x_{1}, t\right) u(t) d t\right\} \\
& =\frac{f(x)}{f\left(x_{1}\right)} u\left(x_{1}\right) \\
& =0
\end{aligned}
$$

or $0>u(x) \geq 0$ for $x_{1}<x \leq x_{1}+\delta$, which is absurd.

Therefore the theorem is true, i.e.

$$
f(x) \geq u(x) \geq 0 \text { on } I .
$$

Corollary 1. If $K(x, t)$ is monotone decreasing in x and $f(x)$ is monotone increasing, the hypotheses of the above theorem are satisfied. In particular, if $K(x, t)$ $=k(x-t)$, then it suffices to have k monotone decreasing and f monotone increasing.

Acknowledgement. The author wishes to thank the referee for the Canadian Mathematical Bulletin for his criticisms and helpful suggestions.

References

1. P. R. Beesack, Comparison theorems and inequalities for Volterra integral equations, Proc. Amer. Math. Soc. 20 (1969), 61-66.
2. F. G. Tricomi, Integral equations, Interscience, New York, 1957.

University of British Columbia, Vancouver, British Columbia

