CORRECTION TO THE PAPER "ON FUNCTIONS AND EQUATIONS IN DISTRIBUTIVE LATTICES"

by SERGIU RUDEANU

(Received 1st August 1969)
In the above mentioned paper, published in these Proceedings, Vol. 16 (Series II), Part 1, June 1968, pp. 49-54, I have generalized some results obtained by Professor R. L. Goodstein for distributive lattices with 0 and 1 , to the case when the lattice L is not required to have least and greatest elements.

The proofs were based on the fact that every lattice function $f(x)$ can be written in the form $f(x)=A \cup B x$, with $A \leqq B$. However, Professor James C. Abbott has kindly called my attention to the fact that the above property implies the existence of 0 and 1 . For, the representation of the identity function $f(x)=x$ yields $a \leqq a \cup b x=x \leqq a \cup b=b$, i.e. a and b are the least and greatest elements, respectively.

However, the results in my paper can be saved by appropriate extensions of the definitions. Namely, we shall consider that the representation $A \cup B x$, with $A \leqq B$, includes also the functions $B x$ and $A \cup x$. For the particular case of the former functions, any inequality of the text which is of the form $A \leqq D$ or $C A \leqq D$ will be considered as automatically fulfilled. For the latter functions, any inequality of the form $D \leqq B$ or $D \leqq B \cup C$ will be considered as automatically fulfilled. It is easy to see that continuing in this way we can recapture all the theorems, with suitably extended meanings.

Thus, for instance, such a specialization of Lemma 1 states that the inequality $b x \leqq c \cup d x$ is equivalent to $b x \leqq c \cup d$; also the inequality $a \cup b x \leqq d x$ is possible only if a is the least element of the lattice (from (7) which reads $a \leqq x$) and if this is the case, $a \cup b x \leqq d x$ holds if and only if $b x \leqq d$; etc.

An alternative (but essentially equivalent) way is the following: embed L in a lattice \bar{L} with 0 and 1 , associate to each lattice function $f: L^{n} \rightarrow L$ the lattice function $\bar{f}: \bar{L}^{n} \rightarrow \bar{L}$ which has the same formal expression, apply Goodstein's theorems to f and interpret the results in terms of the function f.

As a matter of fact, even for lattices with 0 and 1 , Theorem 4 is more comprehensive than Goodstein's corresponding result. Theorem 5, which has no analogue in Goodstein's paper, refers to biresiduated lattices, which have necessarily 0 and $1(a: a=1, a:: a=0)$.

Institutul de Matematică

Calea Griviței 21
Bucuresti 12
Romania

