THE RELATIVE SCHOENFLIES THEOREM

DAVID GAULD

The relative Schoenflies theorem says that a locally flat embedding $e: S^{n-1} \to \mathbb{R}^n$ for which $e^{-1}(\mathbb{R}^k) = S^{k-1}$ extends to a homeomorphism of the pair $(\mathbb{R}^n, \mathbb{R}^k)$ provided the local collars respect \mathbb{R}^k . In this note it is shown that the proviso is essential, at least when k = 3.

Let \mathbb{R}^n denote euclidean *n*-space and embed \mathbb{R}^{n-1} in \mathbb{R}^n by adjoining the *n*th coordinate 0. Denote by S^{n-1} the unit sphere in \mathbb{R}^n and by B^n the unit ball in \mathbb{R}^n . Thus for $k \leq n$, $S^{k-1} \subset B^k \subset \mathbb{R}^n$.

In [1] and [3] it is observed that a collared embedding of S^{n-1} in \mathbb{R}^n which respects \mathbb{R}^k extends to a homeomorphism of the pair $(\mathbb{R}^n, \mathbb{R}^k)$. More precisely, the following relative version of the Schoenflies theorem holds.

THEOREM. Let $e : N \to \mathbb{R}^n$ be an embedding, where N is a neighbourhood of S^{n-1} in \mathbb{R}^n , for which $e(N \cap \mathbb{R}^k) = e(N) \cap \mathbb{R}^k$. Then $e|S^{n-1}$ extends to a homeomorphism of the pair $(\mathbb{R}^n, \mathbb{R}^k)$.

By taking care in the proof of the collaring theorem in [2], we can improve this result to the following.

THEOREM. Let $e: S^{n-1} \rightarrow R^n$ be an embedding so that

Received 10 April 1980.

 $e^{-1}(\mathbb{R}^k) = S^{k-1}$. Suppose that there is an open cover V of S^{n-1} in \mathbb{R}^n so that for each $V \in V$, e extends to an embedding $e_V : V \to \mathbb{R}^n$ with $e_V^{-1}(\mathbb{R}^k) = V \cap \mathbb{R}^k$. Then e extends to a homeomorphism of the pair $(\mathbb{R}^n, \mathbb{R}^k)$.

One might ask whether this result can be taken further. For example, does a locally flat embedding $e: S^{n-1} \to \mathbb{R}^n$ for which $e^{-1}(\mathbb{R}^k) = S^{k-1}$ necessarily extend to a homeomorphism of the pair $(\mathbb{R}^n, \mathbb{R}^k)$? The purpose of this note is to show that the answer is no, at least when k = 3.

EXAMPLE. Let $h : B^3 \to \mathbb{R}^3$ be an embedding so that $h(S^2)$ is the Fox-Artin sphere, for example the embedding illustrated on page 68 of [4]. Define $e : S^3 \to \mathbb{R}^4$ by

$$e(w, x, y, z) = (h(w, x, y), z) \text{ for } (w, x, y, z) \in S^{2}.$$

Now *e* is an embedding satisfying $e^{-1}(\mathbb{R}^3) = S^2$. Clearly *e* is locally flat except possibly at the point where $h|S^2$ is not locally flat. By Cantrell's almost locally flat theorem, page 100 of [4], *e* is actually locally flat. However, *e* cannot extend to a homeomorphism of the pair $(\mathbb{R}^4, \mathbb{R}^3)$ since this would imply the flatness of the Fox-Artin sphere.

Repeating the procedure for constructing e enables us to construct counterexamples for k = 3 and any $n \ge 4$.

References

- W.R. Brakes, "Quickly unknotting topological spheres", Proc. Amer. Math. Soc. 72 (1978), 413-416.
- [2] Robert Connelly, "A new proof of Brown's collaring theorem", Proc. Amer. Math. Soc. 27 (1971), 180-182.
- [3] D.B. Gauld and J. Väisälä, "Lipschitz and quasiconformal flattening of spheres and cells", Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1978/1979), 371-382.

[4] T. Benny Rushing, Topological embeddings (Pure and Applied Mathematics, 52. Academic Press, New York and London, 1973).

Department of Mathematics, University of Auckland, Private Bag, Auckland, New Zealand.