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THE RELATIVE SCHOENFLIES THEOREM

DAVID GAULD

The relative Schoenflies theorem says that a locally flat

embedding e : S^"1 •* ff for which e"1 (Rk) = S*"1 extends to a

homeomorphism of the pair [R , R ) provided the local collars

respect R . In this note it is shown that the proviso is

essential, at least when k = 3 .

Let R denote euclidean n-space and embed R in R by

adjoining the nth coordinate 0 . Denote by S the unit sphere in

R" and by Bn the unit ball in RW . Thus for kin, S^"1 c Bk c Rn

In [ ?] and [3] it is observed that a collared embedding of £> in

R which respects R extends to a homeomorphism of the pair (R , R ) .

More precisely, the following relative version of the Schoenflies theorem

holds.

THEOREM. Let e : N -*• R be an embedding, where N is a neighbour-

hood of s""1 in R n , for which e[N n Rk) = e(N) n R
k . Then els""1

extends to a homeomorphism of the pair (Rn, R ) .

By taking care in the proof of the collaring theorem in [2], we can

improve this result to the following.

THEOREM. Let e : s""1 •* Rw be an embedding so that
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e"1(Rfe) = S^"1 _ Suppose that there is an open cover (/ of s""1 in

so that for each V € 1/ , e extends to an embedding ev : V •+ R

e~ (R ) = F n R . Then e extends to a homeomorphism of the pair

(Rn, R*) •

One might ask whether th i s resul t can be taken further. For example,

does a local ly f la t embedding e : s""1 -»• RW for which e"1(R?C) = Sk~1

necessarily extend to a homeomorphism of the pair (R , R ) ? The purpose

of t h i s note i s to show that the answer is no, at leas t when k - 3 .

EXAMPLE. Let h : B3 -* R3 be an embedding so that h[s2) i s the

Fox-Artin sphere, for example the embedding i l lus t ra ted on page 68 of [4 ] .

?, h
Define e : S ->• R by

e(w, x, y, a) = [h(w, x, y), z) for (w, a , j / , z) 6 5 .

Now e is an embedding satisfying e [R ) = S . Clearly e i s local ly

f l a t except possibly at the point where h\S i s not local ly f l a t . By

Cant re l l ' s almost local ly f la t theorem, page 100 of [ 4 ] , e i s actually

loca l ly f l a t . However, e cannot extend to a homeomorphism of the pair
, I) 3.,
(R , R J since th is would imply the flatness of the Fox-Artin sphere.

Repeating the procedure for constructing e enables us to construct

counterexamples for k = 3 and any n 2 h .
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