CORRECTION TO THE PAPER "ON FUNCTIONS AND EQUATIONS IN DISTRIBUTIVE LATTICES"

by SERGIU RUDEANU

(Received 1st August 1969)

In the above mentioned paper, published in these *Proceedings*, Vol. 16 (Series II), Part 1, June 1968, pp. 49-54, I have generalized some results obtained by Professor R. L. Goodstein for distributive lattices with 0 and 1, to the case when the lattice L is not required to have least and greatest elements.

The proofs were based on the fact that every lattice function f(x) can be written in the form $f(x) = A \cup Bx$, with $A \leq B$. However, Professor James C. Abbott has kindly called my attention to the fact that the above property implies the existence of 0 and 1. For, the representation of the identity function f(x) = x yields $a \leq a \cup bx = x \leq a \cup b = b$, i.e. a and b are the least and greatest elements, respectively.

However, the results in my paper can be saved by appropriate extensions of the definitions. Namely, we shall consider that the representation $A \cup Bx$, with $A \leq B$, includes also the functions Bx and $A \cup x$. For the particular case of the former functions, any inequality of the text which is of the form $A \leq D$ or $CA \leq D$ will be considered as automatically fulfilled. For the latter functions, any inequality of the form $D \leq B$ or $D \leq B \cup C$ will be considered as automatically fulfilled. It is easy to see that continuing in this way we can recapture all the theorems, with suitably extended meanings.

Thus, for instance, such a specialization of Lemma 1 states that the inequality $bx \leq c \cup dx$ is equivalent to $bx \leq c \cup d$; also the inequality $a \cup bx \leq dx$ is possible only if a is the least element of the lattice (from (7) which reads $a \leq x$) and if this is the case, $a \cup bx \leq dx$ holds if and only if $bx \leq d$; etc.

An alternative (but essentially equivalent) way is the following: embed Lin a lattice \overline{L} with 0 and 1, associate to each lattice function $f: L^n \to L$ the lattice function $\overline{f}: \overline{L}^n \to \overline{L}$ which has the same formal expression, apply Goodstein's theorems to \overline{f} and interpret the results in terms of the function f.

As a matter of fact, even for lattices with 0 and 1, Theorem 4 is more comprehensive than Goodstein's corresponding result. Theorem 5, which has no analogue in Goodstein's paper, refers to biresiduated lattices, which have necessarily 0 and 1 (a: a = 1, a:: a = 0).

Institutul de Matematică Calea Griviței 21 București 12 Romania