ON A RESULT OF GASSELS

R. T. WORLEY
(Received 5 February 1969)
Communicated by E. S. Barnes

Let α be an irrational algebraic number of degree k over the rationals. Let K denote the field generated by α over the rationals and let \mathfrak{a} denote the ideal denominator of α. Then Cassels [3] has shown that for sufficiently large integral $N>0$ distinctly more than half the integers n,

$$
N<n \leqq N+\left[10^{-6} N\right]
$$

are such that $(n+\alpha) \mathfrak{a}$ is divisible by a prime ideal \mathfrak{p}_{n} which does not divide $(m+\alpha)$ a for any integer $m \neq n$ satisfying $N<m \leqq N+\left[10^{-6} N\right]$. The purpose of this note is to point out that minor modification of Cassel's proof enables the extension of the interval for n from $N<n \leqq N+\left[10^{-6} N\right]$ to $0 \leqq n \leqq N$, and to derive results on the proportion of values n, $0 \leqq n \leqq N$ for which the values $f(n)$ of a given integral polynomial in n are divisible by a prime $p>N$.

Theorem. The proportion $\rho(\alpha, N)$ of integers $n, 0 \leqq n \leqq N$, for which $(n+\alpha) \mathfrak{a}$ is divisible by a prime ideal \mathfrak{p}_{n} not dividing $(m+\alpha) \mathfrak{a}$ for integral $m \neq n, 0 \leqq m \leqq N$, has the properties
(i) $\lim _{\inf _{N \rightarrow \infty}} \rho(\alpha, N)>\frac{1}{2}$.
(ii) $\lim \inf _{N \rightarrow \infty} \rho(\alpha, N) \geqq 1-\frac{1}{2 k}+O\left(k^{-\frac{3}{2}}\right)$ as $k \rightarrow \infty$.

Proof. The proof is basically that of Cassels with $N \log N$ for M instead of $\left[10^{-6} \mathrm{~N}\right]$ and with the estimate $c n^{k}$ as a lower bound for norm $\{(n+\alpha) \mathfrak{a}\}$ instead of cn^{2}. For simplicity we prove (i) and (ii) for $\sigma(\alpha, N)$ which denotes the proportion of integers $n, N<n \leqq N \log N$, for which $(n+\alpha) \mathfrak{a}$ is divisible by a prime ideal \mathfrak{p}_{n} not dividing $(n+\alpha)$ a for integral $m \neq n, N<m \leqq N \log N$. Plainly

$$
\lim _{\inf _{N \rightarrow \infty}} \rho(\alpha, N)={\lim \inf _{N \rightarrow \infty} \sigma(\alpha, N) .}
$$

As in Cassels' proof \mathfrak{p} shall denote a prime ideal of K which is of the first degree and unambiguous i.e. \mathfrak{p}^{2} does not divide $p=$ norm \mathfrak{p} and if
$\mathfrak{p} \mid(n+\alpha) a$ for any integer n then $(n+\alpha) a$ is not divisible by any $\mathfrak{p}^{\prime} \neq \mathfrak{p}$ with norm $\mathfrak{p}^{\prime}=p$. For any integer n,

$$
\begin{equation*}
(n+\alpha) \mathfrak{a}=\mathfrak{b} \prod_{\mathfrak{p}} \mathfrak{p}^{u(\mathfrak{p})} \tag{1}
\end{equation*}
$$

where the $u(\mathfrak{p})$ are integers and \mathfrak{b} contains all the factors of $(n+\alpha) \mathfrak{a}$ which are not \mathfrak{p} 's. Norm \mathfrak{b} is bounded and norm $\{(n+\alpha) \mathfrak{a}\}>c n^{k}$ where $c>0$ is independent of n provided n is large enough. Hence on taking logarithms

$$
\begin{equation*}
\sum u(\mathfrak{p}) \log p \geqq k \log n-C \tag{2}
\end{equation*}
$$

where C is independent of n (n large enough).
Denote by $\mathfrak{S}=\Im_{N}$ the set of all n in the range $N<n \leqq N \log N$ with the property that

$$
\begin{equation*}
p^{u(\mathfrak{P})}<N \log N \tag{3}
\end{equation*}
$$

for all \mathfrak{p} in the factorization (1). An upper bound for the number $S=\rho N \log N$ of elements of \mathbb{S} is found as follows.

For any \mathfrak{p} and integral $v>0$ write

$$
\phi\left(\mathfrak{p}^{v}, n\right)=\left\{\begin{array}{l}
\log p \text { if } \mathfrak{p}^{v} \mid(n+\alpha) \mathfrak{a} \\
0 \text { otherwise }
\end{array}\right.
$$

and

$$
\sigma(n)=\sum \phi\left(p^{v}, n\right)
$$

where the summation is over all p and v with $p^{v}<N \log N$. Take $\varepsilon>0$ arbitrarily - then $\log N>(1-\varepsilon) \log (N \log N)$ for sufficiently large N. From (2) and (3) we therefore obtain

$$
\sigma(n) \geqq(k-\varepsilon) \log (N \log N)
$$

for all $n \in \subseteq$ and

$$
\begin{equation*}
\sum_{n \in \mathbb{\Xi}} \sigma(n) \geqq(k-\varepsilon) S \log (N \log N) \tag{4}
\end{equation*}
$$

for N sufficiently large.
Writing $\sigma(n)=\sigma_{1}(n)+\sigma_{2}(n)+\sigma_{3}(n)$ where $\sigma_{1}, \sigma_{2}, \sigma_{3}$ are the sums of $\phi\left(\mathfrak{p}^{v}, n\right)$ with p^{v} in the sets

$$
\begin{aligned}
& \sigma_{1}: v>1, p^{v}<N \log N \\
& \sigma_{2}: v=1,(N \log N)^{\frac{1}{2}} \leqq p<N \log N \\
& \sigma_{3}: v=1, p<(N \log N)^{\frac{1}{2}}
\end{aligned}
$$

we obtain, as in Cassels' proof, that

$$
\begin{equation*}
\sum_{n \in \Theta} \sigma_{1}(n)=O(M \log M) \tag{5}
\end{equation*}
$$

$$
\sum_{n \in \Theta} \sigma_{2}(n) \leqq\left(\frac{1}{2}+o(1)\right) M \log M
$$

and

$$
\begin{equation*}
\sum_{n \in \Theta}\left(\sigma_{3}(n)\right)^{2} \leqq\left(\frac{3}{8}+o(1)\right) M \log ^{2} M \tag{7}
\end{equation*}
$$

where we have used M to denote $N \log N$ for simplicity and where $o(\mathrm{l})$ refers to the limit as $N \rightarrow \infty$.

Combining (4), (5) and (6) yields

$$
\begin{equation*}
\sum_{n \in \odot} \sigma_{3}(n) \geqq\left((k-\varepsilon) \rho-\frac{1}{2}+o(1)\right) M \log M \tag{8}
\end{equation*}
$$

Then either $(k-\varepsilon) \rho<\frac{1}{2}+o(1)$ or

$$
\left((k-\varepsilon) \rho-\frac{1}{2}+o(1)\right)^{2} M^{2} \log ^{2} M \leqq(\rho M)\left(\frac{3}{8}+o(1)\right) M \log ^{2} M
$$

from which it follows that for sufficiently large N,

$$
\begin{equation*}
\rho \leqq \frac{k-\varepsilon+\frac{3}{8}}{2(k-\varepsilon)^{2}}+\frac{1}{2(k-\varepsilon)^{2}}\left(\frac{9}{64}+\frac{3}{4}(k-\varepsilon)+o(1) k^{2}\right)^{\frac{1}{2}} \tag{9}
\end{equation*}
$$

where $o(\mathbf{l})$ refers to the limit as $N \rightarrow \infty$. But, as in Cassels' proof, $\sigma(\alpha, N) \geqq l-\rho$, so the desired results follow from (9).

Corollary. Let $f(n)$ denote a polynomial in n with integral coefficients and leading coefficients 1 , irreducible over the rationals, and let $\rho(f, N)$ denote the number of integers $n, 0 \leqq n \leqq N$, for which $f(n)$ is divisible by a prime $p>N$. Then
(i) $\lim \inf _{N \rightarrow \infty} \rho(f, N)>\frac{1}{2}$.
(ii) $\lim \inf _{N \rightarrow \infty} \rho(f, N) \geqq 1-(1 / 2 k)+O\left(k^{-\frac{3}{2}}\right)$ as $k \rightarrow \infty$ where k denotes the degree of f.

Proof. Apply the theorem to $-\alpha$, where α is a root of f, noting that $f(n)=\operatorname{norm}(n-\alpha)$.

It should be pointed out the bound on $\rho(j, N)$ seems to be much weaker than the probable bound. The argument, however implausible it may sound, that the numbers $f(0), f(1), \cdots, f(N)$ are evenly distributed amongst the numbers $1,2, \cdots N^{k}$ with respect to divisibility by primes greater than N leads to the conclusion that $\lim _{N \rightarrow \infty} \rho(f, N)=1-\rho(k)$ where $\rho(k)$ is defined as follows. Let $\psi(x, y)$ be the number of positive integers $\leqq x$ free of prime divisors $>y$ - then de Bruijn [1], Buchstab [2] Chowla and Vijayaraghavan [4] and Ramaswami [5] have shown that

$$
\lim _{y \rightarrow \infty} y^{-k} \psi\left(y^{k}, y\right)=\rho(k)
$$

where $\rho(k)$ can be calculated in an inductive manner and $\rho(k)=o\left(k^{-n}\right)$ for
all positive integers n. A limited amount of computing indicated that $1-\rho(2)$ is the correct limit for $\rho(f, N)$ for $f(n)=n^{2}+n+1$ and that $1-\rho(3)$ was a possible limit for $\rho(f, N)$ for $f(n)=n^{3}+n^{2}+n+2$.

References

[1] N. G. de Bruijn, 'On the number of positive integers $\leqq x$ and free of prime divisors $>\boldsymbol{y}^{\prime}$, Proc. K. Nederl. Akad. Wetensch. 54 (1951) 50-60.
[2] A. A. Buchstab, 'On those numbers in an arithmetic progression all prime factors of which are small in magnitude', Doklady Akad. Nauk SSSR 67 (1949) 5-8.
[3] J. W. S. Cassels, 'Footnote to a note of Davenport and Heilbronn', J. Lond. Math. Soc. 36 (1961) 177—184.
[4] S. Chowla and T. Vijayaraghavan, 'On the largest prime divisors of numbers', J. Ind. Math. Soc. (N.S.) 11 (1947) 31-37.
[6] V. Ramaswami, 'The number of positive integers $<x$ and free of prime divisors $>x^{\text {c }}$, and a problem of S. Pillai, Duke Math. J. 16 (1949) 99-109.

Monash University
Clayton, Vic. 3168

