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Hulls and Husks

Given a coherent sheaf F over a proper scheme, the quot-scheme parametrizes
all quotients F � Q. In many applications, it is necessary to understand not
only surjections F � Q but also “almost surjections” F → G. Such objects are
called quotient husks. Special cases appeared in Kollár (2008a); Pandharipande
and Thomas (2009); Alexeev and Knutson (2010); and Kollár (2011b). In this
chapter, we study quotient husks, prove that they have a fine moduli space
QHusk(F), and then apply this to families of hulls.

The notion of the hull of a coherent sheaf F is the generalization of the
concept of reflexive hull of a module over a normal domain. In Section 9.1
we discuss the absolute case, denoted usually by F[∗∗], and in Section 9.2 the
relative case, denoted by FH . For many applications, the key is the following.

Question 9.1 Let f : X → S be a proper morphism and F a coherent sheaf on
X. Do the hulls F[∗∗]

s of the fibers Fs form a coherent sheaf that is flat over S ?

If the answer is yes, the resulting sheaf is called the universal hull of F over
S . Local criteria for its existence are studied in Section 9.3.

In order to get global criteria, husks and quotient husks are defined in Sec-
tion 9.4. In Section 9.5, the first main result of the Chapter proves that if
X → S is projective and F is a coherent sheaf on X then the functor of
all quotient husks with a given Hilbert polynomial has a fine moduli space
QHuskp(X), which is a proper algebraic space over S . The proof closely
follows the arguments given in Kollár (2008a).

This is used in a global study of hulls in Section 9.6. A third answer to our
question is given in Section 9.7 in terms of a decomposition of S into locally
closed subschemes. Local versions of these results are studied in Section 9.8.

Assumptions In this chapter we are mostly interested in schemes of finite type
over an arbitrary base scheme.
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348 Hulls and Husks

However, the results of Section 9.1 work for Noetherian schemes that have
a dimension function dim( ) such that closed points have dimension 0, and if
W1 ( W2 is a maximal (with respect to inclusion) irreducible subscheme of an
irreducible W2 ⊂ X, then dim W1 = dim W2−1. (That is, X is catenary (Stacks,
2022, tag 02I0).) This holds for schemes of finite type over a local CM scheme;
see Stacks (2022, tags 00NM and 02JT).

9.1 Hulls of Coherent Sheaves

We use the results on S 2 sheaves, to be discussed in Section 10.1.
Let X be an integral, normal scheme and F a coherent sheaf on X. The

reflexive hull of F is the double dual F∗∗ := HomX
(
HomX(F,OX),OX

)
. We

would like to extend this notion to arbitrary schemes and arbitrary coherent
sheaves. For this, the key properties of the reflexive hull are the following:
• F∗∗ is S 2, and
• F∗∗ is the smallest S 2 sheaf containing F/(torsion).
These are the properties that we use to define the hull of a sheaf. Note, however,
that for this, we need to agree what the “torsion subsheaf” of a sheaf should
be. Two natural candidates, emb(F) and tors(F), are discussed in (10.1).

Here we work with tors(F), the largest subsheaf whose support has dimen-
sion < dim F. An advantage is that pure(F) := F/ tors(F) is pure dimensional;
but one needs the dimension function to be reasonable. A theory of hulls using
emb(F) is developed in Kollár (2017).

A useful property of pure sheaves is the following.

Lemma 9.2 Let p : X → Y be a finite morphism and F a coherent sheaf on X.
Then F is pure and S m iff p∗F is pure and S m.

Proof The last remark of (10.2) implies that the depth is preserved by push-
forward. Thus the only question is whether (co)dimension is preserved or not;
this is where our assumptions on the dimension function come in. �

Definition 9.3 (Hull of a sheaf) Let X be a scheme and F a coherent sheaf on
X. Set n = dim F. The hull of F is a coherent sheaf F[∗∗] together with a map
q : F → F[∗∗] such that
(9.3.1) Supp(ker q) has dimension ≤ n − 1,
(9.3.2) Supp(coker q) has dimension ≤ n − 2, and
(9.3.3) F[∗∗] is pure and S 2.
We sometimes say S 2-hull or pure hull if we want to emphasize these
properties. We see below that a hull is unique and it exists if X is excellent.
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9.1 Hulls of Coherent Sheaves 349

By definition, F[∗∗] = (F/ tors(F))[∗∗], hence it is enough to construct hulls
of pure, coherent sheaves.

The notation F[∗∗] is chosen to emphasize the close connection between
the hull and the reflexive hull F∗∗; see (9.4). We introduce a relative version,
denoted by FH in (9.8).

The following property is clear from the definition.
(9.3.4) Let G be a pure, coherent, S 2 sheaf and F ⊂ G a subsheaf. Then

G = F[∗∗] iff dim(G/F) ≤ dim G − 2.
From (9.2) and (10.10) we obtain the following base change properties of hulls.
(9.3.5) Let p : X → Y be a finite morphism. Then p∗

(
F[∗∗]) =

(
p∗F

)[∗∗].
(9.3.6) Let g : Z → X be flat, pure dimensional, with S 2 fibers. Then there is

a natural isomorphism g∗
(
F[∗∗]) =

(
g∗F

)[∗∗].

Proposition 9.4 Let X be an irreducible, normal scheme and F a torsion free
coherent sheaf on X. Then F[∗∗] = F∗∗ := HomX

(
HomX(F,OX),OX

)
.

Proof F is locally free outside a codimension ≥ 2 subset Z ⊂ X. Thus the
natural map F → F∗∗ is an isomorphism over X \ Z. Since F∗∗ is S 2 by (10.8),
it satisfies the assumptions of (9.3). �

This can be used to construct the hull over schemes of finite type over a
field. Indeed, we may assume that X is affine and X = Supp F. By Noether
normalization, there is a finite surjection p : X → An. Thus, by (9.3.5) and
(9.4), F[∗∗] can be identified with

(
p∗F

)∗∗, as a p∗OX-module. Hulls also exist
over excellent schemes; see Kollár (2017) for a more general result.

Proposition 9.5 Let F be a pure, coherent sheaf on an excellent scheme X.
(9.5.1) There is a closed subset Z ⊂ Supp F of dimension ≤ dim F − 2 such

that F is S 2 over X \ Z.
(9.5.2) Let Z ⊂ Supp F be any closed subset of dimension ≤ dim F − 2 such

that F is S 2 over U := X \ Z. Then F[∗∗] = j∗
(
F|U

)
, and, for every coherent

sheaf G, every morphism G|U → F|U uniquely extends to G → F[∗∗].

Proof The first claim follows from (10.27). To see (2), note that j∗
(
F|U

)
is

coherent by (10.26), S 2 over U by assumption, and depthZ j∗
(
F|U

)
≥ 2 by

(10.6). Thus j∗
(
F|U

)
is a hull of F and we get τ : G → j∗

(
G|U

)
→ j∗

(
F|U

)
.

Let F[∗∗] be any hull of F. Then F[∗∗]|U is a hull of F|U ; let W ⊂ U be
the support of their quotient. Then codimX W ≥ 2 hence F[∗∗]|U = F|U by
(10.6.2). Thus we get a map F[∗∗] → j∗

(
F|U

)
. Applying (10.6) again gives that

F[∗∗] = j∗
(
F|U

)
. �
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350 Hulls and Husks

Corollary 9.6 Let 0 → F1 → F2 → F3 be an exact sequence of coherent
sheaves of the same dimension. Then the hulls also form an exact sequence
0→ F[∗∗]

1 → F[∗∗]
2 → F[∗∗]

3 . �

9.7 (Quasi-coherent hulls) Following (9.5.2), one should define the hull of a
torsion-free, quasi-coherent sheaf F as F[∗∗] := lim

−−→
( jZ)∗

(
F|X\Z

)
, where Z runs

through all codimension ≥ 2 closed subsets of Supp F. It is easy to see that
F[∗∗] is S 2, as defined in Grothendieck (1968, exp.III).

9.2 Relative Hulls

Next we develop a relative version of the notion of hull for coherent sheaves
on a scheme X over a base scheme S .

In the absolute case, the hull is an S 2 sheaf that we can associate to any
coherent sheaf on X, in particular, the hull does not have embedded points.

In the relative case, assume for simplicity that f : X → S is smooth; then
OX should be its own “relative hull.” Note, however, that the structure sheaf
OX has no embedded points if and only if the base scheme S has no embedded
points. Thus if we want to say that OX is its own relative hull then we have
to distinguish embedded points that are caused by S (these are allowed) from
other embedded points (these are forbidden).

The distinction between these two types of embedded points seems to be
meaningful only if F is generically flat (3.26).

Definition 9.8 (Relative hull) Let f : X → S be a morphism of finite type
and F a coherent sheaf on X. Let n be the relative dimension of Supp F → S .
A hull (or relative hull) of F over S is a coherent sheaf FH together with a
morphism q : F → FH such that1

(9.8.1) Supp(ker q)→ S has fiber dimension ≤ n − 1,
(9.8.2) Supp(coker q)→ S has fiber dimension ≤ n − 2,
(9.8.3) there is a closed subset Z ⊂ X with complement U := X \ Z such that

Z → S has fiber dimension ≤ n − 2, (F/ ker q) → FH is an isomorphism
over U, FH |U is flat over S with pure, S 2 fibers, and depthZ FH ≥ 2.

Note that Supp(coker q) ⊂ Z by (3), hence in fact (3) implies (2). We state the
latter separately to emphasize the parallels with (9.3).

Note that, while the hull always exists, the relative hull frequently does not;
see (9.13) for a criterion. We have the following obvious comparisons.

1 Fh would have been more consistent, but it is frequently used to denote the Henselization.
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9.2 Relative Hulls 351

Claim 9.8.4 Assume that FH exists and S is reduced. Then (FH)g = (Fg)[∗∗]

for every generic point g ∈ S . �

Claim 9.8.5 Assume that FH exists and S is S 2. Then FH = F[∗∗]. �

The converse fails. As an example, let f : X := A2
st → S := A1

t be the
projection and F ⊂ OX the ideal sheaf of the point (0, 0). Then F[∗∗] = OX , but
F → OX is not a relative hull since coker(F → OX) has codimension 1 on X0.

Lemma 9.9 Let (0,T ) be the spectrum of a DVR, f : X → T a morphism of
finite type, and q : F → G a map between pure, coherent sheaves on X that
are flat over T . Then G is a relative hull of F iff Gg is the hull of Fg, G0 is
S 1, and q0 : F0 → G0 is an isomorphism outside a subset Z0 ⊂ Supp G0 of
codimension ≥ 2.

Proof Assume that G = FH and let Z ⊂ X be as in (9.8). By assumption, G|X\Z
has S 2 fibers thus G|X\Z is S 2. Hence G is S 2 since depthZ G ≥ 2 and so G0 is
S 1 and q0 : F0 → G0 is an isomorphism outside X0 ∩ Z.

Conversely, if (1–3) hold then G is S 2 by (1–2). By (9.5) there is a closed
subset Z1 ⊂ X0 of codimension ≥ 2 such that F0 is S 2 over X0 \ Z1. Thus
q : F → G satisfies the conditions (9.8.1–3) where Z is the union of three
closed sets: Z0,Z1 and the closure of Supp(coker qg). �

Corollary 9.10 Let (0,T ) be the spectrum of a DVR, f : X → T a morphism of
finite type and F a pure, coherent sheaf on X that is flat over T . Then F = FH

⇔ F is S 2 ⇔ Fg is S 2 and F0 is S 1. �

Corollary 9.11 (Bertini theorem for relative hulls) Let (0,T ) be the spectrum
of a DVR, X ⊂ Pn

T a quasi-projective scheme and F a coherent sheaf on X with
relative hull q : F → FH . Then q|L : F|L → FH |L is the relative hull of F|L for
a general hyperplane L ⊂ Pn

T .

Proof We use (10.18) and (10.19) both for the special fiber X0 and the generic
fiber Xg. We get open subsets U0 ⊂ P̌

n
0 and Ug ⊂ P̌

n
g such that FH |L0 is S 1

for L0 ∈ U0, (F/ tors(F))|L0 = (F|L0 )/ tors(F|L0 ) for L0 ∈ U0, the natural map
(F|L0 )/ tors(F|L0 ) → GL0 is an isomorphism outside a subset of codimension
≥ 2 for L0 ∈ U0, and FH |Lg is the hull of F|Lg for Lg ∈ Ug.

Let WT ⊂ P̌
n
T denote the closure of P̌n

g \Ug. For dimension reasons, WT does
not contain P̌n

0. Thus any hyperplane corresponding to a section through a point
of U0 \WT works. �
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352 Hulls and Husks

Definition 9.12 (Vertical purity) Let g : X → S be a finite type morphism and
G a coherent sheaf on X. We say that G is vertically pure of dimenion n, if for
every W ∈ Ass(G), every fiber of g|W : W → S is either empty or has pure
dimension n,

Let F be a coherent sheaf on X such that Supp F → S has relative dimen-
sion n. Let {Wi : i ∈ I} ⊂ Ass(F) be those associated subschemes for which
the generic fiber of g|Wi : Wi → S has dimension < n. Set Z := ∪i∈IWi. The
vertically pure quotient of F is vpure(F) := F/ torsZ(F), using the notation of
(10.1). Note that if q : F → FH is a relative hull, then vpure(F) = im q.

Next we state the precise conditions needed for the existence of relative
hulls. Then we show that a relative hull is unique, generalizing (9.5).

Lemma 9.13 Let f : X → S be a morphism of finite type and F a coherent
sheaf on X. Let n denote the maximum fiber dimension of Supp F → S . Then
F has a relative hull iff
(9.13.1) F is generically flat (3.26), and
(9.13.2) there is an open j : U ↪→ X such that vpure(F)|U is a flat family of

S 2 sheaves and (Supp F \ U)→ S has fiber dimension ≤ n − 2.
If this holds, then
(9.13.3) FH = j∗

(
vpure(F)|U

)
is the unique relative hull of F over S , and

(9.13.4) any τU : G|U → F|U uniquely extends to τ : G → FH .

Proof If q : F → FH is a relative hull, then vpure(F) = im q, so the conditions
(9.13.1–2) are satisfied.

Conversely, if the conditions (9.13.1–2) are satisfied, then we can harmlessly
replace F by vpure(F). Then j∗

(
F|U

)
is coherent by (10.26), F → j∗

(
F|U

)
is

an isomorphism over U by construction, and depthZ j∗
(
F|U

)
≥ 2 by (10.6).

The last claim follows from the universal property of the push-forward and
it implies that FH is independent of the choice of U. �

Corollary 9.14 Let f : X → S be a morphism of finite type and G a coherent
sheaf on X that is flat over S with pure, S 2 fibers of dimension n. Let F ⊂ G
be a subsheaf. Then G = FH iff the fiber dimension of Supp(G/F) → S is
≤ n − 2. �

9.3 Universal Hulls

For many applications, a key question is to understand the behavior of relative
hulls under a base change.
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Notation 9.15 Let f : X → S be a morphism of finite type and F a coherent
sheaf satisfying (9.13.1–2). As in (3.18.1), for any g : T → S we get

X
gX
←− XT := X ×S T

fT
−→ T.

Set UT := g−1
X (U) and FT := g∗XF. The relative hulls FH and (FT )H exists, and,

as in (3.27.2), we have restriction maps

rS
T : (FH)T → (FT )H . (9.15.1)

Definition 9.16 Let f : X → S be a morphism of finite type and F a coherent
sheaf on X satisfying (9.13.1–2).

We say that FH is a universal hull of F at x ∈ X if the restriction map rS
T

(9.15.2) is an isomorphism along g−1
X (x) for every g : T → S . FH is a universal

hull of F if this holds at every x ∈ X. Equivalently, iff the functor F 7→ FH

commutes with base change.
We say that F 7→ FH is universally flat if (FT )H is flat over T for every

g : T → S .

The following theorem gives several characterizations of universal hulls.

Theorem 9.17 Let f : X → S be a morphism of finite type and F a coherent
sheaf on X that has a relative hull FH over S . The following are equivalent.
(9.17.1) FH is a universal hull of F.
(9.17.2) F 7→ FH is universally flat.
(9.17.3) FH is flat over S with pure, S 2 fibers.
(9.17.4) FH is flat over S with pure, S 2 fibers over closed points of S .
(9.17.5) rS

s : FH → (Fs)H is surjective for every closed point s ∈ S .
(9.17.6) (FA)H is a universal hull of FA for every Artinian scheme A→ S .

Proof The only obvious implications are (3)⇒ (4) and (1)⇒ (5), but (4)⇒
(3) directly follows from the openness of the S 2-condition (10.11).

Note that the properties in (3) are preserved by base change, thus
(
FH)

T is
flat over T and

(
(FH)T

)
t is S 2 for every point t ∈ T . By (9.14) this implies

that (FH)T is the relative hull of FT . Therefore (FH)T = (FT )H , so F 7→ FH is
universally flat and commutes with base change. That is, (3)⇒ (2) and (3)⇒
(1) both hold.

If (4) holds, then
(
FH)

s = (Fs)H by (9.3.4), thus (4)⇒ (5). Applying (10.71)
to every localization of S at closed points shows that (5)⇒ (4).

Next we show that (2) ⇒ (6). We may assume that S = Spec A, where
(A,m) is a local, Artinian ring. Choose the smallest r ≥ 0 such that mr+1 = 0;
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so mr ' ⊕iA/m, the sum of a certain number of copies of A/m. This gives an
injection jr : ⊕iFs ↪→ F which then extends to jH

r : ⊕i(Fs)H ↪→ FH .
Since FH is flat over A, the image jH

r
(
⊕i(Fs)H)

is also isomorphic to (mr)⊗A

FH which is the same as ⊕i(FH)s. Thus (Fs)H = (FH)s and, by the above
arguments, (2) implies the properties (1–5) for local, Artinian base schemes.

In order to see (6)⇒ (5), we may replace S by its completion at s. For r ∈ N
set Ar := SpecS OS /mr

s. By base change we get fr : Xr → Ar and Fr := F|Xr . By
assumption, (Fr)H is flat over Ar and we have proved that F 7→ FH commutes
with base change over Artinian schemes. Set F̃ := lim

←−−
(Fr)H . Then F̃ is flat

over S , coherent by Hartshorne (1977, II.9.3.A), agrees with F over U, and
F̃ → FH

s is surjective. Thus F̃ = FH by (9.14), giving (5). �

We can restate the characterization (9.17.3) as follows.

Corollary 9.18 Let f : X → S be a morphism of finite type, q : F → G a
map of coherent sheaves on X. Let n denote the maximum fiber dimension of
Supp(F)→ S . Then G is the universal hull of F over S iff the following hold.
(9.18.1) qs : Fs → Gs is an isomorphism at all n-dimensional points of Xs for

every s ∈ S .
(9.18.2) G is flat with purely n-dimensional, S 2 fibers over S , and
(9.18.3) Supp(coker(q))→ S has fiber dimension ≤ n − 2. �

Combining (9.18) and (10.12) shows that a relative hull is a universal hull
over a dense open subset of the base. Thus Noetherian induction gives the
following. A much more precise form will be proved in (9.40).

Corollary 9.19 Let f : X → S be a proper morphism and F a coherent sheaf
on X. Then there is a locally closed decomposition j : S ′ → S such that j∗XF
has a universal hull. �

The following example illustrates several aspects of (9.17).

Example 9.20 Let g : X → S be a flat family of projective varieties, S reduced
and connected, with g-ample line bundle L. As in (2.35), we get the relative
affine cone CS (X) := SpecS ⊕m∈N g∗OX(m), with vertex V ' S . Note that
CS (X) \V is a Gm-bundle over X, so flat over S . By contrast, CS (X) is flat over
S iff h0(Xs, Lm

s
)

is independent of s ∈ S for all m ∈ N.
The simplest examples where h0 jumps are given by taking X = C × Jac(C)

for some smooth curve C of genus ≥ 2 and L a universal line bundle of relative
degree 0 < d < 2g − 2.

In these cases, the structure sheaf of CS (X) is its own relative hull, but it is
not a universal hull.
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9.4 Husks of Coherent Sheaves

Definition 9.21 Let X be a scheme and F a coherent sheaf on X. An n-
dimensional quotient husk of F is a quasi-coherent sheaf G together with a
homomorphism q : F → G such that
(9.21.1) G is pure of dimension n and
(9.21.2) q : F → G is surjective at all generic points of Supp G.
A quotient husk is called a husk, if n = dim F and
(9.21.3) q : F → G is an isomorphism at all n-dimensional points of X.
Note 9.21.4 If h ∈ Ann(F), then hG ⊂ G is supported in dimension < n, thus it
is 0. Therefore G is also an OX/Ann(F) sheaf, so we get the same husks if we
replace X with any subscheme containing SpecX

(
OX/Ann(F)

)
.

Any coherent sheaf F has a maximal husk M(F) := lim
−−→

( jZ)∗
(
F|X\Z

)
,

where Z runs through all closed subsets of Supp F such that dim Z < dim F.
If dim F ≥ 1 then M(F) is never coherent, but it is the union of coherent husks.

Lemma 9.22 Let F be a coherent sheaf on X and q : F → G an n-dimensional
(quotient) husk of F.
(9.22.1) Let g : X → Z be a finite morphism. Then g∗G is an n-dimensional

(quotient) husk of g∗F.
(9.22.2) Let h : Y → X be a flat morphism of pure relative dimension r with

S 1 fibers. Then h∗G is an (n + r)-dimensional (quotient) husk of h∗F.

Proof If g is a finite morphism and M is a sheaf then the associated primes of
g∗M are the images of the associated primes of M. This implies (1). Similarly,
if h is flat then the associated primes of h∗M are the preimages of the associated
primes of M. Since h∗G is S 1 by (10.10), we get (2). �

9.23 (Bertini theorem for (quotient) husks) Let F be a coherent sheaf on a
quasi-projective variety X ⊂ Pn and q : F → G a coherent (quotient) husk. Let
H ⊂ Pn be a general hyperplane. Then G|H is pure by (10.18). If, in addition, H
does not contain any of the associated primes of coker q then q|H : F|H → G|H
is also a (quotient) husk.

Definition 9.24 Let X be a scheme and F a coherent sheaf on X. Set
n := dim F. A husk q : F → G is called tight if q : F/ tors(F) ↪→ G is an
isomorphism at all (n − 1)-dimensional points of X.

Thus the hull q : F → F[∗∗] defined in (9.3) is a tight husk of F. We see
below that the hull is the maximal tight husk.
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Lemma 9.25 Let X be a scheme and F a coherent sheaf on X with hull
q : F → F[∗∗]. Let r : F → G be any tight husk. Then q extends uniquely
to an injection qG : G ↪→ F[∗∗]. Therefore F[∗∗] is the unique tight husk
that is S 2.

Proof After replacing F with F/ tors(F) we may assume that F is pure. Set
Z := Supp(coker r) ∪ Supp(F[∗∗]/F). Then Z has codimension ≥ 2 and F is S 2

on X \ Z. Using (9.5.2) we get that G ⊂ j∗
(
G|X\Z

)
= j∗

(
F|X\Z

)
= F[∗∗]. If G is

also S 2, then, (9.5.2) gives that G = F[∗∗]. �

Lemma 9.26 Let X be a projective scheme, F a coherent sheaf of pure
dimension n and F → G a quotient husk. The following are equivalent.
(9.26.1) G = F[∗∗].
(9.26.2) G is S 2 and χ

(
X, F(t)

)
− χ

(
X,G(t)

)
has degree ≤ n − 2.

(9.26.3) χ
(
X, F[∗∗](t)

)
≡ χ

(
X,G(t)

)
(identical as polynomials).

Proof The exact sequence 0→ K → F → G → Q→ 0 defines K,Q and

χ
(
X, F(t)

)
− χ

(
X,G(t)

)
≡ χ

(
X,K(t)

)
− χ

(
X,Q(t)

)
.

Note that K has pure dimension n and dim Q ≤ n − 1. If G = F[∗∗] then K = 0
and dim Q ≤ n − 2 which implies (2) and (1)⇒ (3) is obvious.

Conversely, assume that χ
(
X, F(t)

)
− χ

(
X,G(t)

)
has degree ≤ n − 2. Since

deg χ
(
X,Q(t)

)
≤ n−1, we see that degχ

(
X,K(t)

)
≤ n−1. However, K has pure

dimension n, thus in fact K = 0 and so G is a tight husk of F. If G is S 2 then
(9.25) implies that G = F[∗∗], hence (2)⇒ (1).

Finally, if (3) holds, then χ
(
X, F(t)

)
− χ

(
X,G(t)

)
has degree ≤ n − 2, hence,

as we proved, G is a tight husk of F. By (9.25.1) G is a subsheaf of F[∗∗]. Thus
G = F[∗∗] since they have the same Hilbert polynomials. �

Definition 9.27 (Husks over a base scheme) Let f : X → S be a morphism
and F a coherent sheaf on X. A quotient husk of F over S is a quasi-coherent
sheaf G on X, together with a homomorphism q : F → G such that
(9.27.1) G is flat and pure over S , and
(9.27.2) qs : Fs → Gs is a quotient husk for every s ∈ S .
A quotient husk is called a husk if
(9.27.3) qs : Fs → Gs is a husk for every s ∈ S .
We sometimes omit “over S ” if our choice of S is clear from the context. The
following properties are useful.
(9.27.4) Husks are preserved by base change. That is, let q : F → G be a
(quotient) husk over S and g : T → S a morphism. Set XT := X ×S T and let
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gX : XT → X be the first projection. Then g∗Xq : g∗XF → g∗XG is a (quotient)
husk over T .
(9.27.5) Assume that f is proper and we have q : F → G where G is flat and
pure over S . By (10.54.1) there is a largest open S ◦ such that q◦ : F◦ → G◦ is
a quotient husk over S ◦ ⊂ S .

9.5 Moduli Space of Quotient Husks

Definition 9.28 Let f : X → S be a proper morphism and F a coherent sheaf
on X. Let QHusk(F/S)(∗) (resp. Husk(F/S)(∗)) be the functor that to an S -
scheme g : T → S associates the set of all coherent quotient husks (resp. husks)
of g∗XF, where gX : T ×S X → X is the projection.

We write QHusk(F) andHusk(F) if the choice of S is clear.
By (10.54.1)Husk(F/S)(∗) is an open subfunctor of QHusk(F/S)(∗).
If f is projective, H is an f -ample divisor class and p(t) is a polynomial, then

QHuskp(F/S)(∗) (resp. Huskp(F/S)(∗)) denote the subfunctors of all coherent
quotient husks (resp. husks) of g∗XF with Hilbert polynomial p(t).

The main existence theorem of this section is the following.

Theorem 9.29 Let f : X → S be a projective morphism and F a coherent
sheaf on X. Let H be an f -ample divisor class and p(t) a polynomial. Then
QHuskp(F/S) has a fine moduli space QHuskp(F/S ) → S , which is a proper
algebraic space over S .

When S is a point, the projectivity of QHuskp(F) is proved in Lin (2015),
see also Wandel (2015).

As we noted,Huskp(F/S) is represented by an open subspace Huskp(F/S ) ⊂
QHuskp(F/S ), which is usually not closed. There are, however, many impor-
tant cases when Huskp(F/S ) is also proper over S .

Corollary 9.30 Let f : X → S be a projective morphism and F a coher-
ent sheaf that is generically flat over S (3.26). Let H be an f -ample divisor
class and p(t) a polynomial. Then Huskp(F/S) has a fine moduli space
Huskp(F/S )→ S which is a proper algebraic space over S .

The implication (9.29)⇒ (9.30) is proved in (9.31), where we also establish
the valuative criteria of properness and separatedness for QHusk(F/S).
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As a preliminary step, note that the problem is local on S , thus we may
assume that S is affine. Then f , X, F are defined over a finitely generated
subalgebra of OS , hence we may assume in the sequel that S is of finite type.

9.31 (The valuative criteria of separatedness and properness) More generally,
we show that QHusk(F/S) satisfies the valuative criteria of separatedness and
properness whenever f is proper.

Let T be the spectrum of an excellent DVR with closed point 0 ∈ T and
generic point t ∈ T . Given g : T → S , let gX : T ×S X → X denote the projec-
tion. We have the coherent sheaf g∗XF and, over the generic point, a quotient
husk qt : g∗XFt → g∗XGt. We aim to extend it to a quotient husk q̃ : g∗XF → G̃.

Let K ⊂ g∗XF be the largest subsheaf that agrees with ker qt over the generic
fiber. Then g∗XF/K is a coherent sheaf on XT and none of its associated primes
is contained in X0. Thus g∗XF/K is flat over T . Let Z0 ⊂ X0 be the union of the
embedded primes of (g∗XF/K)0.

By construction qt descends to a morphism q′t : (g∗XF/K)t ↪→ g∗XGt. Let Zt ⊂

Supp(g∗XF/K)t be the closed subset where q′t is not an isomorphism and ZT ⊂

XT its closure. Finally set Z = Z0 ∪ (ZT ∩ X0).
The restriction of the sheaf g∗XF/K to XT \

(
Z0∪ZT

)
is flat and pure over T and

g∗XGt is pure on Xt = XT \ X0. Furthermore, when restricted to XT \ (X0 ∪ ZT ),
both of these sheaves are naturally isomorphic to g∗XF/K. Thus we can glue
them to get a single sheaf G′ defined on XT \ Z that is is flat and pure over T .

Let j : XT \ Z ↪→ XT be the injection. By (10.6.6), G̃ := j∗G′ is the unique
extension that is flat and pure over T , hence q̃ : g∗XF → g∗XF/K → G̃ is the
unique quotient husk extending qt : Ft → Gt. Thus QHusk(F/S) satisfies the
valuative criteria of separatedness and properness.

If f is projective then G̃0 has the same Hilbert polynomial as Gt.
Finally note that if F is generically flat over S and qt : g∗XFt → g∗XGt is

a husk then K ⊂ g∗XF is zero at the generic points of X0 ∩ Supp g∗XF, thus
q̃ : g∗XF → g∗XF/K → G̃ is a husk.

This shows that if F is generically flat over S then Husk(F/S ) is closed in
QHusk(F/S ) hence (9.30) follows from (9.29).

9.32 (Construction of QHuskp(F/S )) We may assume that X = PN
S for some

N; the only consequence we actually need is that f∗OX = OS , and this holds
after any base change.

We use the existence and basic properties of quot-schemes (9.33) and hom-
schemes (9.34). Also, as we discuss in (9.35), there is fixed m such that Gs(m)
is generated by global sections and its higher cohomologies vanish for all
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quotient husks of Fs → Gs with Hilbert polynomial p(t). Thus each Gs(m)
can be written as a quotient of O p(m)

Xs
. Let

Qp(t) := Quot◦p(t)(O
p(m)
X ) ⊂ Quot(O p(m)

X )

be the universal family of quotients qs : O p(m)
Xs

� Ms that have Hilbert
polynomial p(t), are pure, have no higher cohomologies and the induced map

qs : H0(Xs,O
p(m)
Xs

)
→ H0(Xs,Ms

)
is an isomorphism. Openness of purity is the m = 1 case of (10.12), the other
two properties are discussed in (9.35).

Let π : Qp(t) → S be the structure map, πX : Qp(t) ×S X → X the second
projection and M the universal sheaf on Qp(t) ×S X.

By (10.54.1) the hom-scheme Hom(π∗XF,M) (9.34) has an open subscheme
Wp(t) parametrizing maps from F to M that are surjective outside a subset of
dimension ≤ n−1. Let σ : Wp(t) → Qp(t) be the structure map and σX : Wp(t)×S

X → Qp(t) ×S X the fiber product.
Note that Wp(t) parametrizes triples

w :=
[
Fw

rw
→ Gw

qw
� O p(m)

Xw
(−m)

]
,

where rw : Fw → Gw is a quotient husk with Hilbert polynomial p(t) and
qw(m) : O p(m)

Xw
→ Gw(m) is a surjection that induces an isomorphism on the

spaces of global sections.
Let w′ ∈ Wp(t) be another point corresponding to the triple[

Fw′
rw′
→ Gw′

qw′
� O p(m)

Xw′
(−m)

]
. such that

[
Fw

rw
→ Gw

]
'

[
Fw′

rw′
→ Gw′

]
.

The difference between w and w′ comes from the different ways that we can
write Gw ' Gw′ as quotients of OXw (−m)⊕p(t). Since we assume that the
induced maps

qw(m), qw′ (m) : H0(Xw,O
p(m)
Xw

)
⇒ H0(Xw,Gw(m)

)
= H0(Xw,Gw′ (m)

)
are isomorphisms, the different choices of qw and qw′ correspond to different
bases in H0(Xw,Gw(mH)

)
. Thus the fiber of Mor(∗,Wp(t)) → QHuskp(F/S)(∗)

over π ◦σ(w) = π ◦σ(w′) = : s ∈ S is a principal homogeneous space under the
algebraic group GL

(
p(m), k(s)

)
= Aut

(
H0(Xs,Gs(m)

))
.

Thus the group scheme GL
(
p(m), S

)
acts on Wp(t) and, arguing as in (8.56),

QHuskp(F/S ) = Wp(t)/GL
(
p(m), S

)
.

9.33 (Quot-schemes) Let f : X → S be a morphism and F a coherent sheaf
on X. Quot(F/S )(∗) denotes the functor that to a scheme g : T → S associates
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the set of all quotients of g∗XF that are flat over T with proper support, where
gX : T ×S X → X is the projection.

If F = OX , then a quotient can be identified with a subscheme of X, thus
Quot(OX/S ) = Hilb(X/S ), the Hilbert functor.

If H is an f -ample divisor class and p(t) a polynomial, then Quotp(F/S )(∗)
denotes those flat quotients that have Hilbert polynomial p(t).

By Grothendieck (1962, lect.IV), Quotp(F/S ) is bounded, proper, separated
and it has a fine moduli space Quotp(F/S ). See Sernesi (2006, sec.4.4) for a
detailed proof.

Note that one can write F as a quotient of OPn (−m)r for some m, r, thus
Quotp(F/S ) can be viewed as a subfunctor of Quot(Or

Pn/S ). The theory of the
latter is essentially the same as the study of the Hilbert functor.

9.34 (Hom-schemes) Let f : X → S be a morphism and F,G quasi-coherent
sheaves on X. Let HomS (F,G) be the set of OX-linear maps of F to G.

For q : T → S , we have HomS (FT ,GT ), where gX : T ×S X → X is the
projection and FT = g∗XF, GT = g∗XG.

As a special case of Grothendieck (1960, III.7.7.8–9), if f is proper, F,G are
coherent and G is flat over S , then this functor is represented by an S -scheme
HomS (F,G). That is, for any g : T → S , there is a natural isomorphism

HomT (FT ,GT ) ' MorS
(
T,HomS (F,G)

)
.

To see this, note first that there is a natural identification between
(9.34.1) homomorphisms φ : F → G, and
(9.34.2) quotients Φ : (F + G)� Q that induce an isomorphism Φ|G : G ' Q.
Next let π : QuotS (F + G) → S denote the quot-scheme parametrizing quo-
tients of F + G with universal quotient u : π∗X(F + G) → Q, where πX denotes
the induced map πX : QuotS (F + G) ×S X → X.

Consider now the restriction of u to uG : π∗XG → Q. By (10.54) there is an
open subset

Quot◦S (F + G) ⊂ QuotS (F + G)

that parametrizes those quotients v : F + G → Q that induce an isomorphism
vG : G ' Q. Thus HomS (F,G) = Quot◦S (F + G). �

9.35 (Boundedness of quotient husks) Let us say that a set of sheaves {Fλ : λ ∈
Λ} is bounded if there is fixed m such that, Fλ(m) is generated by global
sections and its higher cohomologies vanish for all λ ∈ Λ.

By an argument going back to Mumford (1966, lec.14), a set of pure
sheaves {Fλ : λ ∈ Λ} on PN with given Hilbert polynomial is bounded iff their
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restrictions to general linear subspaces of codimension d − 1 are bounded; see
Huybrechts and Lehn (1997, 3.3.7) for a stronger result.

Since being a quotient husk commutes with restriction to general linear sub-
spaces (9.23), after replacing S by the Grassmannian GrS (PN−d+1,PN), it is
sufficient to prove boundedness in relative dimension 1.

If dim Fs = 1, then we can choose m such that Fs(m) is generated by
global sections and its H1 vanishes for all s ∈ S . Since coker(Fs → Gs) has
dimension 0, we get that Gs(m) is also generated by global sections and its H1

vanishes.

9.6 Hulls and Hilbert Polynomials

Recall that we use � (resp. ≡) to denote the lexicographic ordering (resp.
identity) of polynomials, see (5.14).

Let f : X → S be a projective morphism with relatively ample line bundle
OX(1). For a coherent sheaf F on X we aim to understand flatness of F and
of its hull FH in terms of the Hilbert polynomials χ

(
Xs, Fs(t)

)
of the fibers Fs.

Note that the χ
(
Xs, Fs(t)

)
carry no information about the nilpotents in OS , so

we assume that S is reduced.
As we noted in (3.20), s 7→ χ

(
Xs, Fs(∗)

)
is an upper semi-continuous

function on S and F is flat over S iff this function is locally constant.
The next result says that the same holds for s 7→ χ

(
Xs, F

[∗∗]
s (∗)

)
. This does

not follow directly from (3.20), since in general there is no sheaf on X whose
fibers are F[∗∗]

s .

Theorem 9.36 Let f : X → S be a projective morphism with relatively
ample line bundle OX(1) and F a mostly flat family of coherent, S 2 sheaves
(3.26). Assume that S is reduced. Then s 7→ χ

(
Xs, F

[∗∗]
s (∗)

)
is an upper

semi-continuous function and the following are equivalent.
(9.36.1) s 7→ χ

(
Xs, F

[∗∗]
s (∗)

)
is locally constant on S .

(9.36.2) rS
s : Fs → F[∗∗]

s is an isomorphism for s ∈ S .
(9.36.3) F is flat over S with S 2 fibers (9.17).

Proof We follow the method of (5.30). By generic flatness (Eisenbud, 1995,
14.4), there is a dense open subset S ◦ ⊂ S such that FH is flat with S 2 fibers
(FH)s = F[∗∗]

s over S ◦. Thus the function s 7→ χ
(
Xs, F

[∗∗]
s (t)

)
is locally constant

on S ◦, hence constructible on S by Noetherian induction. Thus it is enough
to prove upper semicontinuity when (0 ∈ S ) is the spectrum of a DVR with
generic point g.
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Then F is S 2 and flat over S . Thus χ
(
X0, F0(t)

)
≡ χ

(
Xg, Fg(t)

)
and F0 is

S 1, hence the restriction map (9.15) rS
0 : F0 → FH

0 is an injection. The exact
sequence

0→ F0 → FH
0 → Q0 → 0

defines Q0 and χ
(
X0, FH

0 (t)
)
≡ χ

(
X0, F0(t)

)
+ χ

(
X0,Q0(t)

)
. This gives that

χ
(
X0, FH

0 (t)
)
� χ

(
X0, F0(t)

)
≡ χ

(
Xg, Fg(t)

)
.

Equality holds iff rS
0 : F0 → FH

0 is an isomorphism, that is, when F0 is S 2.
We have thus proved that if s 7→ χ

(
Xs, F

[∗∗]
s (t)

)
is locally constant and S is

regular, one-dimensional, then FH is flat over S with S 2 fibers. We show in
(9.41) that this implies the general case. �

Complement 9.36.4 If dim Q0 = 0, then we get that χ
(
X0, FH

0
)
≥ χ

(
Xg, Fg

)
and

equality holds iff rS
0 is an isomorphism.

Proposition 9.37 Let f : X → S be a projective morphism with relatively
ample line bundle OX(1) and F a mostly flat family of coherent, S 2 sheaves.
Then FH is a universal hull iff for every local, Artinian ring (A,mA) with
residue field k = A/mA and every morphism Spec A→ S , we have

χ
(
XA, (FA)H(t)

)
≡ χ

(
Xk, (Fk)H(t)

)
· length A.

Proof We show that the condition holds iff (FA)H is flat over A and then
conclude using (9.17.6).

Let U ⊂ X be the largest open set where F is flat with S 2 fibers. Pick a
maximum length filtration of A and lift it to a filtration

0 = GU
0 ⊂ GU

1 ⊂ · · · ⊂ GU
r = FA|UA

such that GU
i+1/G

U
i ' Fk |Uk and r = length A. By pushing it forward to XA we

get a filtration

0 = G0 ⊂ G1 ⊂ · · · ⊂ Gr = (FA)H

such that Gi+1/Gi ⊂ (Fk)H . Therefore

χ
(
XA, (FA)H(t)

)
� χ

(
Xk, (Fk)H(t)

)
· length A.

Equality holds iff Gi+1/Gi = (Fk)H for every i, that is, iff FH
A is flat

over A. �

The next result roughly says that local constancy of H0 implies flatness for
globally generated shaves. It is similar to Grauert’s theorem on direct images;
the key difference is that we do not have a flat sheaf to start with.
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Proposition 9.38 Let f : X → S a proper morphism to a reduced scheme and
F a mostly flat family of coherent, S 2 sheaves on X. Assume that
(9.38.1) s 7→ h0(Xs, FH

s ) is a locally constant function on S , and
(9.38.2) FH

s is generated by its global sections for every s ∈ S .
Then FH is a universal hull and f∗

(
FH)

is locally free.

Proof Assume first that S is the spectrum of a DVR. We may replace F by
F[∗∗], hence assume that F is flat over S . Then Fs ↪→ FH

s is an injection and
we have inequalities

h0(Xg, Fg) ≤ h0(Xs, Fs
)
≤ h0(Xs, FH

s
)
. (9.38.3)

By (1) these are equalities. Since FH
s is generated by its global sections,

this implies that Fs = FH
s . As we explain in (9.41), this implies that FH is

a universal hull for every S . The last claim then follows from Grauert’s
theorem. �

9.7 Moduli Space of Universal Hulls

Definition 9.39 Let f : X → S be a morphism and F a coherent sheaf on X.
As in (3.16.1)), for a scheme g : T → S set Hull(F/S)(T) = {∅} if g∗XF has a
universal hull, andHull(F/S)(T) = ∅ otherwise, where gX : T ×S X → X is the
projection.

If f is projective and p is a polynomial we setHullp(F/S)(T) = 1 if g∗XF has
a universal hull with Hilbert polynomial p.

The following result is the key to many applications of the theory.

Theorem 9.40 (Flattening decomposition for universal hulls) Let f : X → S
be a projective morphism and F a coherent sheaf on X. Then
(9.40.1) Hullp(F/S) has a fine moduli space Hullp(F/S ).
(9.40.2) Hullp(F/S )→ S is a locally closed embedding (10.83).
(9.40.3) The structure map Hull(F/S ) = qp Hullp(F/S ) → S is a locally

closed decomposition (10.83).

Proof Let n be the relative dimension of Supp F/S and S n ⊂ S the closed
subscheme parametrizing n-dimensional fibers. We construct Hulln(F/S ), the
fine moduli space of n-dimensional universal hulls. Then repeat the argument
for S \ S n.
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Let π : Husk(F/S ) → S be the structure map, πX : Husk(F/S ) ×S X → X
the second projection and quniv : π∗XF → Guniv the universal husk. The set of
points y ∈ Husk(F/S ) such that (Guniv)y is S 2 and has pure dimension n is open
by (10.12). The fiber dimension of

Supp coker[π∗XF → Guniv]→ Husk(F/S )

is upper semi-continuous. Thus there is a largest open set Wn ⊂ Husk(F/S )
parametrizing husks Fs → Gs such that Gs is S 2, has pure dimension n and
dim Supp Gs/Fs ≤ n − 2. By (9.18), Hulln(F/S ) = Wn.

Since hulls are unique (9.13), Hull(F/S ) → S is a monomorphism (10.82).
In order to prove that each Hullp(F/S )→ S is a locally closed embedding, we
check the valuative criterion (10.84).

Let (0,T ) be the spectrum of a DVR with generic point g and p : T → S a
morphism such that the hulls of Fg and of F0 have the same Hilbert polyno-
mials. Let Gg denote the hull of Fg and extend Gg to a husk FT → GT . By
assumption and by flatness

χ
(
X0, (GT )0(t)

)
≡ χ

(
Xg, (GT )g(t)

)
≡ χ

(
Xg, (Fg)H(t)

)
≡ χ

(
X0, (F0)H(t)

)
.

Hence (GT )0 = (F0)H by (9.26) and so GT is the relative hull of FT . Thus GT

defines the lifting T → Hullp(F/S ). �

9.41 (End of the proof of 9.36 and 9.38) By definition, F has a universal
hull over Hull(F/S ), thus we need to show that τ : Hull(F/S ) → S is an
isomorphism.

By (9.40), τ is a locally closed decomposition, and, by (10.83.2), a proper,
locally closed decomposition is an isomorphism if S is reduced.

To check properness, let T be the spectrum of a DVR and p : T → S a
morphism. We already proved for both (9.36) and (9.38) that (p∗F)H is a uni-
versal hull. Thus p : T → S lifts to p̃ : T → Hull(F/S ), so Hull(F/S ) → S is
proper. �

Let f : X → S be a morphism. Two coherent sheaves F,G on X are called
relatively isomorphic or f -isomorphic if there is a line bundle LS on S such
that F ' G⊗ f ∗LS . We are interested in understanding all morphisms q : T → S
such that the hulls of q∗XF and q∗XG are relatively isomorphic, that is, there is a
line bundle LT on T such that (q∗XF)H ' (q∗XG)H ⊗ f ∗T LT .

Proposition 9.42 Let f : X → S be a flat, projective morphism with S 2 fibers
such that H0(Xs,OXs ) ' k(s) for every s ∈ S . Let M1,M2 be mostly flat families
of divisorial sheaves on X. Then there is a locally closed subscheme i : S riso ↪→
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S such that, for any q : T → S , the pull-backs q∗X M1 and q∗X M2 have relatively
isomorphic hulls iff q factors as q : T → S riso ↪→ S .

Proof Set L := HomX(M1,M2). Then q∗X M1 and q∗X M2 have relatively
isomorphic hulls iff L is relatively isomorphic to OX .

We may assume that S is connected. Then p(∗) := χ
(
Xs,OXs (∗)

)
is inde-

pendent of s ∈ S . Thus i : S riso ↪→ S factors through Hullp(L/S ) → S . After
replacing S by Hullp(L/S ) it remains to prove the special case when L is flat
over S . The latter follows from (3.21). �

9.43 (Pure quotients) We get a similar flattening decomposition for pure quo-
tients. The proofs are essentially the same as for hulls, so we just state the
results.

Let f : X → S be a morphism of finite type and F a coherent sheaf on X.
We say that F is f -pure or relatively pure, if F is flat over S and has pure fibers
(10.1). We say that q : F → G is an f -pure quotient or relatively pure quotient
of F if G is f -pure and Gs = pure(Fs) for every s ∈ S . Note that ker q is then
the largest subsheaf K ⊂ F such that dim(Supp Ks) < dim(Supp Fs) for every
s ∈ S . In particular, a relatively pure quotient is unique.

This gives the functor of relatively pure quotients Pureq(F/S). If f is pro-
jective, it can be decomposed Pureq(F/S) = qpPureqp(F/S) using Hilbert
polynomials. As in (9.40), we get the following.

Claim 9.43.1 Let f : X → S be a projective morphism and F a coherent
sheaf on X. The functor of pure quotients is represented by a locally closed
decomposition Pureq(F/S )→ S . �

Arguing as in (9.36) gives the following.

Corollary 9.43.2 Let S be a reduced scheme, g : X → S a projective morphism
and F a coherent sheaf on X. Then F has a g-pure quotient F � G iff s 7→
χ
(
pure(Fs)(∗)

)
is locally constant on S . �

9.8 Non-projective Versions

The proofs in Section 9.7 used in an essential way the projectivity of X → S .
Here we consider similar questions for non-projective morphisms in two cases.
If X → S is affine then a good theory seems possible only if S is local and
complete. Then we study the case when X → S is proper.

For affine morphisms we have the following variant of (9.40).
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Theorem 9.44 Let (S ,mS ) be a complete local ring, R a finite type S -algebra
and F a finite R-module that is mostly flat with S 2 fibers over S (3.28). Then
there is a quotient S � S u that represents Hull(F/S ) for local, Artinian S -
algebras.

Since universal hulls commute with completion (9.17.6), (9.44) implies
the same statement for complete, local S -algebras. That is, for every local
morphism h : (S ,mS ) → (T,mT ), the hull (FT )H is universal iff there is a
factorization h : S � S u → T .

Note that, compared with (9.40), we only identify the stratum containing the
closed point of Spec S .

Proof We follow the usual method of deformation theory; Artin (1976);
Seshadri (1975); Hartshorne (2010). As a first step we construct S u.

For an ideal I ⊂ S set FI := F ⊗ (R/IR). First, we claim that if (FI)H and
(FJ)H are universal hulls then so is (FI∩J)H . Start with the exact sequence

0→ S/(I ∩ J)→ S/I + S/J → S/(I + J)→ 0. (9.44.1)

F is mostly flat over S , thus (9.44.1) stays left exact after tensoring by F and
taking the hull. Thus we obtain the exact sequence

0→ (FI∩J)H → (FI)H + (FJ)H → (FI+J)H . (9.44.2)

(FJ)H → (FI+J)H is surjective since (FJ)H is a universal hull, hence (9.44.2) is
also right exact.

Set k := S/mS . Since (FI)H is a universal hull, (FI)H ⊗ k ' (Fm)H , and the
same holds for J and I + J. Thus tensoring (9.44.2) with k yields

(FI∩J)H ⊗ k → (Fm)H + (Fm)H p
→ (Fm)H → 0. (9.44.3)

Since ker p ' (Fm)H we see that (FI∩J)H ⊗ k → (Fm)H is surjective. By (9.17)
this implies that (FI∩J)H is a universal hull.

Let Iu ⊂ S be the intersection of all those ideals I such that (FI)H is a
universal hull and S u := S/Iu. By (9.17.6) (FS u )H is a universal hull.

By construction, if h : S � W := S/IW is a quotient such that (FW )H is a
universal hull then Iu ⊂ IW . We still need to prove that if (A,mA) is a local
Artinian S -algebra such that (FA)H is a universal hull then h : S → A factors
through S u.

Let K := A/mA denote the residue field. F/mS F has a hull by (9.5), so
Iu ⊂ mS . Thus S → A → K factors through S u. Working inductively we may
assume that there is an ideal JA ⊂ A such that JA ' K and h′ : S → A′ := A/J
factors through S u. Therefore h : S → A factors through S → S/mS Iu. Note
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that Iu/mS Iu is a finite dimensional k-vector space, call it Vk, and we have a
commutative diagram

0 // Vk

λ
��

// S/mS Iu //

h
��

S u

h′
��

// 0

0 // K // A // A // 0

(9.44.4)

for some k-linear map λ : Vk → K. If λ = 0 then h factors through S u, this is
what we want. If λ , 0 then we show that there is an ideal Ju ( Iu such that
F has a universal hull over S/Ju. This contradicts our choice of Iu and proves
the theorem.

It is easier to write down the obstruction map in scheme-theoretic language.
To simplify notation, we may assume that mS Iu = 0. Thus set X := SpecS R
and let i : U ↪→ X be the largest open set over which F̃ (the sheaf associated to
F) is flat over S . For any S → T by base change we get i : UT ↪→ XT . Let FT

denote the restriction of F̃T to UT . Then i∗FT is the sheaf associated to (FT )H

and we have a commutative diagram

Vk ⊗k i∗Fk

λ
��

// i∗FS

h
��

// i∗FS u

h′
��

δ // Vk ⊗k R1i∗Fk

λ
��

i∗FK // i∗FA // i∗FA′
∆ // R1i∗FK .

(9.44.5)

Here ∆ = 0 since i∗FA is a universal hull. The right-hand square factors as

δ : i∗FS u //

h′
��

i∗Fk

hk
��

δk // Vk ⊗k R1i∗Fk

λ⊗1
��

∆ : i∗FA′ // i∗FK
∆K // K ⊗k R1i∗Fk.

(9.44.6)

By assumption ∆K = 0. Choosing a basis {v j} of Vk, this means that the compo-
nents δk, j : i∗Fk → R1i∗Fk are linearly dependent over K. So they are linearly
dependent over k, that is, there is a nonzero µ : Vk → k such that µ ◦ δk = 0.
Set Ju := mS Iu + ker µ and S ′ := S/Ju. Note that Iu/Ju ' k. The extension
Iu/Ju → S ′ → S u gives the exact sequence

(Iu/Ju) ⊗k i∗Fk ↪→ i∗FS ′ → i∗FS u
µ◦δ
−→ (Iu/Ju) ⊗k R1i∗Fk. (9.44.7)

Since µ ◦ δ = 0 the map i∗FS ′ → i∗FS u is surjective and so is the
composite i∗FS ′ → i∗FS u → i∗Fk. Thus i∗FS ′ is a universal hull by (9.17).
This contradicts the choice of S u. �

One can see that (9.44) does not hold for arbitrary local schemes S , but the
following consequence was pointed out by E. Szabó.
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Corollary 9.45 The conclusion of (9.44) remains true if S is a Henselian local
ring, that is the localization of an algebra of finite type over a field or over an
excellent DVR.

Proof There is a general theorem (Artin, 1969, 1.6) about representing
functors over Henselian local rings; we check that its conditions are satisfied.

Let Ŝ denote the completion of S . As in (3.16.1), define a functor on local
S -algebras by setting F (T ) = {∅} if (FT )H is a universal hull and F (T ) = ∅

otherwise.
It is easy to see that if F (T ) = {∅}, then there is a factorization S → T ′ → T

such that T ′ is of finite type over S and F (T ′) = {∅}. So F is locally of finite
presentation over S , as in Artin (1969, 1.5). The universal family over (Ŝ )u

gives an effective versal deformation of the fiber over mS . The existence of S u

now follows from Artin (1969, 1.6). �

Next we present an alternative approach to hulls and husks that does not
use projectivity, works for proper algebraic spaces, but leaves properness of
Husk(F/S ) unresolved. The proofs were worked out jointly with M. Lieblich.

Theorem 9.46 Let S be a Noetherian algebraic space and p : X → S a
proper morphism of algebraic spaces. Let F be a coherent sheaf on X. Then
QHusk(F/S) is separated and it has a fine moduli space QHusk(F/S ).

Proof Let f : X → S be a proper morphism. The functor of flat families of
coherent sheaves Flat(X/S) is represented by an algebraic stack Flat(X/S )
which is locally of finite type, but very non-separated; see Laumon and
Moret-Bailly (2000, 4.6.2.1).

Let σ : Flat(X/S ) → S be the structure morphism and UX/S the univer-
sal family. By (10.12), there is an open substack Flatn(X/S ) ⊂ Flat(X/S )
parametrizing pure sheaves of dimension n. Let Un

X/S be the corresponding
universal family. Consider X ×S Flatn(X/S ) with coordinate projections π1, π2.
The stack Hom

(
π∗1F, π∗2Un

X/S
)

parametrizes all maps from the sheaves Fs to
pure, n-dimensional sheaves Ns.

We claim that QHusk(F/S ) is an open substack of Hom
(
π∗1F, π∗2Un

X/S
)
.

Indeed, by (10.54), for a map of sheaves M → N with N flat over S , it is
an open condition to be an isomorphism at the generic points of the support.

As we discussed in (9.31), QHusk(F/S ) satisfies the valuative criteria of
separatedness and properness, so the diagonal of QHusk(F/S ) is a mono-
morphism. Every algebraic stack with this property is an algebraic space; see
Laumon and Moret-Bailly (2000, sec.8). �
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The connected components of QHusk(F/S ) are not proper over S , this fails
even for the quot-scheme, but the following should be true.

Conjecture 9.47 Every irreducible component of QHusk(F/S ) is proper.

The construction of Hull(F/S ) given in (9.40) applies to algebraic spaces as
well, but it does not give boundedness. Nonetheless, we claim that Hull(F/S )
is of finite type. First, it is locally of finite type since QHusk(F/S ) is. Second,
we claim that red Hull(F/S ) is dominated by an algebraic space of finite type.
In order to see this, consider the (reduced) structure map red Hull(F/S ) →
red S . It is an isomorphism at the generic points, hence there is an open dense
S ◦ ⊂ red S such that S ◦ is isomorphic to an open subspace of red Hull(F/S ).
Repeating this for red S \ S ◦, by Noetherian induction we eventually write
red Hull(F/S ) as a disjoint union of finitely many locally closed subspaces of
red S . These imply that Hull(F/S ) is of finite type. Using (9.13.4), we get the
following.

Theorem 9.48 (Flattening decomposition for hulls) Let f : X → S be a proper
morphism of algebraic spaces and F a coherent sheaf on X. Then
(9.48.1) Hull(F/S) is separated and it has a fine moduli space Hull(F/S ),
(9.48.2) Hull(F/S ) is an algebraic space of finite type over S , and
(9.48.3) the structure map Hull(F/S )→ S is a surjective monomorphism. �

Example 9.49 Let C,D be two smooth projective curves. Pick points p, q ∈ C
and r ∈ D. Let X be the surface obtained from the blow-up B(p,r)(C × D) by
identifying {q} × D with the birational transform of {p} × D. Note that X is
a proper, but non-projective scheme and there is a natural proper morphism
π : X → C′ where C′ is the nodal curve obtained from C by identifying the
points p, q. Then Hull(OX/S ) = C \ {q}. The natural map C \ {q} → C′ is a
surjective monomorphism, but not a locally closed embedding.
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