

RESEARCH ARTICLE

Minimal subdynamics and minimal flows without characteristic measures

Joshua Frisch¹, Brandon Seward² and Andy Zucker¹

¹Dept. of Mathematics, University of California San Diego 9500 Gilman Dr, La Jolla, CA 92093, United States; E-mail: jfrisch@ucsd.edu.

²Dept. of Mathematics, University of California San Diego 9500 Gilman Dr, La Jolla, CA 92093, United States; E-mail: bseward@ucsd.edu.

³Dept. of Pure Mathematics, University of Waterloo, 200 University Ave W, Waterloo, ON N2L3G1, Canada; E-mail: a3zucker@uwaterloo.ca (corresponding author).

Received: 21 April 2023; Revised: 20 March 2024; Accepted: 6 April 2024

2020 Mathematics Subject Classification: Primary – 37B05; Secondary – 37B10

Abstract

Given a countable group *G* and a *G*-flow *X*, a probability measure μ on *X* is called characteristic if it is Aut(*X*, *G*)invariant. Frisch and Tamuz asked about the existence of a minimal *G*-flow, for any group *G*, which does not admit a characteristic measure. We construct for every countable group *G* such a minimal flow. Along the way, we are motivated to consider a family of questions we refer to as minimal subdynamics: Given a countable group *G* and a collection of infinite subgroups { $\Delta_i : i \in I$ }, when is there a faithful *G*-flow for which every Δ_i acts minimally?

Contents

1	Background	2
2	UFOs and minimal subdynamics	3
3	Variants of strong irreducibility	6
4	The construction	8

Given a countable group G and a faithful G-flow X, we write Aut(X, G) for the group of homeomorphisms of X which commute with the G-action. When G is abelian, Aut(X, G) contains a natural copy of G resulting from the G-action, but in general this need not be the case. Much is unknown about how the properties of X restrict the complexity of Aut(X, G); for instance, Cyr and Kra [1] conjecture that when $G = \mathbb{Z}$ and $X \subseteq 2^{\mathbb{Z}}$ is a minimal, 0-entropy subshift, then Aut(X, \mathbb{Z}) must be amenable. In fact, no counterexample is known even when restricting to any two of the three properties 'minimal', '0-entropy' or 'subshift'. In an effort to shed light on this question, Frisch and Tamuz [3] define a probability measure μ on X to be *characteristic* if it is Aut(X, G)-invariant. They show that 0-entropy subshifts always admit characteristic measures for nontrivial reasons, even in cases where Aut(X, G) is nonamenable. Frisch and Tamuz asked (Question 1.5, [3]) whether there exists, for any countable group G, some minimal G-flow without a characteristic measure. We give a strong affirmative answer.

Theorem 0.1. For any countably infinite group G, there is a free minimal G-flow X so that X does not admit a characteristic measure. More precisely, there is a free $(G \times F_2)$ -flow X which is minimal as a G-flow and with no F_2 -invariant measure.

© The Author(s), 2024. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

We remark that the X we construct will not in general be a subshift.

Over the course of proving Theorem 0.1, there are two main difficulties to overcome. The first difficulty is a collection of dynamical problems we refer to as *minimal subdynamics*. The general template of these questions is as follows.

Question 0.2. Given a countably infinite group Γ and a collection $\{\Delta_i : i \in I\}$ of infinite subgroups of Γ , when is there a faithful (or essentially free, or free) minimal Γ -flow for which the action of each Δ_i is also minimal? Is there a natural space of actions in which such flows are generic?

In [8], the author showed that this was possible in the case $\Gamma = G \times H$ and $\Delta = G$ for any countably infinite groups G and H. We manage to strengthen this result considerably.

Theorem 0.3. For any countably infinite group Γ and any collection $\{\Delta_n : n \in \mathbb{N}\}$ of infinite normal subgroups of Γ , there is a free Γ -flow which is minimal as a Δ_n -flow for every $n \in \mathbb{N}$.

In fact, what we show when proving Theorem 0.3 is considerably stronger. Recall that given a countably infinite group Γ , a subshift $X \subseteq 2^{\Gamma}$ is *strongly irreducible* if there is some finite symmetric $D \subseteq \Gamma$ so that whenever $S_0, S_1 \subseteq \Gamma$ satisfy $DS_0 \cap S_1 = \emptyset$ (i.e., S_0 and S_1 are *D*-apart), then for any $x_0, x_1 \in X$, there is $y \in X$ with $y|_{S_i} = x_i|_{S_i}$ for each i < 2. Write S for the set of strongly irreducible subshifts, and write \overline{S} for its Vietoris closure. Frisch, Tamuz and Vahidi-Ferdowsi [5] show that in \overline{S} , the minimal subshifts form a dense G_{δ} subset. In our proof of Theorem 0.3, we show that the shifts in \overline{S} which are Δ_n -minimal for each $n \in \mathbb{N}$ also form a dense G_{δ} subset.

This brings us to the second main difficulty in the proof of Theorem 0.1. Using this stronger form of Theorem 0.3, one could easily prove Theorem 0.1 by finding a strongly irreducible F_2 -subshift which does not admit an invariant measure. This would imply the existence of a strongly irreducible $(G \times F_2)$ -subshift without an F_2 -invariant measure. As not admitting an F_2 -invariant measure is a Vietoris-open condition, the genericity of *G*-minimal subshifts would then be enough to obtain the desired result. Unfortunately, whether such a strongly irreducible subshift can exist (for any nonamenable group) is an open question. To overcome this, we introduce a flexible weakening of the notion of a strongly irreducible shift.

The paper is organized as follows. Section 1 is a very brief background section on subsets of groups, subshifts and strong irreducibility. Section 2 introduces the notion of a UFO, a useful combinatorial gadget for constructing shifts where subgroups act minimally; Theorem 0.3 answers Question 3.6 from [8]. Section 3 introduces the notion of \mathcal{B} -irreducibility for any group H, where $\mathcal{B} \subseteq \mathcal{P}_f(H)$ is a right-invariant collection of finite subsets of H. When $H = F_2$, we will be interested in the case when \mathcal{B} is the collection of finite subsets of F_2 which are connected in the standard left Cayley graph. Section 4 gives the proof of Theorem 0.1.

1. Background

Let Γ be a countably infinite group. Given $U, S \subseteq \Gamma$ with U finite, then we call S a (one-sided) U-spaced set if for every $g \neq h \in S$ we have $h \notin Ug$, and we call S a U-syndetic set if $US = \Gamma$. A maximal U-spaced set is simply a U-spaced set which is maximal under inclusion. We remark that if S is a maximal U-spaced set, then S is $(U \cup U^{-1})$ -syndetic. We say that sets $S, T \subseteq \Gamma$ are (one-sided) U-apart if $US \cap T = \emptyset$ and $S \cap UT = \emptyset$. Notice that much of this discussion simplifies when U is symmetric, so we will often assume this. Also, notice that the properties of being U-spaced, maximal U-spaced, U-syndetic and U-apart are all right invariant.

If A is a finite set or alphabet, then Γ acts on A^{Γ} by right shift, where given $x \in A^{\Gamma}$ and $g, h \in \Gamma$, we have $(g \cdot x)(h) = x(hg)$. A subshift of A^{Γ} is a nonempty, closed, Γ -invariant subset. Let $\operatorname{Sub}(A^{\Gamma})$ denote the space of subshifts of A^{Γ} endowed with the Vietoris topology. This topology can be described as follows. Given $X \subseteq A^{\Gamma}$ and a finite $U \subseteq \Gamma$, the set of *U*-patterns of X is the set $P_U(X) = \{x|_U :$ $x \in X\} \subseteq A^U$. Then the typical basic open neighborhood of $X \in \operatorname{Sub}(A^{\Gamma})$ is the set $N_U(X) := \{Y \in$ $\operatorname{Sub}(A^{\Gamma}) : P_U(Y) = P_U(X)\}$, where U ranges over finite subsets of Γ . A subshift $X \subseteq A^{\Gamma}$ is *U*-irreducible if for any $x_0, x_1 \in X$ and any $S_0, S_1 \subseteq \Gamma$ which are *U*-apart, there is $y \in X$ with $y|_{S_i} = x_i|_{S_i}$ for each i < 2. If X is *U*-irreducible and $V \supseteq U$ is finite, then X is also V-irreducible. We call X strongly irreducible if there is some finite $U \subseteq \Gamma$ with X U-irreducible. By enlarging U if needed, we can always assume U is symmetric. Let $S(A^{\Gamma}) \subseteq \text{Sub}(A^{\Gamma})$ denote the set of strongly irreducible subshifts of A^{Γ} , and let $\overline{S}(A^{\Gamma})$ denote the closure of this set in the Vietoris topology.

More generally, if $2^{\mathbb{N}}$ denotes Cantor space, then Γ acts on $(2^{\mathbb{N}})^{\Gamma}$ by right shift exactly as above. If $k < \omega$, we let $\pi_k : 2^{\mathbb{N}} \to 2^k$ denote the restriction to the first k entries. This induces a factor map $\tilde{\pi}_k : (2^{\mathbb{N}})^{\Gamma} \to (2^k)^{\Gamma}$ given by $\tilde{\pi}_k(x)(g) = \pi_k(x(g))$; we also obtain a map $\overline{\pi}_k : \operatorname{Sub}((2^{\mathbb{N}})^{\Gamma}) \to \operatorname{Sub}((2^k)^{\Gamma})$ (where 2^k is viewed as a finite alphabet) given by $\overline{\pi}_k(X) = \tilde{\pi}_k[X]$. The Vietoris topology on $\operatorname{Sub}((2^{\mathbb{N}})^{\Gamma})$ is the coarsest topology making every such $\overline{\pi}_k$ continuous. We call a subflow $X \subseteq (2^{\mathbb{N}})^{\Gamma}$ strongly irreducible if for every $k < \omega$, the subshift $\overline{\pi}_k(X) \subseteq (2^k)^{\Gamma}$ is strongly irreducible in the ordinary sense. We let $\mathcal{S}((2^{\mathbb{N}})^{\Gamma}) \subseteq \operatorname{Sub}((2^{\mathbb{N}})^{\Gamma})$ denote the set of strongly irreducible subflows of $(2^{\mathbb{N}})^{\Gamma}$, and we let $\overline{\mathcal{S}}((2^{\mathbb{N}})^{\Gamma})$ denote its Vietoris closure.

The idea of considering the closure of the strongly irreducible shifts has it roots in [4]. This is made more explicit in [5], where it is shown that in $\overline{S}(A^{\Gamma})$, the minimal subflows form a dense G_{δ} subset. More or less the same argument shows that the same holds in $\overline{S}((2^{\mathbb{N}})^{\Gamma})$ (see [6]). Recall that a Γ -flow X is *free* if for every $g \in \Gamma \setminus \{1_{\Gamma}\}$ and every $x \in X$, we have $gx \neq x$. The main reason for considering a Cantor space alphabet is the following result, which need not be true for finite alphabets.

Proposition 1.1. In $\overline{S}((2^{\mathbb{N}})^{\Gamma})$, the free flows form a dense G_{δ} subset.

Proof. Fixing $g \in \Gamma$, the set $\{X \in \text{Sub}((2^{\mathbb{N}})^{\Gamma}) : \forall x \in X (gx \neq x)\}$ is open; indeed, if $X_n \to X$ is a convergent sequence in $\text{Sub}((2^{\mathbb{N}})^{\Gamma})$ and $x_n \in X_n$ is a point fixed by g, then passing to a subsequence, we may suppose $x_n \to x \in X$, and we have gx = x. Intersecting over all $g \in \Gamma \setminus \{1_{\Gamma}\}$, we see that freeness is a G_{δ} condition.

Thus, it remains to show that freeness is dense in $\overline{S}((2^{\mathbb{N}})^{\Gamma})$. To that end, we fix $g \in \Gamma \setminus \{1_{\Gamma}\}$ and show that the set of shifts in $S((2^{\mathbb{N}})^{\Gamma})$ where g acts freely is dense. Fix $X \in S((2^{\mathbb{N}})^{\Gamma})$, $k < \omega$ and a finite $U \subseteq \Gamma$; so a typical open set in $S((2^{\mathbb{N}})^{\Gamma})$ has the form $\{X' \in S((2^{\mathbb{N}})^{\Gamma}) : P_U(\overline{\pi}_k(X')) = P_U(\overline{\pi}_k(X))\}$. We want to produce $Y \in \text{Sub}((2^{\mathbb{N}})^{\Gamma})$ which is strongly irreducible, g-free and with $P_U(\overline{\pi}_k(Y)) = P_U(\overline{\pi}_k(X))$. In fact, we will produce such a Y with $\overline{\pi}_k(Y) = \overline{\pi}_k(X)$.

Let $D \subseteq \Gamma$ be a finite symmetric set containing g and 1_{Γ} . Setting m = |D|, consider the subshift $\operatorname{Color}(D, m) \subseteq m^{\Gamma}$ defined by

$$Color(D, m) := \{x \in m^{\Gamma} : \forall i < m [x^{-1}(\{i\}) \text{ is } D\text{-spaced}]\}.$$

A greedy coloring argument shows that $\operatorname{Color}(D, m)$ is nonempty and *D*-irreducible. Moreover, *g* acts freely on $\operatorname{Color}(D, m)$. Inject *m* into $2^{\{k, \dots, \ell-1\}}$ for some $\ell > k$ and identify $\operatorname{Color}(D, m)$ as a subflow of $(2^{\{k, \dots, \ell-1\}})^{\Gamma}$. Then $Y := \overline{\pi}_k(X) \times \operatorname{Color}(D, m) \subseteq (2^{\ell})^{\Gamma} \subseteq (2^{\mathbb{N}})^{\Gamma}$, where the last inclusion can be formed by adding strings of zeros to the end. Then *Y* is strongly irreducible, *g*-free and $\overline{\pi}_k(Y) = \overline{\pi}_k(X)$. \Box

2. UFOs and minimal subdynamics

Much of the construction will require us to reason about the product group $G \times F_2$. So for the time being, fix countably infinite groups $\Delta \subseteq \Gamma$. For our purposes, Γ will be $G \times F_2$, and Δ will be G, where we identify G with a subgroup of $G \times F_2$ in the obvious way. However, for this subsection, we will reason more generally.

Definition 2.1. Let $\Delta \subseteq \Gamma$ be countably infinite groups. A finite subset $U \subseteq \Gamma$ is called a (Γ, Δ) -*UFO* if for any maximal *U*-spaced set $S \subseteq \Gamma$, we have that *S* meets every right coset of Δ in Γ .

We say that the inclusion of groups $\Delta \subseteq \Gamma$ *admits UFOs* if for every finite $U \subseteq \Gamma$, there is a finite $V \subseteq \Gamma$ with $V \supseteq U$ which is a (Γ, Δ) -UFO.

As a word of caution, we note that the property of being a (Γ, Δ) -UFO is not upwards closed.

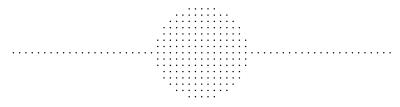


Figure 1. Sighting in Roswell; a $(\mathbb{Z} \times \mathbb{Z}, \mathbb{Z} \times \{0\})$ -UFO subset of $\mathbb{Z} \times \mathbb{Z}$.

The terminology comes from considering the case of a product group, that is, $\Gamma = \mathbb{Z} \times \mathbb{Z}$ and $\Delta = \mathbb{Z} \times \{0\}$. Figure 1 depicts a typical UFO subset of $\mathbb{Z} \times \mathbb{Z}$.

Proposition 2.2. Let Δ be a subgroup of Γ . If $|\bigcap_{u \in U} u\Delta u^{-1}|$ is infinite for every finite set $U \subseteq \Gamma$, then $\Delta \subseteq \Gamma$ admits UFOs. In particular, if Δ contains an infinite subgroup that is normal in Γ , then $\Delta \subseteq \Gamma$ admits UFOs.

Proof. We prove the contrapositive. So assume that $\Delta \subseteq \Gamma$ does not admit UFOs. Let $U \subseteq \Gamma$ be a finite symmetric set such that no finite $V \subseteq \Gamma$ containing U is a (Γ, Δ) -UFO. Let $D \subseteq \Delta$ be finite, symmetric and contain the identity. It will suffice to show that $C = \bigcap_{u \in U} uDu^{-1}$ satisfies $|C| \leq |U|$.

Set $V = U \cup D^2$. Since V is not a (Γ, Δ) -UFO, there is a maximal V-spaced set $S \subseteq \Gamma$ and $g \in \Gamma$ with $S \cap \Delta g = \emptyset$. Since S is V-spaced and $u^{-1}C^2u \subseteq D^2 \subseteq V$, the set $C_u = (uS) \cap (Cg)$ is C^2 -spaced for every $u \in U$. Of course, any C^2 -spaced subset of Cg is empty or a singleton, so $|C_u| \leq 1$ for each $u \in U$. On the other hand, since S is maximal we have $VS = \Gamma$, and since $S \cap \Delta g = \emptyset$ we must have $Cg \subseteq US$. Therefore, $|C| = |Cg| = \sum_{u \in U} |C_u| \leq |U|$.

In the spaces $\overline{S}(k^{\Gamma})$ and $\overline{S}((2^{\mathbb{N}})^{\Gamma})$, the minimal flows form a dense G_{δ} . However, when $\Delta \subseteq \Gamma$ is a subgroup, we can ask about the properties of members of $\overline{S}(k^{\Gamma})$ and $\overline{S}((2^{\mathbb{N}})^{\Gamma})$ viewed as Δ -flows.

Definition 2.3. Given a subshift $X \subseteq k^{\Gamma}$ and a finite $E \subseteq \Gamma$, we say that X is (Δ, E) -minimal if for every $x \in X$ and every $p \in P_E(X)$, there is $g \in \Delta$ with $(gx)|_E = p$. Given a subflow $X \subseteq (2^{\mathbb{N}})^{\Gamma}$ and $n \in \mathbb{N}$, we say that X is (Δ, E, n) -minimal if $\overline{\pi}_n(X) \subseteq (2^n)^{\Gamma}$ is (Δ, E) -minimal. When $\Delta = \Gamma$, we simply say that X is E-minimal or (E, n)-minimal.

The set of (Δ, E) -minimal flows is open in $\text{Sub}(k^{\Gamma})$, and $X \subseteq k^{\Gamma}$ is minimal as a Δ -flow iff it is (Δ, E) minimal for every finite $E \subseteq \Gamma$. Similarly, the set of (Δ, E, n) -minimal flows is open in $\text{Sub}((2^{\mathbb{N}})^{\Gamma})$, and $X \subseteq (2^{\mathbb{N}})^{\Gamma}$ is minimal as a Δ -flow iff it is (Δ, E, n) minimal for every finite $E \subseteq \Gamma$ and every $n \in \mathbb{N}$.

In the proof of Proposition 2.4, it will be helpful to extend conventions about the shift action to subsets of Γ . If $U \subseteq \Gamma$, $g \in G$ and $p \in k^U$, we write $g \cdot p \in k^{Ug^{-1}}$ for the function where given $h \in Ug^{-1}$, we have $(g \cdot p)(h) = p(hg)$.

Proposition 2.4. Suppose $\Delta \subseteq \Gamma$ are countably infinite groups and that $\Delta \subseteq \Gamma$ admits UFOs. Then $\{X \in \overline{S}(k^{\Gamma}) : X \text{ is minimal as } a \Delta - flow\}$ is a dense G_{δ} subset. Similarly, $\{X \in \overline{S}(2^{\mathbb{N}})^{\Gamma} : X \text{ is minimal as } a \Delta - flow\}$ is a dense G_{δ} subset.

Proof. We give the arguments for k^{Γ} , as those for $(2^{\mathbb{N}})^{\Gamma}$ are very similar.

It suffices to show for a given finite $E \subseteq \Gamma$ that the collection of (Δ, E) -minimal flows is dense in $\overline{S}(k^{\Gamma})$. By enlarging *E* if needed, we can assume that *E* is symmetric.

Consider a nonempty open $O \subseteq \overline{S}(k^{\Gamma})$. By shrinking O and/or enlarging E if needed, we can assume that for some $X \in S(k^{\Gamma})$, we have $O = N_E(X) \cap \overline{S}(k^{\Gamma})$. We will build a (Δ, E) -minimal shift Y with $Y \in N_E(X) \cap S(k^{\Gamma})$. Fix a finite symmetric $D \subseteq \Gamma$ so that X is D-irreducible. Then fix a finite $U \subseteq \Gamma$ which is large enough to contain an EDE-spaced set $Q \subseteq U \cap \Delta$ of cardinality $|P_E(X)|$, and enlarging U if needed, choose such a Q with $EQ \subseteq U$. Fix a bijection $Q \to P_E(X)$ by writing $P_E(X) = \{p_g : g \in Q\}$. Because X is D-irreducible, we can find $\alpha \in P_U(X)$ so that $(gq)|_E = p_g$ for every $g \in Q$. By Proposition 2.2, fix a finite $V \subseteq \Gamma$ with $V \supseteq UDU$ which is a (Γ, Δ) -UFO. We now form the shift

 $Y = \{y \in X : \exists a \text{ max. } V \text{-spaced set } T \text{ so that } \forall g \in T (g \cdot y)|_U = \alpha \}.$

Because V = UDU and X is D-irreducible, we have that $Y \neq \emptyset$. In particular, for any maximal V-spaced set $T \subseteq \Gamma$, we can find $y \in Y$ so that $(gy)|_U = \alpha$ for every $g \in T$. We also note that $Y \in N_E(X)$ by our construction of α .

To see that *Y* is (Δ, E) -minimal, fix $y \in Y$ and $p \in P_E(Y)$. Suppose this is witnessed by the maximal *V*-spaced set $T \subseteq \Gamma$. Because *V* is a (Γ, Δ) -UFO, find $h \in \Delta \cap T$. So $(hy)|_U = \alpha$. Now, suppose $g \in Q$ is such that $p = p_g$. We have $(ghy)|_E = (g \cdot ((hy)|_U)|_E = p_g$.

To see that $Y \in S(k^{\Gamma})$, we will show that *Y* is *DUVUD*-irreducible. Suppose $y_0, y_1 \in Y$ and $S_0, S_1 \subseteq \Gamma$ are *DUVUD*-apart. For each i < 2, fix $T_i \subseteq \Gamma$ a maximal *V*-spaced set which witnesses that y_i is in *Y*. Set $B_i = \{g \in T_i : DUg \cap S_i \neq \emptyset\}$. Notice that $B_i \subseteq UDS_i$. It follows that $B_0 \cup B_1$ is *V*-spaced, so extend to a maximal *V*-spaced set *B*. It also follows that $S_i \cup UB_i \subseteq U^2DS_i$. Since $V \supseteq UDU$ and by the definition of B_i , the collection of sets $\{S_i \cup UB_i : i < 2\} \cup \{Ug : g \in B \setminus (B_0 \cup B_1)\}$ is pairwise *D*-apart. By the *D*-irreducibility of *X*, we can find $y \in X$ with $y|_{S_i \cup UB_i} = y_i|_{S_i \cup UB_i}$ for each i < 2 and with $(gy)|_U = \alpha$ for each $g \in B \setminus (B_0 \cup B_1)$. Since $B_i \subseteq T_i$, we actually have $(gy)|_U = \alpha$ for each $g \in B$. So $y \in Y$ and $y|_{S_i} = y_i|_{S_i}$ as desired.

Proof of Theorem 0.3. By Proposition 2.4, the generic member of $\overline{S}((2^{\mathbb{N}})^{\Gamma})$ is minimal as a Δ_n -flow for each $n \in \mathbb{N}$, and by Proposition 1.1, the generic member of $\overline{S}((2^{\mathbb{N}})^{\Gamma})$ is free.

In contrast to Theorem 0.1, the next example shows that Question 0.2 is nontrivial to answer in full generality.

Theorem 2.5. Let $G = \sum_{\mathbb{N}} (\mathbb{Z}/2\mathbb{Z})$, and let X be a G flow with infinite underlying space. Then there exists an infinite subgroup H such that X is not minimal as an H flow.

Proof. We may assume that X is a minimal G-flow, as otherwise we may take H = G. We construct a sequence $X \supseteq K_0 \supseteq K_1 \supseteq \cdots$ of proper, nonempty, closed subsets of X and a sequence of group elements $\{g_n : n \in \mathbb{N}\}$ so that by setting $K = \bigcap_{\mathbb{N}} K_n$ and $H = \langle g_n : n \in \mathbb{N} \rangle$, then K will be a minimal Hflow. Start by fixing a closed, proper subset $K_0 \subseteq X$ with nonempty interior. Suppose K_n has been created and is $\langle g_0, \ldots, g_{n-1} \rangle$ -invariant. As X is a minimal G-flow, the set $S_n := \{g \in G : \operatorname{Int}(gK_n \cap K_n) \neq \emptyset\}$ is infinite. Pick any $g_n \in S_n \setminus \{1_G\}$, and set $K_{n+1} = g_nK_n \cap K_n$. As $g_n^2 = 1_G$, we see that K_{n+1} is g_n invariant, and as G is abelian, we see that K_{n+1} is also g_i -invariant for each i < n. It follows that K will be H-invariant as desired.

Before moving on, we give a conditional proof of Theorem 0.1, which works as long as some nonamenable group admits a strongly irreducible shift without an invariant measure. It is the inspiration for our overall construction.

Proposition 2.6. Let G and H be countably infinite groups, and suppose that for some $k < \omega$ and some strongly irreducible flow $Y \subseteq k^H$ that Y does not admit an H-invariant measure. Then there is a minimal G-flow which does not admit a characteristic measure.

Proof. Viewing $Z = k^G \times Y$ as a subshift of $k^{G \times H}$, then Z is strongly irreducible and does not admit an *H*-invariant probability measure. The property of not possessing an *H*-invariant measure is an open condition in Sub $(k^{G \times H})$; indeed, if $X_n \to X$ is a convergent sequence in Sub $(k^{G \times H})$ and μ_n is an *H*invariant probability measure supported on X_n , then by passing to a subsequence, we may suppose that the μ_n weak*-converge to some *H*-invariant probability measure μ supported on *X*. By Proposition 2.4, we can therefore find $X \subseteq k^{G \times H}$ which is minimal as a *G*-flow and which does not admit an *H*-invariant measure. As *H* acts by *G*-flow automorphisms on *X*, we see that *X* does not admit a characteristic measure. Unfortunately, the question of if there exists any countable group H and a strongly irreducible H-subshift Y with no H-invariant measure is an open problem. Therefore, our construction proceeds by considering the free group F_2 and defining a suitable weakening of strongly irreducible subshift which is strong enough for G-minimality to be generic in $(G \times F_2)$ -subshifts but weak enough for $(G \times F_2)$ -subshifts without F_2 -invariant measures to exist.

3. Variants of strong irreducibility

In this section, we investigate a weakening of strong irreducibility that one can define given any rightinvariant collection \mathcal{B} of finite subsets of a given countable group. For our overall construction, we will consider F_2 and $G \times F_2$, but we give the definitions for any countably infinite group Γ . Write $\mathcal{P}_f(\Gamma)$ for the collection of finite subsets of Γ .

Definition 3.1. Fix a right-invariant subset $\mathcal{B} \subseteq \mathcal{P}_f(\Gamma)$. Given $k \in \mathbb{N}$, we say that a subshift $X \subseteq k^{\Gamma}$ is \mathcal{B} -irreducible if there is a finite $D \subseteq \Gamma$ so that for any $m < \omega$, any $B_0, \ldots, B_{m-1} \in \mathcal{B}$, and any $x_0, \ldots, x_{m-1} \in X$, if the sets $\{B_0, \ldots, B_{m-1}\}$ are pairwise *D*-apart, then there is $y \in X$ with $y|_{B_i} = x_i|_{B_i}$ for each i < m. We call *D* the *witness* to \mathcal{B} -irreducibility. If we have *D* in mind, we can say that *X* is \mathcal{B} -*D*-irreducible.

We say that a subflow $X \subseteq (2^{\mathbb{N}})^{\Gamma}$ is \mathcal{B} -irreducible if for each $k \in \mathbb{N}$, the subshift $\overline{\pi}_k(X) \subseteq (2^k)^{\Gamma}$ is \mathcal{B} -irreducible.

We write $S_{\mathcal{B}}(k^{\Gamma})$ or $S_{\mathcal{B}}((2^{\mathbb{N}})^{\Gamma})$ for the set of \mathcal{B} -irreducible subflows of k^{Γ} or $(2^{\mathbb{N}})^{\Gamma}$, respectively, and we write $\overline{S}_{\mathcal{B}}(k^{\Gamma})$ or $\overline{S}_{\mathcal{B}}((2^{\mathbb{N}})^{\Gamma})$ for the Vietoris closures.

Remark.

- 1. If \mathcal{B} is closed under unions, it is enough to consider m = 2. However, this will often not be the case.
- 2. By compactness, if $X \subseteq k^{\Gamma}$ is \mathcal{B} -*D*-irreducible, $\{B_n : n < \omega\} \subseteq \mathcal{B}$ is pairwise *D*-apart, and $\{x_n : n < \omega\} \subseteq X$, then there is $y \in X$ with $y|_{B_i} = x_i|_{B_i}$.
- $\{x_n : n < \omega\} \subseteq X$, then there is $y \in X$ with $y|_{B_i} = x_i|_{B_i}$. 3. If $\mathcal{B} \subseteq \mathcal{B}'$, then $\mathcal{S}_{\mathcal{B}'}(k^{\Gamma}) \subseteq \mathcal{S}_{\mathcal{B}}(k^{\Gamma})$ and $\mathcal{S}_{\mathcal{B}'}((2^{\mathbb{N}})^{\Gamma}) \subseteq \mathcal{S}_{\mathcal{B}}((2^{\mathbb{N}})^{\Gamma})$

When \mathcal{B} is the collection of all finite subsets of H, then we recover the notion of a strongly irreducible shift. Again, we consider Cantor space alphabets to obtain freeness.

Proposition 3.2. For any right-invariant collection $\mathcal{B} \subseteq \mathcal{P}_f(\Gamma)$, the generic member of $\overline{\mathcal{S}}_{\mathcal{B}}((2^{\mathbb{N}})^{\Gamma})$ is free.

Proof. Analyzing the proof of Proposition 1.1, we see that the only properties that we need of the collections $S_{\mathcal{B}}(k^{\Gamma})$ and $S_{\mathcal{B}}((2^{\mathbb{N}})^{\Gamma})$ for the proof to generalize are that they are closed under products and contain the flows $\operatorname{Color}(D, m)$. If $k, \ell \in \mathbb{N}$ an $X \subseteq k^{\Gamma}$ and $Y \subseteq \ell^{\Gamma}$ are \mathcal{B} -D-irreducible and \mathcal{B} -*E*-irreducible for some finite $D, E \subseteq \Gamma$, then $X \times Y \subseteq (k \times \ell)^{\Gamma}$ will be \mathcal{B} - $(D \cup E)$ -irreducible. And as $\operatorname{Color}(D, m)$ is strongly irreducible, it is \mathcal{B} -irreducible.

Now, we consider the group F_2 . We consider the left Cayley graph of F_2 with respect to the standard generating set $A := \{a, b, a^{-1}, b^{-1}\}$. We let $d: F_2 \times F_2 \to \omega$ denote the graph metric. Write $D_n = \{s \in F_2 : d(s, 1_{F_2}) \le n\}$.

Definition 3.3. Given *n* with $1 \le n < \omega$, we set

 $\mathcal{B}_n = \{D \in \mathcal{P}_f(F_2) : \text{ connected components of } D \text{ are pairwise } D_n\text{-apart}\}.$

Write \mathcal{B}_{ω} for the collection of finite, connected subsets of F_2 .

Proposition 3.4. Suppose $X \subseteq k^{F_2}$ is \mathcal{B}_{ω} -irreducible. Then there is some $n < \omega$ for which X is \mathcal{B}_n -irreducible.

Proof. Suppose X is \mathcal{B}_{ω} - D_n -irreducible. We claim X is \mathcal{B}_n - D_n -irreducible. Suppose $m < \omega$, $B_0, \ldots, B_{m-1} \in \mathcal{B}_n$ are pairwise D_n -apart, and $x_0, \ldots, x_{m-1} \in X$. For each i < m, we suppose B_i has n_i -many connected components, and we write $\{C_{i,j} : j < n_i\}$ for these components. Then the collection of connected sets $\bigcup_{i < m} \{C_{i,j} : j < n_i\}$ is pairwise D_n -apart. As X is \mathcal{B}_{ω} - D_n -irreducible, we can find $y \in X$ so that for each i < m and $j < n_i$, we have $y|_{C_{i,j}} = x_i|_{C_{i,j}}$. Hence, $y|_{B_i} = x_i|_{B_i}$, showing that X is \mathcal{B}_n - D_n -irreducible.

We now construct a \mathcal{B}_{ω} -irreducible subshift with no F_2 -invariant measure. We consider the alphabet A^2 and write $\pi_0, \pi_1: A^2 \to A$ for the projections. We set

$$\begin{aligned} X_{pdox} &= \{ x \in (A^2)^{F_2} : \forall g, h \in F_2 \,\forall i, j < 2 \\ &\quad (i,g) \neq (j,h) \Rightarrow \pi_i(x(g)) \cdot g \neq \pi_j(x(h)) \cdot h \}. \end{aligned}$$

More informally, the flow X_{pdox} is the space of '2-to-1 paradoxical decompositions' of F_2 using A. We remark that here, our decomposition need not be a partition of F_2 ; we just ask for disjoint $S_0, S_1 \subseteq F_2$ such that for every $g \in G$ and i < 2, we have $Ag \cap S_i \neq \emptyset$. This is in some sense the prototypical example of an F_2 -shift with no F_2 -invariant measure.

Lemma 3.5. X_{pdox} has no F_2 -invariant measure.

Proof. For $u \in A^2$ set $Y_u = \{x \in X_{pdox} : x(1_G) = u\}$. Notice that if $y \in Y_u$, i < 2 and $x = \pi_i(u)y$, then $x(\pi_i(u)^{-1}) = y(1_G) = u$. Consequently, if $u, v \in A^2$, $x \in \pi_i(u)Y_u \cap \pi_j(v)Y_v$ then, since $x \in X_{pdox}$ and

$$\pi_i(x(\pi_i(u)^{-1}))\pi_i(u)^{-1} = 1_G = \pi_j(x(\pi_j(v)^{-1}))\pi_j(v)^{-1},$$

we must have that $(i, \pi_i(u)) = (j, \pi_i(v))$, and hence also

$$\pi_{1-i}(u) = \pi_{1-i}(x(\pi_i(u)^{-1})) = \pi_{1-j}(x(\pi_j(v)^{-1})) = \pi_{1-j}(v).$$

Therefore, $\pi_i(u)Y_u \cap \pi_j(v)Y_v = \emptyset$ whenever $(i, u) \neq (j, v)$.

If μ were an invariant Borel probability measure on X_{pdox} , then we would have

$$2\mu(X_{pdox}) = 2\sum_{u \in A^2} \mu(Y_u) = \sum_{i < 2} \sum_{u \in A^2} \mu(\pi_i(u)Y_u) \le \mu(X)$$

which is a contradiction.

When proving that X_{pdox} is \mathcal{B}_{ω} -irreducible, note that $D_1 = A \cup \{1_{F_2}\}$.

Proposition 3.6. X_{pdox} is \mathcal{B}_{ω} - D_4 -irreducible.

Proof. The proof will use a 2-to-1 instance of Hall's matching criterion [7] which we briefly describe. Fix a bipartite graph $\mathbb{G} = (V, E)$ with partition $V = V_0 \sqcup V_1$. Given $S \subseteq V_0$, write $N_{\mathbb{G}}(S) = \{v \in V_1 : \exists u \in S(u, v) \in E\}$. Then the matching condition we need states that if for every finite $S \subseteq V_0$, we have $|N_{\mathbb{G}}(S)| \ge 2S$, then there is $E' \subseteq E$ so that in the graph $\mathbb{G}' := (V, E'), d_{\mathbb{G}'}(u) = 2$ for every $u \in V_0$.

Let $B_0, \ldots, B_{k-1} \in \mathcal{B}_{\omega}$ be pairwise D_4 -apart. Let $x_0, \ldots, x_{k-1} \in X_{pdox}$. To construct $y \in X_{pdox}$ with $y|_{B_i} = x_i|_{B_i}$ for each i < k, we need to verify a 2-to-1 Hall's matching criterion on every finite subset of $F_2 \setminus \bigcup_{i < k} B_i$. Call $s \in F_2$ matched if for some i < k, some $g \in B_i$ and some j < 2, we have $s = \pi_j(x_i(g)) \cdot g$. So we need for every finite $E \in \mathcal{P}_f(F_2 \setminus \bigcup_{i < k} B_i)$ that AE contains at least 2|E|-many unmatched elements. Towards a contradiction, let $E \in \mathcal{P}_f(F_2 \setminus \bigcup_{i < k} B_i)$ be a minimal failure of the Hall condition.

In the left Cayley graph of F_2 , given a reduced word w in alphabet $A = \{a, b, a^{-1}, b^{-1}\}$, write N_w for the set of reduced words which *end* with w. Now, find $t \in E$ (let us assume the leftmost character of t is a) so that all of $E \cap N_{at}$, $E \cap N_{bt}$ and $E \cap N_{b^{-1}t}$ are empty. If any two of at, bt and $b^{-1}t$ is an unmatched point in AE, then $E \setminus \{t\}$ is a smaller failure of Hall's criterion. So there must be

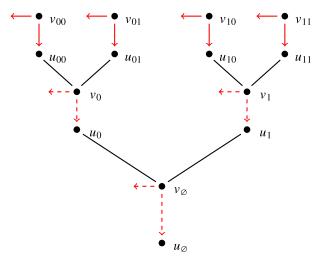


Figure 2. A pair of outgoing edges, drawn in solid red, is chosen at each of v_{00} , v_{01} , v_{10} and v_{11} . Edges which must consequently be oriented in a particular direction are indicated with dashed red arrows. Most importantly, v_{\emptyset} is forced to direct an edge to u_{\emptyset} . By considering the generalization of this picture for any length of binary string, we see that X_{pdox} cannot be D_n -irreducible for any $n \in \mathbb{N}$.

some i < k, some $g \in B_i$ and some j < 2, we have $\pi_j(x_i(g)) \cdot g \in \{at, bt, b^{-1}t\}$. Let us suppose $\pi_j(x_i(g)) \cdot g = at$. Note that since $g \notin E$, we must have $g \in \{bat, a^2t, b^{-1}at\}$. But then since B_i is connected, we have $D_1B_i \cap \{bt, b^{-1}t\} = \emptyset$, and since the other B_q are at least distance 5 from B_i , we have $D_1B_q \cap \{bt, b^{-1}t\} = \emptyset$ for every $q \in k \setminus \{i\}$. In particular, bt and $b^{-1}t$ are unmatched points in AE, a contradiction.

We remark that X_{pdox} is not D_n -irreducible for any $n \in \mathbb{N}$. See Figure 2.

4. The construction

Our goal for the rest of the paper is to use X_{pdox} to build a subflow of $(2^{\mathbb{N}})^{G \times F_2}$ which is free, *G*-minimal and with no F_2 -invariant measure. In what follows, given an F_2 -coset $\{g\} \times F_2$, we endow this coset with the left Cayley graph for F_2 using the generating set *A* exactly as above. We extend the definition of \mathcal{B}_n to refer to finite subsets of any given F_2 -coset.

Definition 4.1. Given *n* with $1 \le n \le \omega$, we set

$$\mathcal{B}_n^* = \{ D \in \mathcal{P}_f (G \times F_2) : \text{ for each } F_2 - \text{coset } C, D \cap C \in \mathcal{B}_n \}.$$

Given $y \in k^{G \times F_2}$ and $g \in G$, we define $y_g \in k^{F_2}$ where given $s \in F_2$, we set $y_g(s) = y(g, s)$. If $X \subseteq k^{F_2}$ is \mathcal{B}_n -irreducible, then the subshift $X^G \subseteq k^{G \times F_2}$ is in $\mathcal{S}_{\mathcal{B}_n^*}$, where we view X^G as the set $\{y \in k^{G \times F_2} : \forall g \in G \ (y_g \in X)\}$. In particular, $(X_{pdox})^G$ is \mathcal{B}_4^* -irreducible. By encoding $(X_{pdox})^G$ as a subshift of $(2^m)^{G \times F_2}$ for some $m \in \mathbb{N}$ and considering $\tilde{\pi}_m^{-1}((X_{pdox})^G) \subseteq (2^{\mathbb{N}})^{G \times F_2}$, we see that there is a \mathcal{B}_4^* -irreducible subflow of $(2^{\mathbb{N}})^{G \times F_2}$ for which the F_2 -action doesn't fix a measure. It follows that such subflows constitute a nonempty open subset of $\Phi := \bigcup_n \mathcal{S}_{\mathcal{B}_n^*}((2^{\mathbb{N}})^{G \times F_2})$. Combining the next result with Proposition 3.2, we will complete the proof of Theorem 0.1.

Proposition 4.2. With Φ as above, the *G*-minimal flows are dense G_{δ} in Φ .

Proof. We show the result for $\Phi_k := \overline{\bigcup_n S_{\mathcal{B}_n^*}(k^{G \times F_2})}$ to simplify notation; the proof in full generality is almost identical.

We only need to show density. To that end, fix a finite symmetric $E \subseteq G \times F_2$ which is connected in each F_2 -coset. It is enough to show that the (G, E)-minimal subshifts are dense in Φ_k . Fix some nonempty open $O \subseteq \Phi_k$. By enlarging E and/or shrinking O, we may assume that for some $n < \omega$ and $X \in \mathcal{S}_{B_n^*}(k^{G \times F_2})$ that $O = \{X' \in \Phi_k : P_E(X') = P_E(X)\}$. We will build a (G, E)-minimal subshift $Y \subseteq k^{G \times F_2}$ so that $P_E(Y) = P_E(X)$ and so that for some $N < \omega$, we have $Y \in \mathcal{S}_{B_N^*}(k^{G \times F_2})$.

Recall that $D_n \subseteq F_2$ denotes the ball of radius *n*. Fix a finite, symmetric $D \subseteq G \times F_2$ so that $\{1_G\} \times D_{2n} \subseteq D$ and *X* is \mathcal{B}_n^* -*D*-irreducible. Find a finite symmetric $U_0 \subseteq G$ with $1_G \subseteq U_0$ and $r < \omega$ so that upon setting $U = U_0 \times D_r \subseteq G \times F_2$, then *U* is large enough to contain an *EDE*-spaced set $Q \subseteq G$ with $EQ \subseteq U$. As *X* is \mathcal{B}_n^* -*D*-irreducible, there is a pattern $\alpha \in P_U(X)$ so that $\{(g\alpha)|_E : g \in Q\} = P_E(X)$.

Let $V \supseteq UD^2U$ be a $(G \times F_2, G)$ -UFO. We remark that for most of the remainder of the proof, it would be enough to have $V \supseteq UDU$; we only use the stronger assumption $V \supseteq UD^2U$ in the proof of the final claim. Consider the following subshift:

$$Y = \{y \in X : \exists a \text{ max. } V \text{-spaced set } T \text{ so that } \forall g \in T(gy)|_U = \alpha \}.$$

The proof that *Y* is nonempty and (G, E)-minimal is exactly the same as the analogous proof from Proposition 2.4. Note that by construction, we have $P_E(Y) = P_E(X)$.

We now show that $Y \in S_{\mathcal{B}_N^*}(k^{G \times F_2})$ for N = 4r + 3n. Set W = DUVUD. We show that Y is \mathcal{B}_N^* -W-irreducible. Suppose $m < \omega$, $y_0, \ldots, y_{m-1} \in Y$ and $S_0, \ldots, S_{m-1} \in \mathcal{B}_N^*$ are pairwise W-apart. Suppose for each i < m that $T_i \subseteq G \times F_2$ is a maximal V-spaced set which witness that $y_i \in Y$. Set $B_i = \{g \in T_i : DUg \cap S_i \neq \emptyset\}$. Then $\bigcup_{i < m} B_i$ is V-spaced, so enlarge to a maximal V-spaced set $B \subseteq G \times F_2$.

For each i < m, we enlarge $S_i \cup UB_i$ to $J_i \in \mathcal{B}_n^*$ as follows. Suppose $C \subseteq G \times F_2$ is an F_2 -coset. Each set of the form $C \cap Ug$ is connected. Since $S_i \in \mathcal{B}_N^*$, it follows that given $g \in B_i$, there is at most one connected component $\Theta_{C,g}$ of $S_i \cap C$ with $Ug \cap \Theta_{C,g} = \emptyset$, but $Ug \cap D_n \Theta_{C,g} \neq \emptyset$. We add the line segment in *C* connecting $\Theta_{C,g}$ and Ug. Upon doing this for each $g \in B_i$ and each F_2 -coset *C*, this completes the construction of J_i . Observe that $J_i \subseteq D_{n-1}S_i \cap UB_i$.

Claim. Let C be an F_2 -coset, and suppose Y_0 is a connected component of $S_i \cap C$. Let Y be the connected component of $J_i \cap C$ with $Y_0 \subseteq Y$. Then $Y \subseteq D_{2r+n}Y_0$. In particular, if $Y_0 \neq Z_0$ are two connected components of $S_i \cap C$, then Y_0 and Z_0 do not belong to the same component of $J_i \cap C$.

Proof. Let $L = \{x_j : j < \omega\} \subseteq C$ be a ray with $x_0 \in Y_0$ and $x_j \notin Y_0$ for any $j \ge 1$. Then $\{j < \omega : x_j \in J_i \cap C\}$ is some finite initial segment of ω . We want to argue that for some $j \le 2r + n + 1$, we have $x_j \notin J_i \cap C$. First, we argue that if $x_n \in J_i \cap C$, then $x_n \in UB_i$. Otherwise, we must have $x_n \in D_{n-1}S_i$. But since $x_n \notin D_{n-1}Y_0$, there must be another component Y_1 of $S_i \cap C$ with $x_n \in D_nY_1$. But this implies that Y_0 and Y_1 are not D_{2n-1} -apart, a contradiction since $2n - 1 \le 4r - 3n = N$.

Fix $g \in B_i$ with $x_n \in Ug$. Let $q < \omega$ be least with q > n and $x_q \notin U_g$. We must have $q \le 2r + n + 1$. We claim that $x_q \notin J_i \cap C$. Towards a contradiction, suppose $x_q \in J_i \cap C$. We cannot have $x_q \in UB_i$, so we must have $x_q \in D_{n-1}S_i$. But now there must be some component Y_1 of $S_i \cap C$ with $x_q \in D_{n-1}Y_1$. But then $D_{2r+2n}Y_0 \cap Y_1 \neq \emptyset$, a contradiction as Y_0 and Y_1 are D_N -apart. This concludes the proof that $Y \subseteq D_{2r+n}Y_0$.

Now, suppose $Y_0 \neq Z_0$ are two connected components of $S_i \cap C$. Then Y_0 and Z_0 are *N*-apart. In particular, $Z_0 \notin D_{2r+n}Y_0$, so cannot belong to the same connected component of $J_i \cap C$ as Y_0 . \Box

Claim. $J_i \in \mathcal{B}_n^*$.

Proof. Fix an F_2 -coset C and two connected components $Y \neq Z$ of $J_i \cap C$. By the previous claim, each of Y and Z can only contain at most one nonempty component of $S_i \cap C$. The claim will be proven after considering three cases.

1. First, suppose each of *Y* and *Z* contain a nonempty component of $S_i \cap C$, say $Y_0 \subseteq Y$ and $Z_0 \subseteq Z$. Then since Y_0 and Z_0 are D_{4r+3n} -apart, the previous claim implies that *Y* and *Z* are D_n -apart.

- 2. Now, suppose Y contains a nonempty component Y_0 of $S_i \cap C$ and that Z does not. Then for some $g \in B_i$, we have $Z = Ug \cap C$. Towards a contradiction, suppose $D_n Y \cap Ug \neq \emptyset$. Let $L = \{x_j : j \leq M\}$ be the line segment connecting Y and Ug with $L \cap Y = \{x_0\}$ and $L \cap Ug = \{x_M\}$. We must have $M \leq n$. We cannot have $x_0 \in UB_i$, so we must have $x_0 \in D_{n-1}S_i$. This implies that $x_0 \in D_{n-1}Y_0$. We cannot have $x_0 \in Y_0$, as otherwise, we would have connected Y_0 and $Ug \cap C$ when constructing J_i . It follows that for some $h \in B_i$, we have that x_0 is on the line segment $L' = \{x'_j : j \leq M'\}$ connecting Y_0 and $Uh \cap C$, and we have $M' \leq n$. But this implies that $Ug \cap D_{2n}Uh \neq \emptyset$, a contradiction since $V \supseteq UDU$ and $D \supseteq D_{2n}$.
- 3. If neither *Y* nor *Z* contain a component of $S_i \cap C$, then there are $g \neq h \in B_i$ with $Y = Uh \cap C$ and $Z = Ug \cap C$. It follows that *Y* and *Z* are D_n -apart.

Claim. Suppose $i \neq j < m$. Then J_i and J_j are D-apart.

Proof. We have that $J_i \subseteq D_{n-1}S_i \cup UB_i$, and likewise for *j*. As $UB_i \subseteq U^2DS_i$ and as $D \supseteq D_{2n}$, we have $J_i \subseteq U^2DS_i$, and likewise for *j*. As S_i and S_j are *W*-apart and as $V \supseteq UDU$, we see that J_i and J_j are *D*-apart.

Claim. Suppose $g \in B \setminus \bigcup_{i \le m} B_i$. Then Ug and J_i are D-apart for any i < m.

Proof. As $g \notin B_i$, we have U_g and S_i are *D*-apart. Also, for any $h \in B$ with $g \neq h$, we have that Ug and Uh are *D*-apart. Now, suppose $DUg \cap J_i \neq \emptyset$. If $x \in DUg \cap J_i$, then on the coset $C = F_2 x$, x must belong on the line between a component of $S_i \cap C$ and Uh for some $h \in B_i$. Furthermore, we have $x \in D_{n-1}Uh$. But since $D_{2n} \subseteq D$, this contradicts that Ug and Uh are D^2 -apart (using the full assumption $V \supseteq UD^2U$).

We can now finish the proof of Proposition 4.2. The collection $\{J_i : i < m\} \cup \{Ug : g \in B \setminus (\bigcup_{i < m} B_i)\}$ is a pairwise *D*-apart collection of members of \mathcal{B}_n^* . As *X* is \mathcal{B}_n^* -*D*-irreducible, we can find $y \in X$ with $y|_{J_i} = y_i|_{J_i}$ for each i < m and with $(gy)|_U = \alpha$ for each $g \in B \setminus (\bigcup_{i < m} B_i)$. As $J_i \supseteq UB_i$ and since $B_i \subseteq T_i$, we actually have $(gy)|_U = \alpha$ for each $g \in B$. As *B* is a maximal *V*-spaced set, it follows that $y \in Y$ and $y|_{S_i} = y_i|_{S_i}$ as desired.

Competing interest. The authors have no competing interest to declare.

Funding statement. J.F. was supported by NSF Grant DMS-2102838. B.S. was supported by NSF Grant DMS-1955090 and Sloan Grant FG-2021-16246. A.Z. was supported by NSF Grant DMS-2054302 and NSERC Grants RGPIN-2023-03269 and DGECR-2023-00412.

References

- V. Cyr and B. Kra, 'The automorphism group of a minimal shift of stretched exponential growth', J. Mod. Dyn 10 (2016), 483–495.
- [2] V. Cyr and B. Kra, 'Characteristic measures for language stable subshifts', *Monatshefte fur Mathematik* 201(3) (2023), 659–701.
- [3] J. Frisch and O. Tamuz, 'Characteristic measures of symbolic dynamical systems', *Ergodic Theory Dyn. Sys.* 42(5) (2022), 1655–1661.
- [4] J. Frisch and O. Tamuz, 'Symbolic dynamics on amenable groups: the entropy of generic shifts', *Ergodic Theory Dyn. Sys.* 37(4) (2017), 1187–1210.
- [5] J. Frisch, O. Tamuz, and P. Vahidi Ferdowsi, 'Strong amenability and the infinite conjugacy class property', *Inventiones Mathematicae* 218 (2019), 833–851.
- [6] E. Glasner, T. Tsankov, B. Weiss, and A. Zucker, 'Bernoulli disjointness', *Duke Mathematical Journal* 170(4) (2021), 615–651.
- [7] P. Hall, 'On representatives of subsets', J. London Math. Soc. 10 (1) (1935), 26-30.
- [8] A. Zucker, 'Minimal flows with arbitrary centralizer', Ergodic Theory Dyn. Sys. 42(1) (2022), 310–320.