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Abstract
Given a countable group G and a G-flow X, a probability measure 𝜇 on X is called characteristic if it is Aut(𝑋, 𝐺)-
invariant. Frisch and Tamuz asked about the existence of a minimal G-flow, for any group G, which does not admit
a characteristic measure. We construct for every countable group G such a minimal flow. Along the way, we are
motivated to consider a family of questions we refer to as minimal subdynamics: Given a countable group G and a
collection of infinite subgroups {Δ 𝑖 : 𝑖 ∈ 𝐼}, when is there a faithful G-flow for which every Δ 𝑖 acts minimally?
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Given a countable group G and a faithful G-flow X, we write Aut(𝑋, 𝐺) for the group of homeomor-
phisms of X which commute with the G-action. When G is abelian, Aut(𝑋, 𝐺) contains a natural copy of
G resulting from the G-action, but in general this need not be the case. Much is unknown about how the
properties of X restrict the complexity of Aut(𝑋, 𝐺); for instance, Cyr and Kra [1] conjecture that when
𝐺 = Z and 𝑋 ⊆ 2Z is a minimal, 0-entropy subshift, then Aut(𝑋,Z) must be amenable. In fact, no coun-
terexample is known even when restricting to any two of the three properties ‘minimal’, ‘0-entropy’ or
‘subshift’. In an effort to shed light on this question, Frisch and Tamuz [3] define a probability measure
𝜇 on X to be characteristic if it is Aut(𝑋, 𝐺)-invariant. They show that 0-entropy subshifts always admit
characteristic measures. More recently, Cyr and Kra [2] provide several examples of flows which admit
characteristic measures for nontrivial reasons, even in cases where Aut(𝑋, 𝐺) is nonamenable. Frisch
and Tamuz asked (Question 1.5, [3]) whether there exists, for any countable group G, some minimal
G-flow without a characteristic measure. We give a strong affirmative answer.

Theorem 0.1. For any countably infinite group G, there is a free minimal G-flow X so that X does not
admit a characteristic measure. More precisely, there is a free (𝐺 × 𝐹2)-flow X which is minimal as a
G-flow and with no 𝐹2-invariant measure.
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We remark that the X we construct will not in general be a subshift.
Over the course of proving Theorem 0.1, there are two main difficulties to overcome. The first

difficulty is a collection of dynamical problems we refer to as minimal subdynamics. The general
template of these questions is as follows.

Question 0.2. Given a countably infinite group Γ and a collection {Δ 𝑖 : 𝑖 ∈ 𝐼} of infinite subgroups of
Γ, when is there a faithful (or essentially free, or free) minimal Γ-flow for which the action of each Δ 𝑖

is also minimal? Is there a natural space of actions in which such flows are generic?

In [8], the author showed that this was possible in the case Γ = 𝐺 × 𝐻 and Δ = 𝐺 for any countably
infinite groups G and H. We manage to strengthen this result considerably.

Theorem 0.3. For any countably infinite group Γ and any collection {Δ𝑛 : 𝑛 ∈ N} of infinite normal
subgroups of Γ, there is a free Γ-flow which is minimal as a Δ𝑛-flow for every 𝑛 ∈ N.

In fact, what we show when proving Theorem 0.3 is considerably stronger. Recall that given a
countably infinite group Γ, a subshift 𝑋 ⊆ 2Γ is strongly irreducible if there is some finite symmetric
𝐷 ⊆ Γ so that whenever 𝑆0, 𝑆1 ⊆ Γ satisfy 𝐷𝑆0 ∩ 𝑆1 = ∅ (i.e., 𝑆0 and 𝑆1 are D-apart), then for any
𝑥0, 𝑥1 ∈ 𝑋 , there is 𝑦 ∈ 𝑋 with 𝑦 |𝑆𝑖 = 𝑥𝑖 |𝑆𝑖 for each 𝑖 < 2. Write S for the set of strongly irreducible
subshifts, and write S for its Vietoris closure. Frisch, Tamuz and Vahidi-Ferdowsi [5] show that in S ,
the minimal subshifts form a dense 𝐺 𝛿 subset. In our proof of Theorem 0.3, we show that the shifts in
S which are Δ𝑛-minimal for each 𝑛 ∈ N also form a dense 𝐺 𝛿 subset.

This brings us to the second main difficulty in the proof of Theorem 0.1. Using this stronger form of
Theorem 0.3, one could easily prove Theorem 0.1 by finding a strongly irreducible 𝐹2-subshift which
does not admit an invariant measure. This would imply the existence of a strongly irreducible (𝐺 × 𝐹2)-
subshift without an 𝐹2-invariant measure. As not admitting an 𝐹2-invariant measure is a Vietoris-open
condition, the genericity of G-minimal subshifts would then be enough to obtain the desired result.
Unfortunately, whether such a strongly irreducible subshift can exist (for any nonamenable group) is
an open question. To overcome this, we introduce a flexible weakening of the notion of a strongly
irreducible shift.

The paper is organized as follows. Section 1 is a very brief background section on subsets of groups,
subshifts and strong irreducibility. Section 2 introduces the notion of a UFO, a useful combinatorial
gadget for constructing shifts where subgroups act minimally; Theorem 0.3 answers Question 3.6 from
[8]. Section 3 introduces the notion of B-irreduciblity for any group H, where B ⊆ P 𝑓 (𝐻) is a right-
invariant collection of finite subsets of H. When 𝐻 = 𝐹2, we will be interested in the case when B is the
collection of finite subsets of 𝐹2 which are connected in the standard left Cayley graph. Section 4 gives
the proof of Theorem 0.1.

1. Background

Let Γ be a countably infinite group. Given𝑈, 𝑆 ⊆ Γ with U finite, then we call S a (one-sided) U-spaced
set if for every 𝑔 ≠ ℎ ∈ 𝑆 we have ℎ ∉ 𝑈𝑔, and we call S a U-syndetic set if 𝑈𝑆 = Γ. A maximal
U-spaced set is simply a U-spaced set which is maximal under inclusion. We remark that if S is a
maximal U-spaced set, then S is (𝑈 ∪𝑈−1)-syndetic. We say that sets 𝑆, 𝑇 ⊆ Γ are (one-sided) U-apart
if 𝑈𝑆 ∩ 𝑇 = ∅ and 𝑆 ∩𝑈𝑇 = ∅. Notice that much of this discussion simplifies when U is symmetric,
so we will often assume this. Also, notice that the properties of being U-spaced, maximal U-spaced,
U-syndetic and U-apart are all right invariant.

If A is a finite set or alphabet, then Γ acts on 𝐴Γ by right shift, where given 𝑥 ∈ 𝐴Γ and 𝑔, ℎ ∈ Γ,
we have (𝑔·𝑥) (ℎ) = 𝑥(ℎ𝑔). A subshift of 𝐴Γ is a nonempty, closed, Γ-invariant subset. Let Sub(𝐴Γ)

denote the space of subshifts of 𝐴Γ endowed with the Vietoris topology. This topology can be described
as follows. Given 𝑋 ⊆ 𝐴Γ and a finite 𝑈 ⊆ Γ, the set of U-patterns of X is the set 𝑃𝑈 (𝑋) = {𝑥 |𝑈 :
𝑥 ∈ 𝑋} ⊆ 𝐴𝑈 . Then the typical basic open neighborhood of 𝑋 ∈ Sub(𝐴Γ) is the set 𝑁𝑈 (𝑋) := {𝑌 ∈

Sub(𝐴Γ) : 𝑃𝑈 (𝑌 ) = 𝑃𝑈 (𝑋)}, where U ranges over finite subsets of Γ.
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A subshift 𝑋 ⊆ 𝐴Γ is U-irreducible if for any 𝑥0, 𝑥1 ∈ 𝑋 and any 𝑆0, 𝑆1 ⊆ Γ which are U-apart,
there is 𝑦 ∈ 𝑋 with 𝑦 |𝑆𝑖 = 𝑥𝑖 |𝑆𝑖 for each 𝑖 < 2. If X is U-irreducible and 𝑉 ⊇ 𝑈 is finite, then X is also
V-irreducible. We call X strongly irreducible if there is some finite 𝑈 ⊆ Γ with 𝑋 𝑈-irreducible. By
enlarging U if needed, we can always assume U is symmetric. Let S (𝐴Γ) ⊆ Sub(𝐴Γ) denote the set of
strongly irreducible subshifts of 𝐴Γ, and let S (𝐴Γ) denote the closure of this set in the Vietoris topology.

More generally, if 2N denotes Cantor space, then Γ acts on (2N)Γ by right shift exactly as above.
If 𝑘 < 𝜔, we let 𝜋𝑘 : 2N → 2𝑘 denote the restriction to the first k entries. This induces a factor
map �̃�𝑘 : (2N)Γ → (2𝑘 )Γ given by �̃�𝑘 (𝑥) (𝑔) = 𝜋𝑘 (𝑥(𝑔)); we also obtain a map 𝜋𝑘 : Sub((2N)Γ) →

Sub((2𝑘 )Γ) (where 2𝑘 is viewed as a finite alphabet) given by 𝜋𝑘 (𝑋) = �̃�𝑘 [𝑋]. The Vietoris topology
on Sub((2N)Γ) is the coarsest topology making every such 𝜋𝑘 continuous. We call a subflow 𝑋 ⊆ (2N)Γ
strongly irreducible if for every 𝑘 < 𝜔, the subshift 𝜋𝑘 (𝑋) ⊆ (2𝑘 )Γ is strongly irreducible in the ordinary
sense. We let S ((2N)Γ) ⊆ Sub((2N)Γ) denote the set of strongly irreducible subflows of (2N)Γ, and we
let S ((2N)Γ) denote its Vietoris closure.

The idea of considering the closure of the strongly irreducible shifts has it roots in [4]. This is made
more explicit in [5], where it is shown that in S (𝐴Γ), the minimal subflows form a dense 𝐺 𝛿 subset.
More or less the same argument shows that the same holds in S ((2N)Γ) (see [6]). Recall that a Γ-flow
X is free if for every 𝑔 ∈ Γ \ {1Γ} and every 𝑥 ∈ 𝑋 , we have 𝑔𝑥 ≠ 𝑥. The main reason for considering a
Cantor space alphabet is the following result, which need not be true for finite alphabets.

Proposition 1.1. In S ((2N)Γ), the free flows form a dense 𝐺 𝛿 subset.

Proof. Fixing 𝑔 ∈ Γ, the set {𝑋 ∈ Sub((2N)Γ) : ∀𝑥 ∈ 𝑋 (𝑔𝑥 ≠ 𝑥)} is open; indeed, if 𝑋𝑛 → 𝑋 is a
convergent sequence in Sub((2N)Γ) and 𝑥𝑛 ∈ 𝑋𝑛 is a point fixed by g, then passing to a subsequence, we
may suppose 𝑥𝑛 → 𝑥 ∈ 𝑋 , and we have 𝑔𝑥 = 𝑥. Intersecting over all 𝑔 ∈ Γ \ {1Γ}, we see that freeness
is a 𝐺 𝛿 condition.

Thus, it remains to show that freeness is dense in S ((2N)Γ). To that end, we fix 𝑔 ∈ Γ\{1Γ} and show
that the set of shifts in S ((2N)Γ) where g acts freely is dense. Fix 𝑋 ∈ S ((2N)Γ), 𝑘 < 𝜔 and a finite
𝑈 ⊆ Γ; so a typical open set in S ((2N)Γ) has the form {𝑋 ′ ∈ S ((2N)Γ) : 𝑃𝑈 (𝜋𝑘 (𝑋

′)) = 𝑃𝑈 (𝜋𝑘 (𝑋))}.
We want to produce 𝑌 ∈ Sub((2N)Γ) which is strongly irreducible, g-free and with 𝑃𝑈 (𝜋𝑘 (𝑌 )) =
𝑃𝑈 (𝜋𝑘 (𝑋)). In fact, we will produce such a Y with 𝜋𝑘 (𝑌 ) = 𝜋𝑘 (𝑋).

Let 𝐷 ⊆ Γ be a finite symmetric set containing g and 1Γ. Setting 𝑚 = |𝐷 |, consider the subshift
Color(𝐷, 𝑚) ⊆ 𝑚Γ defined by

Color(𝐷, 𝑚) := {𝑥 ∈ 𝑚Γ : ∀ 𝑖 < 𝑚 [𝑥−1 ({𝑖}) is 𝐷-spaced]}.

A greedy coloring argument shows that Color(𝐷, 𝑚) is nonempty and D-irreducible. Moreover, g acts
freely on Color(𝐷, 𝑚). Inject m into 2{𝑘,...,ℓ−1} for some ℓ > 𝑘 and identify Color(𝐷, 𝑚) as a subflow of
(2{𝑘,...,ℓ−1})Γ. Then𝑌 := 𝜋𝑘 (𝑋)×Color(𝐷, 𝑚) ⊆ (2ℓ )Γ ⊆ (2N)Γ, where the last inclusion can be formed
by adding strings of zeros to the end. Then Y is strongly irreducible, g-free and 𝜋𝑘 (𝑌 ) = 𝜋𝑘 (𝑋). �

2. UFOs and minimal subdynamics

Much of the construction will require us to reason about the product group𝐺×𝐹2. So for the time being,
fix countably infinite groups Δ ⊆ Γ. For our purposes, Γ will be 𝐺 × 𝐹2, and Δ will be G, where we
identify G with a subgroup of 𝐺 × 𝐹2 in the obvious way. However, for this subsection, we will reason
more generally.

Definition 2.1. Let Δ ⊆ Γ be countably infinite groups. A finite subset 𝑈 ⊆ Γ is called a (Γ,Δ)-UFO
if for any maximal U-spaced set 𝑆 ⊆ Γ, we have that S meets every right coset of Δ in Γ.

We say that the inclusion of groups Δ ⊆ Γ admits UFOs if for every finite 𝑈 ⊆ Γ, there is a finite
𝑉 ⊆ Γ with 𝑉 ⊇ 𝑈 which is a (Γ,Δ)-UFO.

As a word of caution, we note that the property of being a (Γ,Δ)-UFO is not upwards closed.
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Figure 1. Sighting in Roswell; a (Z × Z,Z × {0})-UFO subset of Z × Z.

The terminology comes from considering the case of a product group, that is, Γ = Z × Z and
Δ = Z × {0}. Figure 1 depicts a typical UFO subset of Z × Z.

Proposition 2.2. Let Δ be a subgroup of Γ. If |
⋂

𝑢∈𝑈 𝑢Δ𝑢
−1 | is infinite for every finite set 𝑈 ⊆ Γ, then

Δ ⊆ Γ admits UFOs. In particular, if Δ contains an infinite subgroup that is normal in Γ, then Δ ⊆ Γ
admits UFOs.

Proof. We prove the contrapositive. So assume that Δ ⊆ Γ does not admit UFOs. Let𝑈 ⊆ Γ be a finite
symmetric set such that no finite 𝑉 ⊆ Γ containing U is a (Γ,Δ)-UFO. Let 𝐷 ⊆ Δ be finite, symmetric
and contain the identity. It will suffice to show that 𝐶 =

⋂
𝑢∈𝑈 𝑢𝐷𝑢

−1 satisfies |𝐶 | ≤ |𝑈 |.
Set 𝑉 = 𝑈 ∪ 𝐷2. Since V is not a (Γ,Δ)-UFO, there is a maximal V-spaced set 𝑆 ⊆ Γ and 𝑔 ∈ Γ

with 𝑆 ∩ Δ𝑔 = ∅. Since S is V-spaced and 𝑢−1𝐶2𝑢 ⊆ 𝐷2 ⊆ 𝑉 , the set 𝐶𝑢 = (𝑢𝑆) ∩ (𝐶𝑔) is 𝐶2-spaced
for every 𝑢 ∈ 𝑈. Of course, any 𝐶2-spaced subset of 𝐶𝑔 is empty or a singleton, so |𝐶𝑢 | ≤ 1 for each
𝑢 ∈ 𝑈. On the other hand, since S is maximal we have 𝑉𝑆 = Γ, and since 𝑆 ∩ Δ𝑔 = ∅ we must have
𝐶𝑔 ⊆ 𝑈𝑆. Therefore, |𝐶 | = |𝐶𝑔 | =

∑
𝑢∈𝑈 |𝐶𝑢 | ≤ |𝑈 |. �

In the spaces S (𝑘Γ) and S ((2N)Γ), the minimal flows form a dense 𝐺 𝛿 . However, when Δ ⊆ Γ is a
subgroup, we can ask about the properties of members of S (𝑘Γ) and S ((2N)Γ) viewed as Δ-flows.

Definition 2.3. Given a subshift 𝑋 ⊆ 𝑘Γ and a finite 𝐸 ⊆ Γ, we say that X is (Δ , 𝐸)-minimal if for every
𝑥 ∈ 𝑋 and every 𝑝 ∈ 𝑃𝐸 (𝑋), there is 𝑔 ∈ Δ with (𝑔𝑥) |𝐸 = 𝑝. Given a subflow 𝑋 ⊆ (2N)Γ and 𝑛 ∈ N,
we say that X is (Δ , 𝐸, 𝑛)-minimal if 𝜋𝑛 (𝑋) ⊆ (2𝑛)Γ is (Δ , 𝐸)-minimal. When Δ = Γ, we simply say
that X is E-minimal or (𝐸, 𝑛)-minimal.

The set of (Δ , 𝐸)-minimal flows is open in Sub(𝑘Γ), and 𝑋 ⊆ 𝑘Γ is minimal as aΔ-flow iff it is (Δ , 𝐸)-
minimal for every finite 𝐸 ⊆ Γ. Similarly, the set of (Δ , 𝐸, 𝑛)-minimal flows is open in Sub((2N)Γ), and
𝑋 ⊆ (2N)Γ is minimal as a Δ-flow iff it is (Δ , 𝐸, 𝑛) minimal for every finite 𝐸 ⊆ Γ and every 𝑛 ∈ N.

In the proof of Proposition 2.4, it will be helpful to extend conventions about the shift action to subsets
of Γ. If 𝑈 ⊆ Γ, 𝑔 ∈ 𝐺 and 𝑝 ∈ 𝑘𝑈 , we write 𝑔·𝑝 ∈ 𝑘𝑈𝑔−1 for the function where given ℎ ∈ 𝑈𝑔−1, we
have (𝑔·𝑝) (ℎ) = 𝑝(ℎ𝑔).

Proposition 2.4. Suppose Δ ⊆ Γ are countably infinite groups and that Δ ⊆ Γ admits UFOs.
Then {𝑋 ∈ S (𝑘Γ) : 𝑋 is minimal as a Δ − flow} is a dense 𝐺 𝛿 subset. Similarly, {𝑋 ∈ S (2N)Γ :
𝑋 is minimal as a Δ − flow} is a dense 𝐺 𝛿 subset.

Proof. We give the arguments for 𝑘Γ, as those for (2N)Γ are very similar.
It suffices to show for a given finite 𝐸 ⊆ Γ that the collection of (Δ , 𝐸)-minimal flows is dense in

S (𝑘Γ). By enlarging E if needed, we can assume that E is symmetric.
Consider a nonempty open 𝑂 ⊆ S (𝑘Γ). By shrinking O and/or enlarging E if needed, we can

assume that for some 𝑋 ∈ S (𝑘Γ), we have 𝑂 = 𝑁𝐸 (𝑋) ∩ S (𝑘Γ). We will build a (Δ , 𝐸)-minimal
shift Y with 𝑌 ∈ 𝑁𝐸 (𝑋) ∩ S (𝑘Γ). Fix a finite symmetric 𝐷 ⊆ Γ so that X is D-irreducible. Then
fix a finite 𝑈 ⊆ Γ which is large enough to contain an 𝐸𝐷𝐸-spaced set 𝑄 ⊆ 𝑈 ∩ Δ of cardinality
|𝑃𝐸 (𝑋) |, and enlarging U if needed, choose such a Q with 𝐸𝑄 ⊆ 𝑈. Fix a bijection 𝑄 → 𝑃𝐸 (𝑋)
by writing 𝑃𝐸 (𝑋) = {𝑝𝑔 : 𝑔 ∈ 𝑄}. Because X is D-irreducible, we can find 𝛼 ∈ 𝑃𝑈 (𝑋) so that
(𝑔𝑞) |𝐸 = 𝑝𝑔 for every 𝑔 ∈ 𝑄. By Proposition 2.2, fix a finite 𝑉 ⊆ Γ with 𝑉 ⊇ 𝑈𝐷𝑈 which is a
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(Γ,Δ)-UFO. We now form the shift

𝑌 = {𝑦 ∈ 𝑋 : ∃ a max. 𝑉-spaced set 𝑇 so that ∀𝑔 ∈ 𝑇 (𝑔·𝑦) |𝑈 = 𝛼}.

Because 𝑉 = 𝑈𝐷𝑈 and X is D-irreducible, we have that 𝑌 ≠ ∅. In particular, for any maximal V-spaced
set 𝑇 ⊆ Γ, we can find 𝑦 ∈ 𝑌 so that (𝑔𝑦) |𝑈 = 𝛼 for every 𝑔 ∈ 𝑇 . We also note that 𝑌 ∈ 𝑁𝐸 (𝑋) by our
construction of 𝛼.

To see that Y is (Δ , 𝐸)-minimal, fix 𝑦 ∈ 𝑌 and 𝑝 ∈ 𝑃𝐸 (𝑌 ). Suppose this is witnessed by the maximal
V-spaced set 𝑇 ⊆ Γ. Because V is a (Γ,Δ)-UFO, find ℎ ∈ Δ ∩ 𝑇 . So (ℎ𝑦) |𝑈 = 𝛼. Now, suppose 𝑔 ∈ 𝑄
is such that 𝑝 = 𝑝𝑔. We have (𝑔ℎ𝑦) |𝐸 = (𝑔 · ((ℎ𝑦) |𝑈 ) |𝐸 = 𝑝𝑔.

To see that 𝑌 ∈ S (𝑘Γ), we will show that Y is 𝐷𝑈𝑉𝑈𝐷-irreducible. Suppose 𝑦0, 𝑦1 ∈ 𝑌 and
𝑆0, 𝑆1 ⊆ Γ are 𝐷𝑈𝑉𝑈𝐷-apart. For each 𝑖 < 2, fix 𝑇𝑖 ⊆ Γ a maximal V-spaced set which witnesses that
𝑦𝑖 is in Y. Set 𝐵𝑖 = {𝑔 ∈ 𝑇𝑖 : 𝐷𝑈𝑔∩𝑆𝑖 ≠ ∅}. Notice that 𝐵𝑖 ⊆ 𝑈𝐷𝑆𝑖 . It follows that 𝐵0∪𝐵1 is V-spaced,
so extend to a maximal V-spaced set B. It also follows that 𝑆𝑖 ∪𝑈𝐵𝑖 ⊆ 𝑈

2𝐷𝑆𝑖 . Since 𝑉 ⊇ 𝑈𝐷𝑈 and
by the definition of 𝐵𝑖 , the collection of sets {𝑆𝑖 ∪𝑈𝐵𝑖 : 𝑖 < 2} ∪ {𝑈𝑔 : 𝑔 ∈ 𝐵 \ (𝐵0 ∪ 𝐵1)} is pairwise
D-apart. By the D-irreducibility of X, we can find 𝑦 ∈ 𝑋 with 𝑦 |𝑆𝑖∪𝑈𝐵𝑖 = 𝑦𝑖 |𝑆𝑖∪𝑈𝐵𝑖 for each 𝑖 < 2 and
with (𝑔𝑦) |𝑈 = 𝛼 for each 𝑔 ∈ 𝐵 \ (𝐵0 ∪𝐵1). Since 𝐵𝑖 ⊆ 𝑇𝑖 , we actually have (𝑔𝑦) |𝑈 = 𝛼 for each 𝑔 ∈ 𝐵.
So 𝑦 ∈ 𝑌 and 𝑦 |𝑆𝑖 = 𝑦𝑖 |𝑆𝑖 as desired. �

Proof of Theorem 0.3. By Proposition 2.4, the generic member of S ((2N)Γ) is minimal as a Δ𝑛-flow
for each 𝑛 ∈ N, and by Proposition 1.1, the generic member of S ((2N)Γ is free. �

In contrast to Theorem 0.1, the next example shows that Question 0.2 is nontrivial to answer in full
generality.

Theorem 2.5. Let 𝐺 =
∑
N(Z/2Z), and let X be a G flow with infinite underlying space. Then there

exists an infinite subgroup H such that X is not minimal as an H flow.

Proof. We may assume that X is a minimal G-flow, as otherwise we may take 𝐻 = 𝐺. We construct
a sequence 𝑋 � 𝐾0 ⊇ 𝐾1 ⊇ · · · of proper, nonempty, closed subsets of X and a sequence of group
elements {𝑔𝑛 : 𝑛 ∈ N} so that by setting 𝐾 =

⋂
N 𝐾𝑛 and 𝐻 = 〈𝑔𝑛 : 𝑛 ∈ N〉, then K will be a minimal H-

flow. Start by fixing a closed, proper subset𝐾0 � 𝑋 with nonempty interior. Suppose𝐾𝑛 has been created
and is 〈𝑔0, . . . , 𝑔𝑛−1〉-invariant. As X is a minimal G-flow, the set 𝑆𝑛 := {𝑔 ∈ 𝐺 : Int(𝑔𝐾𝑛 ∩ 𝐾𝑛) ≠ ∅}

is infinite. Pick any 𝑔𝑛 ∈ 𝑆𝑛 \ {1𝐺}, and set 𝐾𝑛+1 = 𝑔𝑛𝐾𝑛 ∩ 𝐾𝑛. As 𝑔2
𝑛 = 1𝐺 , we see that 𝐾𝑛+1 is 𝑔𝑛-

invariant, and as G is abelian, we see that 𝐾𝑛+1 is also 𝑔𝑖-invariant for each 𝑖 < 𝑛. It follows that K will
be H-invariant as desired. �

Before moving on, we give a conditional proof of Theorem 0.1, which works as long as some
nonamenable group admits a strongly irreducible shift without an invariant measure. It is the inspiration
for our overall construction.

Proposition 2.6. Let G and H be countably infinite groups, and suppose that for some 𝑘 < 𝜔 and some
strongly irreducible flow𝑌 ⊆ 𝑘𝐻 that Y does not admit an H-invariant measure. Then there is a minimal
G-flow which does not admit a characteristic measure.

Proof. Viewing 𝑍 = 𝑘𝐺 × 𝑌 as a subshift of 𝑘𝐺×𝐻 , then Z is strongly irreducible and does not admit
an H-invariant probability measure. The property of not possessing an H-invariant measure is an open
condition in Sub(𝑘𝐺×𝐻 ); indeed, if 𝑋𝑛 → 𝑋 is a convergent sequence in Sub(𝑘𝐺×𝐻 ) and 𝜇𝑛 is an H-
invariant probability measure supported on 𝑋𝑛, then by passing to a subsequence, we may suppose that
the 𝜇𝑛 weak∗-converge to some H-invariant probability measure 𝜇 supported on X. By Proposition 2.4,
we can therefore find 𝑋 ⊆ 𝑘𝐺×𝐻 which is minimal as a G-flow and which does not admit an H-invariant
measure. As H acts by G-flow automorphisms on X, we see that X does not admit a characteristic
measure. �
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Unfortunately, the question of if there exists any countable group H and a strongly irreducible
H-subshift Y with no H-invariant measure is an open problem. Therefore, our construction proceeds by
considering the free group 𝐹2 and defining a suitable weakening of strongly irreducible subshift which
is strong enough for G-minimality to be generic in (𝐺 × 𝐹2)-subshifts but weak enough for (𝐺 × 𝐹2)-
subshifts without 𝐹2-invariant measures to exist.

3. Variants of strong irreducibility

In this section, we investigate a weakening of strong irreducibility that one can define given any right-
invariant collection B of finite subsets of a given countable group. For our overall construction, we will
consider 𝐹2 and 𝐺 × 𝐹2, but we give the definitions for any countably infinite group Γ. Write P 𝑓 (Γ) for
the collection of finite subsets of Γ.

Definition 3.1. Fix a right-invariant subset B ⊆ P 𝑓 (Γ). Given 𝑘 ∈ N, we say that a subshift 𝑋 ⊆ 𝑘Γ

is B-irreducible if there is a finite 𝐷 ⊆ Γ so that for any 𝑚 < 𝜔, any 𝐵0, . . . , 𝐵𝑚−1 ∈ B, and any
𝑥0, . . . , 𝑥𝑚−1 ∈ 𝑋 , if the sets {𝐵0, . . . , 𝐵𝑚−1} are pairwise D-apart, then there is 𝑦 ∈ 𝑋 with 𝑦 |𝐵𝑖 = 𝑥𝑖 |𝐵𝑖

for each 𝑖 < 𝑚. We call D the witness to B-irreducibility. If we have D in mind, we can say that X is
B-D-irreducible.

We say that a subflow 𝑋 ⊆ (2N)Γ is B-irreducible if for each 𝑘 ∈ N, the subshift 𝜋𝑘 (𝑋) ⊆ (2𝑘 )Γ is
B-irreducible.

We write SB (𝑘
Γ) or SB ((2N)Γ) for the set of B-irreducible subflows of 𝑘Γ or (2N)Γ, respectively,

and we write SB (𝑘
Γ) or SB ((2N)Γ) for the Vietoris closures.

Remark.

1. If B is closed under unions, it is enough to consider 𝑚 = 2. However, this will often not be the case.
2. By compactness, if 𝑋 ⊆ 𝑘Γ is B-D-irreducible, {𝐵𝑛 : 𝑛 < 𝜔} ⊆ B is pairwise D-apart, and

{𝑥𝑛 : 𝑛 < 𝜔} ⊆ 𝑋 , then there is 𝑦 ∈ 𝑋 with 𝑦 |𝐵𝑖 = 𝑥𝑖 |𝐵𝑖 .
3. If B ⊆ B′, then SB′ (𝑘Γ) ⊆ SB (𝑘

Γ) and SB′ ( (2N)Γ) ⊆ SB ((2N)Γ)

When B is the collection of all finite subsets of H, then we recover the notion of a strongly irreducible
shift. Again, we consider Cantor space alphabets to obtain freeness.

Proposition 3.2. For any right-invariant collection B ⊆ P 𝑓 (Γ), the generic member of SB ((2N)Γ) is
free.

Proof. Analyzing the proof of Proposition 1.1, we see that the only properties that we need of the
collections SB (𝑘

Γ) and SB ((2N)Γ) for the proof to generalize are that they are closed under products
and contain the flows Color(𝐷, 𝑚). If 𝑘, ℓ ∈ N an 𝑋 ⊆ 𝑘Γ and 𝑌 ⊆ ℓΓ are B-D-irreducible and B-E-
irreducible for some finite 𝐷, 𝐸 ⊆ Γ, then 𝑋 × 𝑌 ⊆ (𝑘 × ℓ)Γ will be B-(𝐷 ∪ 𝐸)-irreducible. And as
Color(𝐷, 𝑚) is strongly irreducible, it is B-irreducible. �

Now, we consider the group 𝐹2. We consider the left Cayley graph of 𝐹2 with respect to the
standard generating set 𝐴 := {𝑎, 𝑏, 𝑎−1, 𝑏−1}. We let 𝑑 : 𝐹2 × 𝐹2 → 𝜔 denote the graph metric. Write
𝐷𝑛 = {𝑠 ∈ 𝐹2 : 𝑑 (𝑠, 1𝐹2 ) ≤ 𝑛}.

Definition 3.3. Given n with 1 ≤ 𝑛 < 𝜔, we set

B𝑛 = {𝐷 ∈ P 𝑓 (𝐹2) : connected components of 𝐷 are pairwise 𝐷𝑛-apart}.

Write B𝜔 for the collection of finite, connected subsets of 𝐹2.

Proposition 3.4. Suppose 𝑋 ⊆ 𝑘𝐹2 is B𝜔-irreducible. Then there is some 𝑛 < 𝜔 for which X is B𝑛-
irreducible.
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Proof. Suppose X is B𝜔-𝐷𝑛-irreducible. We claim X is B𝑛-𝐷𝑛-irreducible. Suppose 𝑚 < 𝜔,
𝐵0, . . . , 𝐵𝑚−1 ∈ B𝑛 are pairwise 𝐷𝑛-apart, and 𝑥0, . . . , 𝑥𝑚−1 ∈ 𝑋 . For each 𝑖 < 𝑚, we suppose 𝐵𝑖

has 𝑛𝑖-many connected componenets, and we write {𝐶𝑖, 𝑗 : 𝑗 < 𝑛𝑖} for these components. Then the
collection of connected sets

⋃
𝑖<𝑚{𝐶𝑖, 𝑗 : 𝑗 < 𝑛𝑖} is pairwise 𝐷𝑛-apart. As X is B𝜔-𝐷𝑛-irreducible, we

can find 𝑦 ∈ 𝑋 so that for each 𝑖 < 𝑚 and 𝑗 < 𝑛𝑖 , we have 𝑦 |𝐶𝑖, 𝑗 = 𝑥𝑖 |𝐶𝑖, 𝑗 . Hence, 𝑦 |𝐵𝑖 = 𝑥𝑖 |𝐵𝑖 , showing
that X is B𝑛-𝐷𝑛-irreducible. �

We now construct a B𝜔-irreducible subshift with no 𝐹2-invariant measure. We consider the alphabet
𝐴2 and write 𝜋0, 𝜋1 : 𝐴2 → 𝐴 for the projections. We set

𝑋𝑝𝑑𝑜𝑥 = {𝑥 ∈ (𝐴2)𝐹2 :∀𝑔, ℎ ∈ 𝐹2 ∀𝑖, 𝑗 < 2
(𝑖, 𝑔) ≠ ( 𝑗 , ℎ) ⇒ 𝜋𝑖 (𝑥(𝑔)) · 𝑔 ≠ 𝜋 𝑗 (𝑥(ℎ)) · ℎ}.

More informally, the flow 𝑋𝑝𝑑𝑜𝑥 is the space of ‘2-to-1 paradoxical decompositions’ of 𝐹2 using A. We
remark that here, our decomposition need not be a partition of 𝐹2; we just ask for disjoint 𝑆0, 𝑆1 ⊆ 𝐹2
such that for every 𝑔 ∈ 𝐺 and 𝑖 < 2, we have 𝐴𝑔 ∩ 𝑆𝑖 ≠ ∅. This is in some sense the prototypical
example of an 𝐹2-shift with no 𝐹2-invariant measure.

Lemma 3.5. 𝑋𝑝𝑑𝑜𝑥 has no 𝐹2-invariant measure.

Proof. For 𝑢 ∈ 𝐴2 set 𝑌𝑢 = {𝑥 ∈ 𝑋𝑝𝑑𝑜𝑥 : 𝑥(1𝐺) = 𝑢}. Notice that if 𝑦 ∈ 𝑌𝑢 , 𝑖 < 2 and 𝑥 = 𝜋𝑖 (𝑢)𝑦, then
𝑥(𝜋𝑖 (𝑢)

−1) = 𝑦(1𝐺) = 𝑢. Consequently, if 𝑢, 𝑣 ∈ 𝐴2, 𝑥 ∈ 𝜋𝑖 (𝑢)𝑌𝑢 ∩ 𝜋 𝑗 (𝑣)𝑌𝑣 then, since 𝑥 ∈ 𝑋𝑝𝑑𝑜𝑥 and

𝜋𝑖 (𝑥(𝜋𝑖 (𝑢)
−1))𝜋𝑖 (𝑢)

−1 = 1𝐺 = 𝜋 𝑗 (𝑥(𝜋 𝑗 (𝑣)
−1))𝜋 𝑗 (𝑣)

−1,

we must have that (𝑖, 𝜋𝑖 (𝑢)) = ( 𝑗 , 𝜋 𝑗 (𝑣)), and hence also

𝜋1−𝑖 (𝑢) = 𝜋1−𝑖 (𝑥(𝜋𝑖 (𝑢)
−1)) = 𝜋1− 𝑗 (𝑥(𝜋 𝑗 (𝑣)

−1)) = 𝜋1− 𝑗 (𝑣).

Therefore, 𝜋𝑖 (𝑢)𝑌𝑢 ∩ 𝜋 𝑗 (𝑣)𝑌𝑣 = ∅ whenever (𝑖, 𝑢) ≠ ( 𝑗 , 𝑣).
If 𝜇 were an invariant Borel probability measure on 𝑋𝑝𝑑𝑜𝑥 , then we would have

2𝜇(𝑋𝑝𝑑𝑜𝑥) = 2
∑

𝑢∈𝐴2

𝜇(𝑌𝑢) =
∑

𝑖<2

∑

𝑢∈𝐴2

𝜇(𝜋𝑖 (𝑢)𝑌𝑢) ≤ 𝜇(𝑋)

which is a contradiction. �

When proving that 𝑋𝑝𝑑𝑜𝑥 is B𝜔-irreducible, note that 𝐷1 = 𝐴 ∪ {1𝐹2 }.

Proposition 3.6. 𝑋𝑝𝑑𝑜𝑥 is B𝜔-𝐷4-irreducible.

Proof. The proof will use a 2-to-1 instance of Hall’s matching criterion [7] which we briefly describe.
Fix a bipartite graph G = (𝑉, 𝐸) with partition 𝑉 = 𝑉0 � 𝑉1. Given 𝑆 ⊆ 𝑉0, write 𝑁G(𝑆) = {𝑣 ∈ 𝑉1 :
∃𝑢 ∈ 𝑆(𝑢, 𝑣) ∈ 𝐸}. Then the matching condition we need states that if for every finite 𝑆 ⊆ 𝑉0, we have
|𝑁G (𝑆) | ≥ 2𝑆, then there is 𝐸 ′ ⊆ 𝐸 so that in the graph G′ := (𝑉, 𝐸 ′), 𝑑G′ (𝑢) = 2 for every 𝑢 ∈ 𝑉0.

Let 𝐵0, . . . , 𝐵𝑘−1 ∈ B𝜔 be pairwise 𝐷4-apart. Let 𝑥0, . . . , 𝑥𝑘−1 ∈ 𝑋𝑝𝑑𝑜𝑥 . To construct 𝑦 ∈ 𝑋𝑝𝑑𝑜𝑥

with 𝑦 |𝐵𝑖 = 𝑥𝑖 |𝐵𝑖 for each 𝑖 < 𝑘 , we need to verify a 2-to-1 Hall’s matching criterion on every finite
subset of 𝐹2 \

⋃
𝑖<𝑘 𝐵𝑖 . Call 𝑠 ∈ 𝐹2 matched if for some 𝑖 < 𝑘 , some 𝑔 ∈ 𝐵𝑖 and some 𝑗 < 2, we have

𝑠 = 𝜋 𝑗 (𝑥𝑖 (𝑔)) ·𝑔. So we need for every finite 𝐸 ∈ P 𝑓 (𝐹2 \
⋃

𝑖<𝑘 𝐵𝑖) that 𝐴𝐸 contains at least 2|𝐸 |-many
unmatched elements. Towards a contradiction, let 𝐸 ∈ P 𝑓 (𝐹2 \

⋃
𝑖<𝑘 𝐵𝑖) be a minimal failure of the

Hall condition.
In the left Cayley graph of 𝐹2, given a reduced word w in alphabet 𝐴 = {𝑎, 𝑏, 𝑎−1, 𝑏−1}, write 𝑁𝑤

for the set of reduced words which end with w. Now, find 𝑡 ∈ 𝐸 (let us assume the leftmost character
of t is a) so that all of 𝐸 ∩ 𝑁𝑎𝑡 , 𝐸 ∩ 𝑁𝑏𝑡 and 𝐸 ∩ 𝑁𝑏−1𝑡 are empty. If any two of 𝑎𝑡, 𝑏𝑡 and 𝑏−1𝑡
is an unmatched point in 𝐴𝐸 , then 𝐸 \ {𝑡} is a smaller failure of Hall’s criterion. So there must be
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Figure 2. A pair of outgoing edges, drawn in solid red, is chosen at each of 𝑣00, 𝑣01, 𝑣10 and 𝑣11. Edges
which must consequently be oriented in a particular direction are indicated with dashed red arrows.
Most importantly, 𝑣∅ is forced to direct an edge to 𝑢∅. By considering the generalization of this picture
for any length of binary string, we see that 𝑋𝑝𝑑𝑜𝑥 cannot be 𝐷𝑛-irreducible for any 𝑛 ∈ N.

some 𝑖 < 𝑘 , some 𝑔 ∈ 𝐵𝑖 and some 𝑗 < 2, we have 𝜋 𝑗 (𝑥𝑖 (𝑔)) · 𝑔 ∈ {𝑎𝑡, 𝑏𝑡, 𝑏−1𝑡}. Let us suppose
𝜋 𝑗 (𝑥𝑖 (𝑔)) · 𝑔 = 𝑎𝑡. Note that since 𝑔 ∉ 𝐸 , we must have 𝑔 ∈ {𝑏𝑎𝑡, 𝑎2𝑡, 𝑏−1𝑎𝑡}. But then since 𝐵𝑖 is
connected, we have 𝐷1𝐵𝑖 ∩ {𝑏𝑡, 𝑏−1𝑡} = ∅, and since the other 𝐵𝑞 are at least distance 5 from 𝐵𝑖 , we
have 𝐷1𝐵𝑞 ∩ {𝑏𝑡, 𝑏−1𝑡} = ∅ for every 𝑞 ∈ 𝑘 \ {𝑖}. In particular, 𝑏𝑡 and 𝑏−1𝑡 are unmatched points in
𝐴𝐸 , a contradiction. �

We remark that 𝑋𝑝𝑑𝑜𝑥 is not 𝐷𝑛-irreducible for any 𝑛 ∈ N. See Figure 2.

4. The construction

Our goal for the rest of the paper is to use 𝑋𝑝𝑑𝑜𝑥 to build a subflow of (2N)𝐺×𝐹2 which is free, G-minimal
and with no 𝐹2-invariant measure. In what follows, given an 𝐹2-coset {𝑔} × 𝐹2, we endow this coset
with the left Cayley graph for 𝐹2 using the generating set A exactly as above. We extend the definition
of B𝑛 to refer to finite subsets of any given 𝐹2-coset.

Definition 4.1. Given n with 1 ≤ 𝑛 ≤ 𝜔, we set

B∗
𝑛 = {𝐷 ∈ P 𝑓 (𝐺 × 𝐹2) : for each 𝐹2 − coset 𝐶, 𝐷 ∩ 𝐶 ∈ B𝑛}.

Given 𝑦 ∈ 𝑘𝐺×𝐹2 and 𝑔 ∈ 𝐺, we define 𝑦𝑔 ∈ 𝑘𝐹2 where given 𝑠 ∈ 𝐹2, we set 𝑦𝑔 (𝑠) = 𝑦(𝑔, 𝑠). If
𝑋 ⊆ 𝑘𝐹2 is B𝑛-irreducible, then the subshift 𝑋𝐺 ⊆ 𝑘𝐺×𝐹2 is in SB∗

𝑛
, where we view 𝑋𝐺 as the set

{𝑦 ∈ 𝑘𝐺×𝐹2 : ∀𝑔 ∈ 𝐺 (𝑦𝑔 ∈ 𝑋)}. In particular, (𝑋𝑝𝑑𝑜𝑥)
𝐺 is B∗

4-irreducible. By encoding (𝑋𝑝𝑑𝑜𝑥)
𝐺

as a subshift of (2𝑚)𝐺×𝐹2 for some 𝑚 ∈ N and considering �̃�−1
𝑚 ((𝑋𝑝𝑑𝑜𝑥)

𝐺) ⊆ (2N)𝐺×𝐹2 , we see that
there is a B∗

4-irreducible subflow of (2N)𝐺×𝐹2 for which the 𝐹2-action doesn’t fix a measure. It follows
that such subflows constitute a nonempty open subset of Φ :=

⋃
𝑛 SB∗

𝑛
((2N)𝐺×𝐹2). Combining the next

result with Proposition 3.2, we will complete the proof of Theorem 0.1.

Proposition 4.2. With Φ as above, the G-minimal flows are dense 𝐺 𝛿 in Φ.

Proof. We show the result for Φ𝑘 :=
⋃

𝑛 SB∗
𝑛
(𝑘𝐺×𝐹2) to simplify notation; the proof in full generality

is almost identical.
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We only need to show density. To that end, fix a finite symmetric 𝐸 ⊆ 𝐺 × 𝐹2 which is connected
in each 𝐹2-coset. It is enough to show that the (𝐺, 𝐸)-minimal subshifts are dense in Φ𝑘 . Fix some
nonempty open 𝑂 ⊆ Φ𝑘 . By enlarging E and/or shrinking O, we may assume that for some 𝑛 < 𝜔 and
𝑋 ∈ SB∗

𝑛
(𝑘𝐺×𝐹2) that 𝑂 = {𝑋 ′ ∈ Φ𝑘 : 𝑃𝐸 (𝑋

′) = 𝑃𝐸 (𝑋)}. We will build a (𝐺, 𝐸)-minimal subshift
𝑌 ⊆ 𝑘𝐺×𝐹2 so that 𝑃𝐸 (𝑌 ) = 𝑃𝐸 (𝑋) and so that for some 𝑁 < 𝜔, we have 𝑌 ∈ SB∗

𝑁
(𝑘𝐺×𝐹2 ).

Recall that 𝐷𝑛 ⊆ 𝐹2 denotes the ball of radius n. Fix a finite, symmetric 𝐷 ⊆ 𝐺 × 𝐹2 so that
{1𝐺} × 𝐷2𝑛 ⊆ 𝐷 and X is B∗

𝑛-D-irreducible. Find a finite symmetric 𝑈0 ⊆ 𝐺 with 1𝐺 ⊆ 𝑈0 and
𝑟 < 𝜔 so that upon setting 𝑈 = 𝑈0 × 𝐷𝑟 ⊆ 𝐺 × 𝐹2, then U is large enough to contain an 𝐸𝐷𝐸-
spaced set 𝑄 ⊆ 𝐺 with 𝐸𝑄 ⊆ 𝑈. As X is B∗

𝑛-D-irreducible, there is a pattern 𝛼 ∈ 𝑃𝑈 (𝑋) so that
{(𝑔𝛼) |𝐸 : 𝑔 ∈ 𝑄} = 𝑃𝐸 (𝑋).

Let 𝑉 ⊇ 𝑈𝐷2𝑈 be a (𝐺 × 𝐹2, 𝐺)-UFO. We remark that for most of the remainder of the proof, it
would be enough to have 𝑉 ⊇ 𝑈𝐷𝑈; we only use the stronger assumption 𝑉 ⊇ 𝑈𝐷2𝑈 in the proof of
the final claim. Consider the following subshift:

𝑌 = {𝑦 ∈ 𝑋 : ∃ a max. 𝑉-spaced set 𝑇 so that ∀𝑔 ∈ 𝑇 (𝑔𝑦) |𝑈 = 𝛼}.

The proof that Y is nonempty and (𝐺, 𝐸)-minimal is exactly the same as the analogous proof from
Proposition 2.4. Note that by construction, we have 𝑃𝐸 (𝑌 ) = 𝑃𝐸 (𝑋).

We now show that 𝑌 ∈ SB∗
𝑁
(𝑘𝐺×𝐹2) for 𝑁 = 4𝑟 + 3𝑛. Set 𝑊 = 𝐷𝑈𝑉𝑈𝐷. We show that Y is

B∗
𝑁 -W-irreducible. Suppose 𝑚 < 𝜔, 𝑦0, . . . , 𝑦𝑚−1 ∈ 𝑌 and 𝑆0, . . . , 𝑆𝑚−1 ∈ B∗

𝑁 are pairwise W-apart.
Suppose for each 𝑖 < 𝑚 that 𝑇𝑖 ⊆ 𝐺 × 𝐹2 is a maximal V-spaced set which witness that 𝑦𝑖 ∈ 𝑌 . Set
𝐵𝑖 = {𝑔 ∈ 𝑇𝑖 : 𝐷𝑈𝑔 ∩ 𝑆𝑖 ≠ ∅}. Then

⋃
𝑖<𝑚 𝐵𝑖 is V-spaced, so enlarge to a maximal V-spaced set

𝐵 ⊆ 𝐺 × 𝐹2.
For each 𝑖 < 𝑚, we enlarge 𝑆𝑖 ∪ 𝑈𝐵𝑖 to 𝐽𝑖 ∈ B∗

𝑛 as follows. Suppose 𝐶 ⊆ 𝐺 × 𝐹2 is an 𝐹2-coset.
Each set of the form 𝐶 ∩𝑈𝑔 is connected. Since 𝑆𝑖 ∈ B∗

𝑁 , it follows that given 𝑔 ∈ 𝐵𝑖 , there is at most
one connected component Θ𝐶,𝑔 of 𝑆𝑖 ∩ 𝐶 with 𝑈𝑔 ∩ Θ𝐶,𝑔 = ∅, but 𝑈𝑔 ∩ 𝐷𝑛Θ𝐶,𝑔 ≠ ∅. We add the
line segment in C connecting Θ𝐶,𝑔 and 𝑈𝑔. Upon doing this for each 𝑔 ∈ 𝐵𝑖 and each 𝐹2-coset C, this
completes the construction of 𝐽𝑖 . Observe that 𝐽𝑖 ⊆ 𝐷𝑛−1𝑆𝑖 ∩𝑈𝐵𝑖 .

Claim. Let C be an 𝐹2-coset, and suppose𝑌0 is a connected component of 𝑆𝑖∩𝐶. Let Y be the connected
component of 𝐽𝑖 ∩ 𝐶 with 𝑌0 ⊆ 𝑌 . Then 𝑌 ⊆ 𝐷2𝑟+𝑛𝑌0. In particular, if 𝑌0 ≠ 𝑍0 are two connected
components of 𝑆𝑖 ∩ 𝐶, then 𝑌0 and 𝑍0 do not belong to the same component of 𝐽𝑖 ∩ 𝐶.

Proof. Let 𝐿 = {𝑥 𝑗 : 𝑗 < 𝜔} ⊆ 𝐶 be a ray with 𝑥0 ∈ 𝑌0 and 𝑥 𝑗 ∉ 𝑌0 for any 𝑗 ≥ 1. Then
{ 𝑗 < 𝜔 : 𝑥 𝑗 ∈ 𝐽𝑖 ∩𝐶} is some finite initial segment of 𝜔. We want to argue that for some 𝑗 ≤ 2𝑟 + 𝑛+ 1,
we have 𝑥 𝑗 ∉ 𝐽𝑖 ∩ 𝐶. First, we argue that if 𝑥𝑛 ∈ 𝐽𝑖 ∩ 𝐶, then 𝑥𝑛 ∈ 𝑈𝐵𝑖 . Otherwise, we must have
𝑥𝑛 ∈ 𝐷𝑛−1𝑆𝑖 . But since 𝑥𝑛 ∉ 𝐷𝑛−1𝑌0, there must be another component 𝑌1 of 𝑆𝑖 ∩ 𝐶 with 𝑥𝑛 ∈ 𝐷𝑛𝑌1.
But this implies that 𝑌0 and 𝑌1 are not 𝐷2𝑛−1-apart, a contradiction since 2𝑛 − 1 ≤ 4𝑟 − 3𝑛 = 𝑁 .

Fix 𝑔 ∈ 𝐵𝑖 with 𝑥𝑛 ∈ 𝑈𝑔. Let 𝑞 < 𝜔 be least with 𝑞 > 𝑛 and 𝑥𝑞 ∉ 𝑈𝑔. We must have 𝑞 ≤ 2𝑟 + 𝑛 + 1.
We claim that 𝑥𝑞 ∉ 𝐽𝑖 ∩ 𝐶. Towards a contradiction, suppose 𝑥𝑞 ∈ 𝐽𝑖 ∩ 𝐶. We cannot have 𝑥𝑞 ∈ 𝑈𝐵𝑖 ,
so we must have 𝑥𝑞 ∈ 𝐷𝑛−1𝑆𝑖 . But now there must be some component 𝑌1 of 𝑆𝑖 ∩𝐶 with 𝑥𝑞 ∈ 𝐷𝑛−1𝑌1.
But then 𝐷2𝑟+2𝑛𝑌0 ∩ 𝑌1 ≠ ∅, a contradiction as 𝑌0 and 𝑌1 are 𝐷𝑁 -apart. This concludes the proof that
𝑌 ⊆ 𝐷2𝑟+𝑛𝑌0.

Now, suppose 𝑌0 ≠ 𝑍0 are two connected components of 𝑆𝑖 ∩ 𝐶. Then 𝑌0 and 𝑍0 are N-apart. In
particular, 𝑍0 � 𝐷2𝑟+𝑛𝑌0, so cannot belong to the same connected component of 𝐽𝑖 ∩ 𝐶 as 𝑌0. �

Claim. 𝐽𝑖 ∈ B∗
𝑛.

Proof. Fix an 𝐹2-coset C and two connected components 𝑌 ≠ 𝑍 of 𝐽𝑖 ∩𝐶. By the previous claim, each
of Y and Z can only contain at most one nonempty component of 𝑆𝑖 ∩𝐶. The claim will be proven after
considering three cases.

1. First, suppose each of Y and Z contain a nonempty component of 𝑆𝑖 ∩ 𝐶, say 𝑌0 ⊆ 𝑌 and 𝑍0 ⊆ 𝑍 .
Then since 𝑌0 and 𝑍0 are 𝐷4𝑟+3𝑛-apart, the previous claim implies that Y and Z are 𝐷𝑛-apart.
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2. Now, suppose Y contains a nonempty component 𝑌0 of 𝑆𝑖 ∩ 𝐶 and that Z does not. Then for some
𝑔 ∈ 𝐵𝑖 , we have 𝑍 = 𝑈𝑔∩𝐶. Towards a contradiction, suppose 𝐷𝑛𝑌 ∩𝑈𝑔 ≠ ∅. Let 𝐿 = {𝑥 𝑗 : 𝑗 ≤ 𝑀}

be the line segment connecting Y and 𝑈𝑔 with 𝐿 ∩ 𝑌 = {𝑥0} and 𝐿 ∩ 𝑈𝑔 = {𝑥𝑀 }. We must have
𝑀 ≤ 𝑛. We cannot have 𝑥0 ∈ 𝑈𝐵𝑖 , so we must have 𝑥0 ∈ 𝐷𝑛−1𝑆𝑖 . This implies that 𝑥0 ∈ 𝐷𝑛−1𝑌0. We
cannot have 𝑥0 ∈ 𝑌0, as otherwise, we would have connected 𝑌0 and𝑈𝑔 ∩𝐶 when constructing 𝐽𝑖 . It
follows that for some ℎ ∈ 𝐵𝑖 , we have that 𝑥0 is on the line segment 𝐿 ′ = {𝑥 ′𝑗 : 𝑗 ≤ 𝑀 ′} connecting
𝑌0 and 𝑈ℎ ∩ 𝐶, and we have 𝑀 ′ ≤ 𝑛. But this implies that 𝑈𝑔 ∩ 𝐷2𝑛𝑈ℎ ≠ ∅, a contradiction since
𝑉 ⊇ 𝑈𝐷𝑈 and 𝐷 ⊇ 𝐷2𝑛.

3. If neither Y nor Z contain a component of 𝑆𝑖 ∩ 𝐶, then there are 𝑔 ≠ ℎ ∈ 𝐵𝑖 with 𝑌 = 𝑈ℎ ∩ 𝐶 and
𝑍 = 𝑈𝑔 ∩ 𝐶. It follows that Y and Z are 𝐷𝑛-apart. �

Claim. Suppose 𝑖 ≠ 𝑗 < 𝑚. Then 𝐽𝑖 and 𝐽 𝑗 are D-apart.

Proof. We have that 𝐽𝑖 ⊆ 𝐷𝑛−1𝑆𝑖 ∪ 𝑈𝐵𝑖 , and likewise for j. As 𝑈𝐵𝑖 ⊆ 𝑈
2𝐷𝑆𝑖 and as 𝐷 ⊇ 𝐷2𝑛, we

have 𝐽𝑖 ⊆ 𝑈2𝐷𝑆𝑖 , and likewise for j. As 𝑆𝑖 and 𝑆 𝑗 are W-apart and as 𝑉 ⊇ 𝑈𝐷𝑈, we see that 𝐽𝑖 and 𝐽 𝑗
are D-apart. �

Claim. Suppose 𝑔 ∈ 𝐵 \
⋃

𝑖<𝑚 𝐵𝑖 . Then𝑈𝑔 and 𝐽𝑖 are D-apart for any 𝑖 < 𝑚.

Proof. As 𝑔 ∉ 𝐵𝑖 , we have 𝑈𝑔 and 𝑆𝑖 are D-apart. Also, for any ℎ ∈ 𝐵 with 𝑔 ≠ ℎ, we have that 𝑈𝑔
and 𝑈ℎ are D-apart. Now, suppose 𝐷𝑈𝑔 ∩ 𝐽𝑖 ≠ ∅. If 𝑥 ∈ 𝐷𝑈𝑔 ∩ 𝐽𝑖 , then on the coset 𝐶 = 𝐹2𝑥, x
must belong on the line between a component of 𝑆𝑖 ∩ 𝐶 and 𝑈ℎ for some ℎ ∈ 𝐵𝑖 . Furthermore, we
have 𝑥 ∈ 𝐷𝑛−1𝑈ℎ. But since 𝐷2𝑛 ⊆ 𝐷, this contradicts that 𝑈𝑔 and 𝑈ℎ are 𝐷2-apart (using the full
assumption 𝑉 ⊇ 𝑈𝐷2𝑈). �

We can now finish the proof of Proposition 4.2. The collection {𝐽𝑖 : 𝑖 < 𝑚}∪{𝑈𝑔 : 𝑔 ∈ 𝐵\(
⋃

𝑖<𝑚 𝐵𝑖)}

is a pairwise D-apart collection of members of B∗
𝑛. As X is B∗

𝑛-D-irreducible, we can find 𝑦 ∈ 𝑋 with
𝑦 |𝐽𝑖 = 𝑦𝑖 |𝐽𝑖 for each 𝑖 < 𝑚 and with (𝑔𝑦) |𝑈 = 𝛼 for each 𝑔 ∈ 𝐵 \ (

⋃
𝑖<𝑚 𝐵𝑖). As 𝐽𝑖 ⊇ 𝑈𝐵𝑖 and since

𝐵𝑖 ⊆ 𝑇𝑖 , we actually have (𝑔𝑦) |𝑈 = 𝛼 for each 𝑔 ∈ 𝐵. As B is a maximal V-spaced set, it follows that
𝑦 ∈ 𝑌 and 𝑦 |𝑆𝑖 = 𝑦𝑖 |𝑆𝑖 as desired. �
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