ON A RESULT OF CASSELS

R. T. WORLEY

(Received 5 February 1969) Communicated by E. S. Barnes

Let α be an irrational algebraic number of degree k over the rationals. Let K denote the field generated by α over the rationals and let α denote the ideal denominator of α . Then Cassels [3] has shown that for sufficiently large integral N > 0 distinctly more than half the integers n,

$$N < n \leq N + [10^{-6}N]$$

are such that $(n+\alpha)a$ is divisible by a prime ideal \mathfrak{p}_n which does not divide $(m+\alpha)a$ for any integer $m \neq n$ satisfying $N < m \leq N+[10^{-6}N]$. The purpose of this note is to point out that minor modification of Cassel's proof enables the extension of the interval for n from $N < n \leq N+[10^{-6}N]$ to $0 \leq n \leq N$, and to derive results on the proportion of values n, $0 \leq n \leq N$ for which the values f(n) of a given integral polynomial in n are divisible by a prime p > N.

THEOREM. The proportion $\rho(\alpha, N)$ of integers $n, 0 \leq n \leq N$, for which $(n+\alpha)\alpha$ is divisible by a prime ideal \mathfrak{p}_n not dividing $(m+\alpha)\alpha$ for integral $m \neq n, 0 \leq m \leq N$, has the properties

(i)
$$\liminf_{N\to\infty} \rho(\alpha, N) > \frac{1}{2}$$
.

(ii) $\liminf_{N\to\infty}\rho(\alpha, N) \ge 1 - \frac{1}{2k} + O(k^{-\frac{3}{2}})$ as $k\to\infty$.

PROOF. The proof is basically that of Cassels with $N \log N$ for M instead of $[10^{-6}N]$ and with the estimate cn^k as a lower bound for norm $\{(n+\alpha)a\}$ instead of cn^2 . For simplicity we prove (i) and (ii) for $\sigma(\alpha, N)$ which denotes the proportion of integers $n, N < n \leq N \log N$, for which $(n+\alpha)a$ is divisible by a prime ideal \mathfrak{p}_n not dividing $(n+\alpha)a$ for integral $m \neq n, N < m \leq N \log N$. Plainly

$$\liminf_{N\to\infty}\rho(\alpha,N)=\liminf_{N\to\infty}\sigma(\alpha,N).$$

As in Cassels' proof \mathfrak{p} shall denote a prime ideal of K which is of the first degree and unambiguous i.e. \mathfrak{p}^2 does not divide $p = \operatorname{norm} \mathfrak{p}$ and if

191

 $\mathfrak{p}|(n+\alpha)\mathfrak{a}$ for any integer *n* then $(n+\alpha)\mathfrak{a}$ is not divisible by any $\mathfrak{p}' \neq \mathfrak{p}$ with norm $\mathfrak{p}' = p$. For any integer *n*,

(1)
$$(n+\alpha)\mathfrak{a} = \mathfrak{b} \prod_{\mathfrak{p}} \mathfrak{p}^{u(\mathfrak{p})}$$

where the $u(\mathfrak{p})$ are integers and \mathfrak{b} contains all the factors of $(n+\alpha)\mathfrak{a}$ which are not \mathfrak{p} 's. Norm \mathfrak{b} is bounded and norm $\{(n+\alpha)\mathfrak{a}\} > cn^k$ where c > 0is independent of *n* provided *n* is large enough. Hence on taking logarithms

(2)
$$\sum u(\mathfrak{p}) \log p \ge k \log n - C$$

where C is independent of n (n large enough).

Denote by $\mathfrak{S} = \mathfrak{S}_N$ the set of all *n* in the range $N < n \leq N \log N$ with the property that

$$p^{u(p)} < N \log N$$

for all \mathfrak{p} in the factorization (1). An upper bound for the number $S = \rho N \log N$ of elements of \mathfrak{S} is found as follows.

For any \mathfrak{p} and integral v > 0 write

$$\phi(\mathfrak{p}^{v}, n) = egin{cases} \log p & ext{if } \mathfrak{p}^{v}|(n+lpha)\mathfrak{a} \ 0 & ext{otherwise} \end{cases}$$

and

 $\sigma(n) = \sum \phi(\mathfrak{p}^v, n)$

where the summation is over all \mathfrak{p} and v with $p^{v} < N \log N$. Take $\varepsilon > 0$ arbitrarily — then $\log N > (1-\varepsilon) \log (N \log N)$ for sufficiently large N. From (2) and (3) we therefore obtain

 $\sigma(n) \ge (k - \varepsilon) \log (N \log N)$

for all $n \in \mathfrak{S}$ and

(4)
$$\sum_{n \in \mathfrak{S}} \sigma(n) \ge (k - \varepsilon) S \log (N \log N)$$

for N sufficiently large.

Writing $\sigma(n) = \sigma_1(n) + \sigma_2(n) + \sigma_3(n)$ where σ_1 , σ_2 , σ_3 are the sums of $\phi(p^v, n)$ with p^v in the sets

$$\begin{aligned} \sigma_{1} : v > 1, \, p^{v} < N \log N \\ \sigma_{2} : v = 1, \, (N \log N)^{\frac{1}{2}} \leq p < N \log N \\ \sigma_{3} : v = 1, \, p < (N \log N)^{\frac{1}{2}} \end{aligned}$$

we obtain, as in Cassels' proof, that

(5)
$$\sum_{n \in \mathfrak{S}} \sigma_1(n) = O(M \log M),$$

On a result of Cassels

(6)
$$\sum_{n \in \mathfrak{S}} \sigma_2(n) \leq (\frac{1}{2} + o(1)) M \log M$$

and

(7)
$$\sum_{n \in \mathfrak{S}} (\sigma_3(n))^2 \leq (\frac{3}{8} + o(1)) M \log^2 M$$

where we have used M to denote $N \log N$ for simplicity and where o(1) refers to the limit as $N \to \infty$.

Combining (4), (5) and (6) yields

(8)
$$\sum_{n \in \mathfrak{S}} \sigma_3(n) \ge \left((k-\varepsilon)\rho - \frac{1}{2} + o(1) \right) M \log M.$$

Then either $(k-\varepsilon)\rho < \frac{1}{2} + o(1)$ or

$$((k-\varepsilon)\rho - \frac{1}{2} + o(1))^2 M^2 \log^2 M \leq (\rho M) (\frac{3}{8} + o(1)) M \log^2 M,$$

from which it follows that for sufficiently large N,

(9)
$$\rho \leq \frac{k - \varepsilon + \frac{3}{8}}{2(k - \varepsilon)^2} + \frac{1}{2(k - \varepsilon)^2} \left(\frac{9}{64} + \frac{3}{4}(k - \varepsilon) + o(1)k^2\right)^{\frac{1}{2}}$$

where o(1) refers to the limit as $N \to \infty$. But, as in Cassels' proof, $\sigma(\alpha, N) \ge 1-\rho$, so the desired results follow from (9).

COROLLARY. Let f(n) denote a polynomial in n with integral coefficients and leading coefficients 1, irreducible over the rationals, and let $\rho(f, N)$ denote the number of integers $n, 0 \leq n \leq N$, for which f(n) is divisible by a prime p > N. Then

(i) $\liminf_{N\to\infty}\rho(f,N) > \frac{1}{2}$.

(ii) $\liminf_{N\to\infty}\rho(f,N) \ge 1-(1/2k)+O(k^{-\frac{3}{2}})$ as $k\to\infty$ where k denotes the degree of f.

PROOF. Apply the theorem to $-\alpha$, where α is a root of f, noting that $f(n) = \text{norm } (n-\alpha)$.

It should be pointed out the bound on $\rho(f, N)$ seems to be much weaker than the probable bound. The argument, however implausible it may sound, that the numbers $f(0), f(1), \dots, f(N)$ are evenly distributed amongst the numbers $1, 2, \dots N^k$ with respect to divisibility by primes greater than N leads to the conclusion that $\lim_{N\to\infty} \rho(f, N) = 1-\rho(k)$ where $\rho(k)$ is defined as follows. Let $\psi(x, y)$ be the number of positive integers $\leq x$ free of prime divisors > y — then de Bruijn [1], Buchstab [2] Chowla and Vijayaraghavan [4] and Ramaswami [5] have shown that

$$\lim_{y\to\infty} y^{-k}\psi(y^k,y) = \rho(k)$$

where $\rho(k)$ can be calculated in an inductive manner and $\rho(k) = o(k^{-n})$ for

[3]

R. T. Worley

all positive integers *n*. A limited amount of computing indicated that $1-\rho(2)$ is the correct limit for $\rho(f, N)$ for $f(n) = n^2+n+1$ and that $1-\rho(3)$ was a possible limit for $\rho(f, N)$ for $f(n) = n^3+n^2+n+2$.

References

- [1] N. G. de Bruijn, 'On the number of positive integers $\leq x$ and free of prime divisors > y', *Proc. K. Nederl. Akad. Wetensch.* 54 (1951) 50-60.
- [2] A. A. Buchstab, 'On those numbers in an arithmetic progression all prime factors of which are small in magnitude', Doklady Akad. Nauk SSSR 67 (1949) 5-8.
- [3] J. W. S. Cassels, 'Footnote to a note of Davenport and Heilbronn', J. Lond. Math. Soc. 36 (1961) 177-184.
- [4] S. Chowla and T. Vijayaraghavan, 'On the largest prime divisors of numbers', J. Ind. Math. Soc. (N.S.) 11 (1947) 31-37.
- [5] V. Ramaswami, 'The number of positive integers < x and free of prime divisors > x^e, and a problem of S. Pillai, Duke Math. J. 16 (1949) 99-109.

Monash University Clayton, Vic. 3168