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Vector field electron tomography (VFET) is used to reconstruct the 3D spatial distribution of the mag-
netic vector potential and electrostatic potential around an object [1]. The magnetic and electrostatic
potentials induce phase changes in the incoming electron wave such that the phase change is linearly
related to the radon transform of the two potentials. The phase image at each tilt angle is then re-
covered from detector measurements at multiple defocus values [1] and the object is reconstructed
by tomographic inversion of the retrieved phase images. To uniquely reconstruct both the magnetic
and electrostatic potentials, it is necessary to acquire tilt series data over the full 3600 range [1]. Fur-
thermore, to uniquely recover the three components of the magnetic vector potential it is necessary to
acquire tilt series data at two orthogonal rotation axes [1].

Traditionally, the reconstruction is done by direct analytical inversion of the magnetic and elec-
trostatic components of the phase images [1-3]. Such analytical methods are sensitive to noise and
result in reconstruction artifacts due to the limited angular range of the tilt series measurements [1].
Furthermore, this approach does not recover the distribution of the magnetization (total dipole moment
per unit volume) and charge density in the object that is responsible for the magnetic and electrostatic
potentials.

In this paper, we present a model-based iterative reconstruction algorithm (MBIR) that directly
reconstructs the magnetization and charge density from the recovered phase data. The proposed algo-
rithm is based on the minimization of a cost function consisting of a forward model term and a prior
model term that enforces sparsity in the reconstructed values. The forward model models the physics
of phase change as a function of the magnetization and charge density in the object. In comparison
to analytical approaches, MBIR algorithms have been shown to be robust to noise, limited angle, and
sparsely sampled data [4].

To derive the reconstruction algorithm, it is first necessary to express the phase change, φ(r) at
position vector r, as a function of the magnetization, M(r), and charge density, ρ(r), of the object.
As the electron wave propagates through space, it undergoes a phase shift under the influence of the
magnetic vector potential, A(r), and electrostatic potential, V (r), as,
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where w is the unit vector in the direction of propagation, r⊥ is the position vector in the detector
plane, λ is the wavelength of the electron wave, E is the relativistic electron accelerating potential, }
and e are constants [1]. The magnetic vector potential, A(r), and the electrostatic potential, V (r), are
related to the magnetization, M(r), and the charge density, ρ(r) as [5],
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where × denotes the cross-product between two vectors, µ0 is the permeability of vacuum, ε0 is the
permittivity of free space, r and r′ are the position vectors in 3D space.

Let x be the vector that contains the voxel values of the charge density and the three components of
the magnetization of the discretized object. Similarly, let z be the vector that contains the voxel values
of the electrostatic potential and the three components of the magnetic vector potential in and around
the object. Then, we can write z = Hx where H is a matrix that implements the convolution integrals
in (2). Let yi be the vector of phase shifts of the electron wave at the ith tilt angle. Then, the relation
between the potentials z and the phase shifts yi is given by yi = Aiz + ni where Ai is the projection
matrix that implements the line integrals in (1) and ni is the noise vector. Thus, the relation between
yi and x is given by yi = AiHx+ ni.

The reconstruction is then obtained by minimizing the sum of squared errors between the phase
shifts, yi, and its estimates, AiHx, and a regularizing prior function, R(x), as shown below -

x̂ = argminx

{
M∑
i=1

||yi − AiHx||2 +R(x)

}
(3)

where M is the total number of tilt angles for all the rotation axes. The above form of the cost function
is computationally intensive to minimize directly. So, we use variable splitting and formulate (3) as a
constrained optimization problem of the form x̂ = argminx,z

{∑M
i=1 ||yi − Aiz||2 +R(x)

}
such that

z = Hx. To solve the above constrained form of the optimization problem, we use the theory of
alternate direction method of multipliers (ADMM) [6] to express the original problem as an iterative
solution of two simpler optimization problems as shown in Fig. 1. In Fig. 1, the data y consists of the
recovered phase shifts at all the tilt angles and rotation axes. The tomographic inversion step is solved
by a simple modification of the algorithm presented in [4]. The deconvolution step is solved directly
using gradient based methods. The two optimization steps are performed in an iterative manner until
the algorithm converges. Example vector field reconstructions will be provided.

Figure 1: Reconstruction of the magnetization and charge density by solving the optimization problem in (3).
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