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Abstract

In this paper we extend the existing literature on the asymptotic behavior of the partial
sums and the sample covariances of long-memory stochastic volatility models in the case
of infinite variance. We also consider models with leverage, for which our results are
entirely new in the infinite-variance case. Depending on the interplay between the tail
behavior and the intensity of dependence, two types of convergence rates and limiting
distributions can arise. In particular, we show that the asymptotic behavior of partial
sums is the same for both long memory in stochastic volatility and models with leverage,
whereas there is a crucial difference when sample covariances are considered.
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1. Introduction

One of the standardized features of financial data is that returns are uncorrelated, but their
squares, or absolute values, are (highly) correlated, a property referred to as long memory
(which will be defined precisely later). A second commonly accepted feature is that log-returns
are heavy tailed, in the sense that some moment of the log-returns is infinite. The last feature
we want to mention is leverage. In the financial time series context, leverage is understood to
mean negative dependence between previous returns and future volatility (i.e. a large negative
return will be followed by a high volatility). Motivated by these empirical findings, one of the
common modeling approaches is to represent log-returns {Yi} as a stochastic volatility sequence
Yi = Ziσi , where {Zi} is an independent and identically distributed (i.i.d.) sequence and {σ 2

i }
is the conditional variance or more generally a certain process which stands as a proxy for the
volatility. In such a process, long memory can only be modeled through the sequence {σi},
and the tails can be modeled either through the sequence {Zi} or through {σi}, or both. The
well-known GARCH processes belong to this class of models. The volatility sequence {σi} is
heavy tailed, unless the distribution of Z0 has finite support, and leverage can be present. But,
long memory in squares cannot be modeled by GARCH processes. The FIGARCH process was
introduced in [3] for this purpose, but it is not known if it really has a long-memory property;
see, e.g. [15].
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1114 R. KULIK AND P. SOULIER

To model long memory in squares, the so-called long memory in stochastic volatility (LMSV)
process was introduced in [8], generalizing the earlier short-memory version of this model. In
this model, the sequences {Zi} and {σi} are fully independent, and {σi} is the exponential of
a Gaussian long-memory process. Tails and long memory are easily modeled in this way, but
leverage is absent. Throughout the paper, we will refer to this process as LMSV, even though
we do not rule out the short-memory case.

In order to model leverage, Nelson [26] introduced the EGARCH model (where E stands for
exponential), later extended by Bollerslev and Mikkelsen [6] to the FIEGARCH model (where
FI stands for fractionally integrated) in order to also model long memory. In these models,
{Zi} is a Gaussian white noise, and {σi} is the exponential of a linear process with respect
to a function of the Gaussian sequence {Zi}. Surgailis and Viano [32] extended the type of
dependence between the sequences {Zi} and {Xi} and relaxed the Gaussian assumption for
both sequences, but assumed finite moments of all orders. Thus, long memory and leverage
are possibly present in these models, but heavy tails are excluded.

A number of other models have been introduced, e.g. the models of Robinson and
Zaffaroni [29], [30] and their further extensions in [28]; LARCH(∞) processes [19] and their
bilinear extensions [18], and LARCH+(∞) [31]; to mention a few. All of these models have
long memory and some have leverage and allow for heavy tails. The theory for these models
is usually extremely involved, and only the asymptotic properties of partial sums are known
in certain cases. We will not consider these models here. In [20] the leverage effect and
long-memory property of a LARCH(∞) model was studied thoroughly.

The theoretical effect of long memory is that the covariance of absolute powers of the returns
{Yi} is slowly decaying and nonsummable. This induces nonstandard limit theorems, such as
convergence of the partial sum process to the fractional Brownian motion or finite-variance non-
Gaussian processes or even Lévy processes. In practice, long memory is often evidenced by
sample covariance plots, showing an apparent slow decay of the covariance function. Therefore,
it is of interest to investigate the asymptotic behavior of the sample mean or of the partial sum
process, and of the sample variance and covariances.

In the case where σi = σ(Xi), {Xi} is a stationary Gaussian process with summable
covariances and σ(x) = exp(x), the asymptotic theory for the sample mean of LMSV processes
with infinite variance is a straightforward consequence of a point process convergence result
in [11]. The limit is a Lévy stable process. Surgailis and Viano [32] considered the convergence
of the partial sum process of absolute powers of generalized EGARCH processes with finite
moments of all orders and showed convergence to the fractional Brownian motion. To the best
of the authors’ knowledge, the partial sum process of absolute powers has never been studied
in the context of heavy tails and long memory and possible leverage for a general function σ .

The asymptotic theory for sample covariances of weakly dependent stationary processes
with finite moments dates back to Anderson; see [1]. The case of linear processes with
regularly varying innovations was studied in [13] and [14] for infinite-variance innovation
and for innovations with finite variance but infinite fourth moment, respectively. The limiting
distribution of the sample covariances (suitably centered and normalized) is then a stable law.
These results were obtained under conditions that rule out long memory. For infinite-variance
innovation with tail index α ∈ (1, 2), these results were extended to long-memory linear
processes in [24]. The limiting distributions of the sample covariances are again stable laws.
However, if α ∈ (2, 4), Giraitis and Surgailis [21] showed that, as for partial sums, a dichotomy
appears: the limiting distribution and the rate of convergence depend on an interplay between
a memory parameter and the tail index α. The limit is either stable (as in the weakly dependent
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or i.i.d. case) or, if the memory is strong enough, the limiting distribution is non-Gaussian but
with finite variance (the so-called Hermite–Rosenblatt distributions). If the fourth moment is
finite then the dichotomy is between Gaussian or finite-variance non-Gaussian distributions
(again of Hermite–Rosenblatt type); see [21, Theorem 3.3], [22], and [34].

The asymptotic properties of sample autocovariances of GARCH processes have been
studied in [4]. Stable limits arise as soon as the marginal distribution has an infinite fourth
moment. Davis and Mikosch [11] studied the sample covariance of a zero-mean stochastic
volatility process, under implicit conditions that rule out long memory, and also found stable
limits. McElroy and Politis [25] (generalized by Jach et al. [23]) studied partial sums and
sample variance of a possibly nonzero-mean stochastic volatility process with infinite variance
and where the volatility is a Gaussian long-memory process (in which case it is not positive, but
this is not important for the theoretical results). They obtained a dichotomy between stable and
finite-variance non-Gaussian limits, and also the surprising result that when the sample mean
has a long-memory-type limit, then the studentized sample mean converges in probability to 0.

The first aim of this paper is to study asymptotic properties of partial sums, sample variance,
and covariances of stochastic volatility processes where the volatility is an arbitrary function
of a Gaussian, possibly long-memory process {Xi} independent of the sequence {Zi}, which
is a heavy-tailed i.i.d. sequence. We refer to these processes as LMSV processes. The interest
of considering other functions than the exponential function is that it allows us to have other
distributions than the log-normal for the volatility, while keeping the convenience of Gaussian
processes, without which dealing with long-memory processes rapidly becomes extremely
involved or even intractable. The results we obtain extend in various aspects all the previous
literature in this domain.

Another important aim of the paper is to consider models with possible leverage. To this end,
we need to give precise assumptions on the nature of the dependence between the sequences {Zi}
and {Xi}, and since they are related in the process {Yi} through the function σ , these assumptions
also involve the function σ . We have not looked for the widest generality, but the functions σ

that we consider include the exponential functions and all symmetric polynomials with positive
coefficients. This is not a severe restriction since the function σ must be nonnegative. Whereas
the asymptotic theory for the partial sums is entirely similar to the case of the LMSV process
without leverage, asymptotic properties of sample autocovariances may be very different in
the presence of leverage. Due to the dependence between the two sequences, the rates of
convergence and asymptotic distribution may be entirely different when not stable.

The paper is organized as follows. In Section 2 we formulate proper assumptions, as
well as prove some preliminary results on the marginal and multivariate tail behavior of the
sequence {Yi}. In Section 3 we establish the limit theory for a point process based on the rescaled
sequence {Yi}. This methodology was first used in this context by Davis and Mikosch [11] and
our proofs are closely related to those in this reference. In Section 4 we apply these results to
obtain the functional asymptotic behavior of the partial sum process of the sequences {Yi} and of
its powers. In Section 5 the limiting behavior of the sample covariances and autocorrelation of
the process {Yi} and of its powers is investigated. Proofs are given in Section 6. In Appendix A
we recall some results on multivariate Gaussian processes with long memory.

1.1. A note on the terminology

We consider in this paper sequences {Yi} which can be expressed as Yi = Ziσ(Xi) = Ziσi ,
where {Zi} is an i.i.d. sequence and Zi is independent of Xi for each i. Originally, SV and
LMSV processes referred to processes where the sequences {Zi} and {σi} are fully independent,
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σi = σ(Xi), {Xi} is a Gaussian process, and σ(x) = exp(x); see, e.g. [8], [7], and [11].
The names EGARCH and FIEGARCH, respectively introduced in [26] and [6], refer to the
case where σ(x) = exp(x) and where {Xi} is a non-Gaussian process which admits a linear
representation with respect to an instantaneous function of the Gaussian i.i.d. sequence {Zi},
with dependence between the sequences {Zi} and {Xi}. Surgailis and Viano [32] considered
the case σ(x) = exp(x), but relaxed the assumptions on {Zi} and {Xi}, and retained the name
EGARCH. The LMSV processes can be seen as border cases of EGARCH-type processes,
where the dependence between the sequences {Zi} and {Xi} vanishes. In this paper we consider
both LMSV models, and models with leverage which generalize the EGARCH models as
defined in [32]. In order to refer to the latter models, we have chosen not to use the acronym
EGARCH or FIEGARCH, since these models were defined with very precise specifications
and this could create some confusion, nor to create a new one such as GEGARCH (with G
standing twice for generalized, which seems a bit too much) or (IV)LMSVwL (for (possibly)
infinite-variance long-memory stochastic volatility with leverage). Considering that the main
feature which distinguishes these two classes of models is the presence or absence of leverage,
we decided to refer to LMSV models when leverage is excluded, and to models with leverage
when we include the possibility thereof.

2. Model description, assumptions, and tail behaviour

Let {Zi, i ∈ Z} be an i.i.d. sequence whose marginal distribution has regularly varying tails:

lim
x→+∞

P(Z0 > x)

x−αL(x)
= β, lim

x→+∞
P(Z0 < −x)

x−αL(x)
= 1 − β. (2.1)

Here α > 0, L is slowly varying at ∞, and β ∈ [0, 1]. Condition (2.1) is referred to as the
balanced tail condition. It is equivalent to assuming that P(|Z0| > x) = x−αL(x) and

β = lim
x→+∞

P(Z0 > x)

P(|Z0| > x)
= 1 − lim

x→+∞
P(Z0 < −x)

P(|Z0| > x)
.

We will say that two random variables Y and Z are right-tail equivalent if there exists c ∈ (0, ∞)

such that

lim
x→+∞

P(Y > x)

P(Z > x)
= c.

If one of the random variables has a regularly varying right tail then so has the other, with the
same tail index. The converse is false, i.e. two random variables can have the same tail index
without being tail equivalent. Two random variables Y and Z are said to be left-tail equivalent
if −Y and −Z are right-tail equivalent, and they are said to be tail equivalent if they are both
left- and right-tail equivalent.

Under (2.1), if, moreover, E[|Z0|α] = ∞ then Z1Z2 is regularly varying and (see, e.g. [14,
Equation (3.5)])

lim
x→+∞

P(Z0 > x)

P(Z0Z1 > x)
= 0, lim

x→+∞
P(Z1Z2 > x)

P(|Z1Z2| > x)
= β2 + (1 − β)2.

For example, if (2.1) holds and the tail of |Z0| has Pareto-type tails, i.e. P(|Z0| > x) ∼ cx−α as
x → +∞ for some c > 0, then E[|Z0|α] = ∞. We will further assume that {Xi} is a stationary
zero-mean, unit-variance Gaussian process which admits a linear representation with respect
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to an i.i.d. Gaussian white noise {ηi} with zero mean and unit variance, i.e.

Xi =
∞∑

j=1

cjηi−j (2.2)

with
∑∞

j=1 c2
j = 1. We assume that the process {Xi} either has short memory, in the sense

that its covariance function is absolutely summable, or exhibits long memory with Hurst index
H ∈ ( 1

2 , 1), i.e. its covariance function {ρn} satisfies

ρn = cov(X0, Xn) =
∞∑

j=1

cj cj+n = n2H−2�(n),

where � is a slowly varying function.
Let σ be a deterministic, nonnegative, and continuous function defined on R. Define σi =

σ(Xi) and the stochastic volatility process {Yi} by

Yi = σiZi = σ(Xi)Zi.

At this point we do not assume independence of {ηi} and {Zi}. We will deal with the following
two special cases.

• The LMSV model, where {ηi} and {Zi} are independent.

• The model with leverage, where {(ηi, Zi)} is a sequence of i.i.d. random vectors. For
fixed i, Zi and Xi are independent, but Xi may not be independent of the past {Zj , j < i}.

Both cases are encompassed in the following assumption which will be in force throughout
the paper.

Assumption 2.1. The stochastic volatility process {Yi} is defined by

Yi = σiZi,

where σi = σ(Xi), {Xi} is a Gaussian linear process with respect to the i.i.d. sequence {ηi} of
standard Gaussian random variables such that (2.2) holds, σ is a nonnegative function such
that P(σ (aη0) > 0) = 1 for all a �= 0, {(Zi, ηi)} is an i.i.d. sequence, and Z0 satisfies the
balanced tail condition (2.1) with E[|Z0|α] = ∞.

Let Fi be the sigma-field generated by (ηj , Zj ), j ≤ i. Then the following properties
hold.

• Zi is Fi-measurable and independent of Fi−1.

• Xi and σi are Fi−1-measurable.

We will also impose the following condition on the continuous function σ . There exists
q > 0 such that

sup
0≤γ≤1

E[σq(γX0)] < ∞. (2.3)

It is clearly fulfilled for all q and q ′ if σ is a polynomial or σ(x) = exp(x) and X0 is a standard
Gaussian random variable. Note that if (2.3) holds for some q > 0 then, for q ′ ≤ q/2, it holds
that

sup
0≤γ≤1

E[σq ′
(γX0)σ

q ′
(γXs)] < ∞, s = 1, 2, . . . .
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2.1. Marginal tail behavior

If (2.3) holds then, clearly, E[σq(X0)] < ∞. If, moreover, q > α, since Xi and Zi are
independent for fixed i, it follows from Breiman’s lemma (see, e.g. [27, Proposition 7.5]) that
the distribution of Y0 is regularly varying and

lim
x→+∞

P(Y0 > x)

P(Z0 > x)
= lim

x→+∞
P(Y0 < −x)

P(Z0 < −x)
= E[σα(X0)].

Thus, we see that there is no effect of leverage on marginal tails. Define

an = inf

{
x : P(|Y0| > x) <

1

n

}
. (2.4)

Then the sequence an is regularly varying at ∞ with index 1/α. Moreover, since σ is
nonnegative, Z0 and Y0 have the same skewness, i.e.

lim
n→+∞ n P(Y0 > an) = 1 − lim

n→+∞ n P(Y0 < −an) = β.

2.2. Joint exceedances

One of the properties of heavy-tailed stochastic volatility models is that large values do not
cluster. Mathematically, for all h > 0,

P(|Y0| > x, |Yh| > x) = o(P(|Y0| > x)). (2.5)

For the LMSV model, conditioning on σ0 and σh yields

lim
x→+∞

P(|Y0| > x, |Yh| > x)

P2(|Z0| > x)
= E[(σ0σh)

α],

if (2.3) holds for some q > 2α. Property (2.5) still holds when leverage is present. Indeed,
let FZ denote the distribution function of Z0 and let F̄Z = 1 − FZ . Recall that Fh−1 is the
sigma-field generated by (ηj , Zj ), j ≤ h − 1. Thus, Y0 and Xh are measurable with respect
to Fh−1, and Zh is independent of Fh−1. Conditioning on Fh−1 yields

P(Y0 > x, Yh > x) = E

[
F̄Z

(
x

σh

)
1{Y0>x}

]
.

Next, fix some ε > 0. Applying Lemma 6.2, there exists a constant C such that, for all x ≥ 1,

P(Y0 > x, Yh > x)

P(Z0 > x)
= E

[
F̄Z(x/σh)

F̄Z(x)
1{Y0>x}

]
≤ C E[(1 ∨ σh)

α+ε1{Y0>x}].

If (2.3) holds for some q > α, and ε is chosen small enough so that α+ε < q, then, by bounded
convergence, the latter expression is finite and converges to 0 as x → +∞.

2.3. Products

For the LMSV model, another application of Breiman’s lemma reveals that Y0Yh is regularly
varying for all h. If (2.3) holds for some q > 2α then

lim
x→+∞

P(Y0Yh > x)

P(Z0Z1 > x)
= E[(σ0σh)

α], lim
x→+∞

P(Y0Yh < −x)

P(Z0Z1 < −x)
= E[(σ0σh)

α].

For further reference, we gather in a lemma some properties of the products in the LMSV case,
some of which are mentioned in [11] in the case σ(x) = exp(x).
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Lemma 2.1. Let Assumption 2.1 hold, and let the sequences {ηi} and {Zi} be mutually
independent. Assume that (2.3) holds with q > 2α. Then Y0Y1 is tail equivalent to Z0Z1
and has regularly varying and balanced tails with index α. Moreover, for all h ≥ 1, there exist
real numbers d+(h) and d−(h) such that

lim
x→∞

P(Y0Yh > x)

P(|Y0Y1| > x)
= d+(h), lim

x→∞
P(Y0Yh < −x)

P(|Y0Y1| > x)
= d−(h). (2.6)

Let bn be defined by

bn = inf

{
x : P(|Y0Y1| > x) ≤ 1

n

}
. (2.7)

The sequence {bn} is regularly varying with index 1/α and

an = o(bn). (2.8)

For all i �= j > 0, it holds that

lim
n→∞ n P(|Y0| > anx, |Y0Yj | > bnx) = 0, (2.9)

lim
n→∞ n P(|Y0Yi | > bnx, |Y0Yj | > bnx) = 0. (2.10)

The quantities d+(h) and d−(h) can be easily computed in the LMSV case:

d+(h) = {β2 + (1 − β)2}E[σα(X0)σ
α(Xh)]

E[σα(X0)σα(X1)] , d−(h) = 2β(1 − β)
E[σα(X0)σ

α(Xh)]
E[σα(X0)σα(X1)] .

When leverage is present, many different situations can occur, obviously depending on
the type of dependence between Z0 and η0, and also on the function σ . We consider the
exponential function σ(x) = exp(x), and a class of subadditive functions. In each case we give
an assumption on the type of dependence between Z0 and η0 that will allow us to prove our
results. Examples are given after the lemmas.

Lemma 2.2. Assume that σ(x) = exp(x) and exp(kη0)Z0 is tail equivalent to Z0 for all k ∈ R.
Then all the conclusions of Lemma 2.1 hold.

Lemma 2.3. Assume that the function σ is subadditive, i.e. there exists a constant C > 0
such that, for all x, y ∈ R, σ(x + y) ≤ C{σ(x) + σ(y)}. Assume that, for any a, b > 0,
σ(aξ + bη0)Z0 is tail equivalent to Z0, where ξ is a standard Gaussian random variable
independent of η0, and σ(bη0)Z0 is either tail equivalent to Z0 or E[{σ(bη0)|Z0|}q ] < ∞ for
some q > α. Then all the conclusions of Lemma 2.1 hold.

Example 2.1. Assume that Z0 = |η0|−1/αU0 with α > 0, where U0 is independent of η0 and
E[|U0|q ] < ∞ for some q > α. Then Z0 is regularly varying with index −α.

Case 1: σ(x) = exp(x). For each c > 0, Z0 exp(cη0) is tail equivalent to Z0. See
Lemma 6.1 below for a proof of this fact.

Case 2: σ(x) = x2. Let q ′ ∈ (α, q ∧ {α/(1 − 2α)+}). Then

E[σq ′
(bη0)|Z0|q ′ ] = b2q ′

E[|η0|q ′(2−1/α)|U0|q ′ ] < ∞.

Furthermore, let ξ be a standard Gaussian random variable independent of η0 and Z0. Then

σ(aξ + bη0)Z0 = a2ξ2Z0 + 2abξsgn(η0)|η0|1−1/αU0 + b2|η0|2−1/αU0.
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Since ξ is independent of Z0 and Gaussian, by Breiman’s lemma, the first term on the right-hand
side of the above equation is tail equivalent to Z0. The last two terms have finite moments of
order q ′ for some q ′ > α and do not contribute to the tail. Thus, the assumptions of Lemma 2.3
are satisfied.

Example 2.2. Let Z′
0 have regularly varying balanced tails with index −α, independent of η0.

Let 
1(·) and 
2(·) be polynomials, and define Z0 = Z′
0
1(η0) + 
2(η0). Then, by Breiman’s

lemma, Z0 is tail equivalent to Z′
0, and it is easily checked that the assumptions of Lemma 2.2

are satisfied and that the assumptions of Lemma 2.3 are satisfied with σ being any symmetric
polynomial with positive coefficients. We omit the details.

3. Point process convergence

For s = 0, . . . , h, define a Radon measure λs on [−∞, ∞] \ {0} by

λ0(dx) = α{βx−α−11(0,∞)(x) + (1 − β)(−x)−α−11(−∞,0)(x)} dx,

λs(dx) = α{d+(s)x−α−11(0,∞)(x) + d−(s)(−x)−α−11(−∞,0)(x)} dx,

where d±(s) are defined in (2.6). For s = 0, . . . , h, define the Radon measure νs on [0, 1] ×
[−∞, ∞] \ {0} by

νs(dt, dx) = dtλs(dx).

Set Yn,i = (a−1
n Yi, b

−1
n YiYi+1, . . . , b

−1
n YiYi+h), where an and bn are defined in (2.4) and (2.7),

respectively, and let Nn be the point process defined on [0, 1] × ([−∞, ∞]h+1 \ {0}) by

Nn =
n∑

i=1

δ(i/n,Yn,i ),

where δx denotes the Dirac measure at x.
Our first result is that, for the usual univariate point process of exceedances, there is no effect

of leverage. This is a consequence of the asymptotic independence (2.5).

Proposition 3.1. Let Assumption 2.1 hold, and assume that σ is a continuous function such
that (2.3) holds with q > α. Then

∑n
i=1 δ(i/n,Yi/an) converges weakly to a Poisson point process

with mean measure ν0.

For the multivariate point process Nn, we consider first LMSV models and then models with
leverage.

3.1. Point process convergence: LMSV case

Proposition 3.2. Let Assumption 2.1 hold, and assume that the sequences {ηi} and {Zi} are
independent. Assume that the continuous volatility function σ satisfies (2.3) for some q > 2α.
Then

Nn ⇒
h∑

i=0

∞∑
k=1

δ(tk,jk,iei ), (3.1)

where
∑∞

k=1 δ(tk,jk,0), . . . ,
∑∞

k=1 δ(tk,jk,h) are independent Poisson processes with mean mea-
sures ν0, . . . , νh, and ei ∈ R

h+1 is the ith basis component. Here ‘⇒’ denotes convergence
in distribution in the space of Radon point measures on (0, 1] × [−∞, ∞]h+1 \ {0} equipped
with the vague topology.
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3.2. Point process convergence: case of leverage

Proposition 3.3. Let Assumption 2.1 hold. Assume that σ(x) = exp(x) and Z0 exp(cη0) is
tail equivalent to Z0 for all c. Then convergence (3.1) holds.

Proposition 3.4. Let Assumption 2.1 hold. Assume that the distribution of (Z0, η0) and the
function σ satisfy the assumptions of Lemma 2.3, and, moreover, that

|σ(x + y) − σ(x + z)| ≤ C(σ(x) ∨ 1){(σ (y) ∨ 1) + (σ (z) ∨ 1)}|y − z|. (3.2)

Assume that condition (2.3) holds for some q > 2α. Then convergence (3.1) holds.

Condition (3.2) is an ad-hoc condition which is needed for a truncation argument used in the
proof. It is satisfied by all symmetric polynomials with positive coefficients. (The proof would
not be simplified by considering polynomials rather than functions satisfying this assumption.)

4. Partial sums

Define

Sn(t) =
[nt]∑
i=1

Yi, Sp,n(t) =
[nt]∑
i=1

|Yi |p.

For any function g such that E[g2(η0)] < ∞ and any integer q ≥ 1, define

Jq(g) = E[Hq(η0)g(η0)],
where Hq is the qth Hermite polynomial. The Hermite rank τ(g) of the function g is the
smallest positive integer τ such that Jτ (g) �= 0. Let Rτ,H be the so-called Hermite process of
order τ with self-similarity index 1 − τ(1 − H). See [2] or Appendix A for more details. Let
‘
D⇒’ denote convergence in the Skorokhod space D([0, 1], R) of real-valued, right-continuous

functions with left limits, endowed with the J1 topology; cf. [33].

Theorem 4.1. Let Assumption 2.1 hold, and assume that the function σ is continuous and
that (2.3) holds for some q > 2α.

(i) If 1 < α < 2 and E[Z0] = 0, then a−1
n Sn converges weakly in the space D([0, 1), R)

endowed with Skorokhod’s J1 topology to an α-stable Lévy process with skewness 2β−1.

Let τp = τ(σp) be the Hermite rank of the function σp.

(ii) If p < α < 2p and 1 − τp(1 − H) < p/α, then

a
−p
n (Sp,n − n E[|Y0|p]) D⇒ Lα/p,

where Lα/p is a totally skewed to the right α/p-stable Lévy process.

(iii) If p < α < 2p and 1 − τp(1 − H) > p/α, then

n−1ρ
−τp/2
n (Sp,n − n E[|Y0|p]) D⇒ Jτp (σp) E[|Z1|p]

τp! Rτp,H .

(iv) If p > α then a
−p
n Sp,n

D⇒ Lα/p, where Lα/p is a positive α/p-stable Lévy process.

Note that there is no effect of leverage. The situation will be different for the sample
covariances. The fact that when the marginal distribution has infinite mean, long memory does
not play any role and only a stable limit can arise was observed in a different context in [9].
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5. Sample covariances

In order to explain more clearly the nature of the results and the problems that arise, we start
by considering the sample covariances of the sequence {Yi}, without assuming that E[Z0] = 0.
For notational simplicity, assume that we observe a sample of length n+h. Assume that α > 1.
Let Ȳn = n−1 ∑n

j=1 Yj denote the sample mean, m = E[Z0], and µY = E[Y0] = m E[σ0], and
define the sample covariances by

γ̂n(s) = 1

n

n∑
i=1

(Yi − Ȳn)(Yi+s − Ȳn), 0 ≤ s ≤ h.

For simplicity, we have defined all the sample covariances as sums with the same range of
indices 1, . . . , n. This obviously does not affect the asymptotic theory. For s = 0, . . . , h, we
furthermore define

Cn(s) = 1

n

n∑
i=1

YiYi+s .

Then, defining γ (s) = cov(Y0, Ys), we have, for s = 0, . . . , h,

γ̂n(s) − γ (s) = Cn(s) − E[Y0Ys] + µ2
Y − Ȳ 2

n + OP

(
1

n

)
.

Under the assumptions of Theorem 4.1, Ȳ 2
n − µ2

Y = OP (an). This term never contributes to
the limit. Consider now Cn(s). Recall that Fi is the sigma-field generated by (ηj , Zj ), j ≤ i,
and define

X̂i,s = E[Xi+s | Fi−1]
var(E[Xi+s | Fi−1]) = ς−1

s

∞∑
j=s+1

cjηi+s−j ,

with ς2
s = ∑∞

j=s+1 c2
j . Let K be the function defined on R

2 by

K(x, x̂) = E[Zs] E

[
Z0σ(x)σ

( s∑
j=1

cjηs−j + ςsx̂

)]
− E[Y0Ys].

Then, for each i ≥ 0, it holds that

E[YiYi+s | Fi−1] − E[Y0Ys] = K(Xi, X̂i,s).

We see that if m = E[Zs] = 0 then the function K is identically vanishing. We next write

Cn(s) − E[Y0Ys] = 1

n

n∑
i=1

{YiYi+s − E[YiYi+s | Fi−1]} + 1

n

n∑
i=1

K(Xi, X̂i,s)

= 1

n
Mn,s + 1

n
Tn,s .

The point process convergence results of the previous section will allow us to prove that b−1
n Mn,s

has a stable limit. If m = E[Z] = 0 then this will be the limit of b−1
n (Cn(s) − E[Y0Ys]),

regardless of the presence of leverage. We can thus state a first result. Let ‘
d−→’ denote weak

convergence of sequences of finite-dimensional random vectors.
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Theorem 5.1. Assume that α ∈ (1, 2) and E[Z0] = 0. Under the assumptions of Proposi-
tion 3.2, 3.3, or 3.4,

nb−1
n (γ̂n(1) − γ (1), . . . , γ̂n(h) − γ (h))

d−→ (L1, . . . ,Lh),

where L1, . . . ,Lh are independent α-stable random variables.

This result was obtained in [11] in the (LM)SV case for the function σ(x) = exp(x) and
under implicit conditions that rule out long memory.

We continue the discussion under the assumption that m �= 0. Then the term Tn,s is the
partial sum of a sequence which is a function of a bivariate Gaussian sequence. It can be treated
by applying the results in [2]. Its rate of convergence and limiting distribution will depend on
the Hermite rank of the function K with respect to the bivariate Gaussian vector (X0, X̂0,s),
which is fully characterized by the covariance between X0 and X̂0,s :

cov(X0, X̂0,s) = ς−1
s

∞∑
j=1

cj cj+s = ς−1
s ρs .

LMSV case. Since in this context the noise sequence {Zi} and the volatility sequence {σi}
are independent, we easily compute that

K(x, y) = m2σ(x) E[σ(�sζ + csη0 + ςsy)] − m2 E[σ(X0)σ (Xs)],
where �2

s = ∑s−1
j=1 c2

j and ζ is a standard Gaussian random variable, independent of η0. Thus,
the Hermite rank of the function K depends only on the function σ (but is not necessarily equal
to the Hermite rank of σ ).

Case of leverage. In this case, the dependence between η0 and Z0 comes into play. We now
have

K(x, y) = mσ(x) E[σ(�sζ + csη0 + ςsy)Z0] − m E[σ(X0)σ (Xs)Z0],
and now the Hermite rank of K also depends on Z0. Different situations can occur. We give
two examples.

Example 5.1. Consider the case σ(x) = exp(x). Then

E[Y0Ys | F−1] = E[Z0Zs exp(X0) exp(Xs) | F−1]

= m E[Z0 exp(csη0)] E

[
exp

(s−1∑
j=1

cjηs−j

)]
exp(X0 + ςsX̂0,s).

Define m̃ = E[Z0 exp(csη0)], and note that E[exp(
∑s−1

j=1 cjηs−j )] = exp(�2
s /2). Thus,

K(x, y) = mm̃ exp

(
�2

s

2

)
{exp(x + ςsy) − E[exp(X0 + ςsX̂0,s)]}.

If E[Z0] = 0 or E[Z0 exp(csη0)] = 0, then the function K is identically vanishing and Tn,s = 0.
Otherwise, the Hermite rank of K with respect to (X0, X̂0,s) is 1. Thus, applying [2, Theorem 6]
(in the one-dimensional case) reveals that n−1ρ

−1/2
n Tn,s converges weakly to a zero-mean

Gaussian distribution. The rate of convergence is the same as in the LMSV case, but the
asymptotic variance is different unless E[Z0 exp(csη0)] = E[Z0] E[exp(csη0)].
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Example 5.2. Consider σ(x) = x2. Define

X̌i,s = �−1
s

s−1∑
j=1

cjηi+s−j .

Then

E[Y0Ys | F−1] = E[Z0ZsX
2
0(�sX̌0,s + ςsX̂0,s + csη0)

2 | F−1]
= mX2

0{�2
s m + cs E[Z0η

2
0] + ςsm(X̂0,s)

2 + 2ςscs E[Z0η0]X̂0,s}.
Thus,

K(x, y) = ςsm
2(x2y2 − E[X2

0(X̂2
0,s]) + 2ςscsm E[Z0η0]{x2y − E[X2

0X̂0,s]}
+ (�2

s m2 + csm E[Z0η
2
0])(x2 − 1),

and it can be verified that the Hermite rank of K with respect to (X0, X̂
(s)
0 ) is 1, except if

E[Z0η0] = 0, which holds in the LMSV case. Thus, we see that the rate of convergence of Tn,s

depends on the presence or absence of leverage. See Example 5.4 below for details.

Let us now introduce the notation that will be used to deal with sample covariances of
powers. For p > 0, define mp = E[|Z0|p]. If p ∈ (α, 2α) and assumption (2.1) holds,
mp is finite and E[|Z0|2p] = ∞. Moreover, under the assumptions of Lemma 2.1 or 2.2, for
s > 0, E[|Y0Ys |p] < ∞ and E[|Y0Ys |2p] = ∞ for p ∈ (α/2, α). Thus, the autocovariance
γp(s) = cov(|Y0|p, |Ys |p) is well defined. Furthermore, define Ȳp,n = n−1 ∑n

i=1 |Yi |p and

γ̂p,n(s) = 1

n

n∑
i=1

(|Yi |p − Ȳp,n)(|Yi+s |p − Ȳp,n).

Define the functions K∗
p,s (LMSV case) and K

†
p,s (case with leverage) by

K∗
p,s(x, y) = m2

pσp(x) E[σp(�sζ + csη0 + ςsy)] − m2
p E[σp(X0)σ

p(Xs)], (5.1)

K†
p,s(x, y) = mpσp(x) E[σp(�sζ + csη0 + ςsy)|Z0|p] − mp E[σp(X0)σ

p(Xs)|Z0|p].
(5.2)

5.1. Convergence of the sample covariance of powers: LMSV case

Theorem 5.2. Let Assumption 2.1 hold, and assume that the sequences {ηi} and {Zi} are
independent. Let the function σ be continuous and satisfy (2.3) with q > 4α. For a fixed
integer s ≥ 1, let τ ∗

p(s) be the Hermite rank of the bivariate function K∗
p,s defined by (5.1), with

respect to a bivariate Gaussian vector with standard marginal distributions and correlation
ς−1

s γs .

• If p < α < 2p and 1 − τ ∗
p(s)(1 − H) < p/α, then

nb
−p
n (γ̂p,n(s) − γp(s))

d−→ Ls ,

where Ls is an α/p-stable random variable.

• If p < α < 2p and 1 − τ ∗
p(s)(1 − H) > p/α, then

ρ
−τ∗

p(s)/2
n (γ̂p,n(s) − γp(s))

d−→ G∗
s ,

where the random variable G∗
s is Gaussian if τ ∗

p(s) = 1.
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For different values s = 1, . . . , h, the Hermite ranks τ ∗
p(s) of the functions K∗

p,s may be
different. Therefore, in order to consider the joint autocovariances at lags s = 1, . . . , h, we
define

τ ∗
p = min{τ ∗

p(1), . . . , τ ∗
p(h)}.

Corollary 5.1. Under the assumptions of Theorem 5.2,

• if 1 − τ ∗
p(1 − H) < p/α then

nb
−p
n (γ̂p,n(1) − γp(1), . . . , γ̂p,n(h) − γp(h))

d−→ (L1, . . . , Lh),

where L1, . . . ,Lp are independent α/p-stable random variables;

• if 1 − τ ∗
p(1 − H) > p/α then

ρ
−τ∗

p/2
n (γ̂p,n(1) − γp(1), . . . , γ̂p,n(h) − γp(h))

d−→ (G̃∗
1, . . . , G̃

∗
h),

where G̃∗
s = G∗

s if τ ∗
p(s) = τ ∗

p and G̃∗
s = 0 otherwise.

We see that the joint limiting vector (G̃∗
1, . . . , G̃

∗
h) may have certain zero components if

there exist indices s such that τ ∗
p(s) > τ ∗

p . However, for standard choices of the function σ , the
Hermite rank τ ∗

p(s) does not depend on s. For instance, for σ(x) = exp(x), τ ∗
p(s) = 1 for all

s and, for σ(x) = x2, τ ∗
p(s) = 2 for all s.

5.2. Convergence of the sample covariance of powers: case of leverage

Theorem 5.3. Let the assumptions of Proposition 3.3 or 3.4 hold, and assume that (2.3) holds
for some q > 4α. Let τ

†
p(s) be the Hermite rank of the bivariate function K

†
p,s defined by (5.2),

with respect to a bivariate Gaussian vector with standard marginal distributions and correlation
ς−1

s γs .

• If p < α < 2p and 1 − τ
†
p(s)(1 − H) < p/α, then

nb
−p
n (γ̂p,n(s) − γp(s))

d−→ Ls ,

where Ls is an α/p-stable random variable.

• If p < α < 2p and 1 − τ
†
p(s)(1 − H) > p/α, then

ρ
−τ

†
p(s)/2

n (γ̂p,n(s) − γp(s))
d−→ G†

s ,

where the random vector G
†
s is Gaussian if τ

†
p(s) = 1.

Again, as in the previous case, in order to formulate the multivariate result, we further define

τ †
p = min{τ †

p(1), . . . , τ †
p(h)}.

Corollary 5.2. Under the assumptions of Theorem 5.3,

• if 1 − τ
†
p(1 − H) < p/α then

nb
−p
n (γ̂p,n(1) − γp(1), . . . , γ̂p,n(h) − γp(h))

d−→ (L1, . . . , Lh),

where L1, . . . ,Lp are independent α/p-stable random variables;
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• if 1 − τ
†
p(1 − H) > p/α then

ρ
−τ

†
p/2

n (γ̂p,n(1) − γp(1), . . . , γ̂p,n(h) − γp(h))
d−→ (G̃

†
1, . . . , G̃

†
h),

where G̃
†
s = G

†
s if τ

†
p(s) = τ

†
p and G̃

†
s = 0 otherwise.

The main difference between Theorems 5.2 and 5.3 (or Corollaries 5.1 and 5.2) is the Hermite
rank considered. Under the conditions that ensure convergence to a stable limit, the rates of
convergence and the limits are the same in both theorems. Otherwise, the rates and the limits
may be different.

Example 5.3. Consider the case σ(x) = exp(x). For all s ≥ 1, we have τ
†
p = τ

†
p(s) = 1.

Thus, under the assumptions of Theorem 5.3,

• if H < p/α then nb−1
n {γ̂p,n(s) − γp(s)} converges weakly to a stable law;

• if H > p/α then ρ
−1/2
n {γ̂p,n(s) − γp(s)} converges weakly to a zero-mean Gaussian

distribution.

The dichotomy is the same as in the LMSV case, but the variance of the limiting distribution
in the case H > p/α is different except if E[Z0 exp(csη0)] = E[Z0] E[exp(csη0)].
Example 5.4. Consider the case σ(x) = x2 and p = 1. Assume that E[η1|Z1|] �= 0. Then,
for each s ≥ 1, τ

†
1 = τ

†
1 (s) = 1, whereas τ ∗

p = τ ∗
p(s) = 2; thus, the dichotomy is not the same

as in the LMSV case and the rate of convergence differs in the case H > 1/α.

• If H < 1/α then nb−1
n {γ̂n,1(s) − γ1(s)} converges weakly to a stable law.

• If H > 1/α then ρ
−1/2
n {γ̂n,1(s) − γ1(s)} converges weakly to a zero-mean Gaussian

distribution.

If we assume now that E[η1|Z1|] = 0 then τ
†
1 = τ ∗

p = 2. Thus, the dichotomy is the same as
in the LMSV case, but the limiting distribution in the nonstable case can be different from the
one in the LMSV case.

• If 2H − 1 < 1/α then nb−1
n {γ̂1,n(s) − γ1(s)} converges weakly to a stable law.

• If 2H − 1 > 1/α then ρ−1
n {γ̂1,n(s) − γ1(s)} converges weakly to a zero-mean non-

Gaussian distribution.

If, moreover, E[H2(η1)|Z1|] = 0 then, for each s, the functions K∗
p,s and K

†
p,s are equal, and,

thus, the limiting distribution is the same as in the LMSV case.

6. Proofs

Lemma 6.1. Let Z be a nonnegative random variable with a regularly varying right tail with
index −α, α > 0. Let g be a bounded function on [0, ∞) such that limx→+∞ g(x) = cg ∈
(0, ∞). Then Zg(Z) is tail equivalent to Z:

lim
x→+∞

P(Zg(Z) > x)

P(Z > x)
= cα

g .

https://doi.org/10.1239/aap/1354716591 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1354716591


Stochastic volatility models with long memory and infinite variance 1127

Proof. Fix some ε ∈ (0, 1), and let x0 be large enough so that |g(x) − cg|/cg < ε for
all x > x0. The function g is bounded; thus, zg(z) > x implies that z > x/‖g‖∞ and
if x > x0‖g‖∞, we have

P(Zg(Z) > x) = P

(
Zg(Z) > x, Z >

x

‖g‖∞

)

≤ P

(
Zcg(1 + ε) > x, Z >

x

‖g‖∞

)

≤ P(Zcg(1 + ε) > x).

This yields the upper bound

lim sup
x→+∞

P(Zg(Z) > x)

P(Z > x)
≤ lim sup

x→+∞
P(Zcg(1 + ε) > x)

P(Z > x)
= cα

g (1 + ε)α.

Conversely, we have

P(Zg(Z) > x) = P

(
Zg(Z) > x, Z >

x

‖g‖∞

)

≥ P

(
Zcg(1 − ε) > x, Z >

x

‖g‖∞

)

= P

(
Z > x max

{
1

cg(1 − ε)
,

1

‖g‖∞

})

= P

(
Z >

x

cg(1 − ε)

)
,

where the last equality comes from the fact that (1 − ε)cg ≤ cg = limz→+∞ g(z) ≤ ‖g‖∞.
Thus,

lim inf
x→+∞

P(Zg(Z) > x)

P(Z > x)
≥ lim inf

x→+∞
P(Zcg(1 − ε) > x)

P(Z > x)
= cα

g (1 − ε)α.

Since ε is arbitrary, we obtain the desired limit.

Lemma 6.2. Let Z be a nonnegative random variable with a regularly varying right tail with
index −α, α > 0. For each ε > 0, there exists a constant C such that, for all x ≥ 1 and all
y > 0,

P(yZ > x)

P(Z > x)
≤ C(y ∨ 1)α+ε. (6.1)

Proof. If y ≤ 1 then P(yZ > x) ≤ P(Z > x), so the requested bound holds trivially with
C = 1. Assume now that y ≥ 1. Then, by Markov’s inequality,

P(yZ > x) ≤ P(Z > x) + P

(
Z1{Z≤x} >

x

y

)
≤ P(Z > x) + x−α−εyα+ε E[Zα+ε1{Z≤x}].

(6.2)
Next, by [5, Theorem 8.1.2] or [17, Theorem VIII.9.2],

lim
x→+∞

E[Zα+ε1{Z≤x}]
xα+ε P(Z > x)

= α

ε
.
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Moreover, the function x → P(Z > x) is decreasing on [0, ∞), and, hence, bounded away
from 0 on compact sets of [0, ∞). Thus, there exists a constant C (that does not depend on x and
y) such that, for all x ≥ 1,

E[Zα+ε1{Z≤x}]
P(Z > x)

≤ Cxα+ε. (6.3)

Substituting (6.3) into (6.2) yields, for all x, y ≥ 1,

P(yZ > x)

P(Z > x)
= 1 + Cyα+ε.

This concludes the proof of (6.1).

Proof of Lemma 2.1. Under the assumption of independence between the sequences {Zi}
and {ηi}, as already mentioned, Y0 is tail equivalent to Z0 and Y0Yh is tail equivalent to Z0Z1 for
all h. Properties (2.6), (2.7), and (2.8) are straightforward. We need to prove (2.9) and (2.10).
Since Z0 is independent of σj and Zj , by conditioning we have

n P(|Y0| > anx, |Y0Yj | > bnx) = E

[
nF̄|Z|

(
anx

σ0
∨ bnx

σ0σj |Zj |
)]

with F|Z| the distribution function of |Z0|. Since an/bn → 0, for any y > 0, it holds that
limn→+∞ nF̄|Z|(bny) = 0. Thus,

nF̄|Z|
(

anx

σ0
∨ bnx

σ0σj |Zj |
)

≤ nF̄|Z|
(

bnx

σ0σj |Zj |
)

→ 0 almost surely.

Moreover, by Lemma 6.2 and the definition of an, for any ε > 0, there exists a constant C such
that

nF̄|Z|
(

anx

σ0
∨ bnx

σ0σj |Zj |
)

≤ nF̄|Z|
(

anx

σ0

)
≤ Cx−α−εσα+ε

0 .

By assumption, (2.3) holds for some q > α. Thus, choosing ε small enough allows us to
apply the bounded convergence theorem and this proves (2.9). Next, to prove (2.10), note that
|Yi | ∧ |Yj | ≤ (σi ∨ σj )(|Zi | ∧ |Zj |). Thus, applying Lemma 6.2, we have

P(|Y0Yi | > x, |Y0Yj | > x) = P(|Z0|σ0(σi |Zi | ∧ σj |Zj |) > x)

≤ C P(|Z0| > x) E[σα+ε
0 (σi ∨ σj )

α+ε] E[(|Zi | ∧ |Zj |)α+ε].
The expectation E[σα+ε

0 (σi ∨ σj )
α+ε] is finite for small enough ε, since assumption (2.3) holds

with q > 2α. Since P(|Z0| > x) = o(P(|Z1Z2| > x)), this yields (2.10) in the LMSV case.

Proof of Lemma 2.2. It suffices to prove the lemma when the random variables Zi are
nonnegative. Under the assumption of the lemma, exp(chη0)Z0 is tail equivalent to Z0. Thus, by
the corollary in [16, p. 245], Z0 exp(chη0)Zh is regularly varying with index α and tail equivalent
to Z0Zh. Since E[Zα

0 ] = ∞, it also holds that P(Z0 > x) = o(P(exp(chη0)Z0Z1 > x));
cf. [14, Equation (3.5)].

Define X̂h = ∑∞
k=1, k �=h ckηh−k . Then X̂h is independent of Z0, η0, and Zh. Since Y0Yh =

exp(X0 + X̂h)Z0 exp(chη0)Zh, we can apply Breiman’s lemma to show that Y0Yh is tail
equivalent to Z0 exp(chη0)Zh, and, hence, to Z0Z1. Thus, (2.6) and (2.8) hold with

d+(h) = β̃
E[exp(α(X0 + X̂h))]
E[exp(α(X0 + X̂1))]

, d−(h) = (1 − β̃)
E[exp(α(X0 + X̂h))]
E[exp(α(X0 + X̂1))]

,

where β̃ is the skewness parameter of Z0 exp(chη0)Zh.
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We now prove (2.10). For fixed i and j such that 0 < i < j , define

σ̂i = σ(X̂i) = exp

( ∞∑
k=1, k �=i

ckηi−k

)
, σ̌i,j = σ(X̌i,j ) = exp

( ∞∑
k=1, k �=j,j−i

ckηj−k

)
.

Define Z̃
(k)
0 = Z0 exp(ckη0) and Vi = exp(cj−iηi). Then

P(Y0Yi > x, Y0Yj > x) = P(σ0σ̂i Z̃
(i)
0 Zi > x, σ0σ̌i,j Z̃

(i)
0 exp(cj−iηi)Zj > x)

≤ P(σ0(σ̂i ∨ σ̌i,j )(Z̃
(i)
0 + Z̃

(j)
0 )(Zi ∧ ViZj ) > x).

Now, (Zi ∧ ViZj ) is independent of σ0(σ̂i ∨ σ̌i,j )(Z̃
(i)
0 + Z̃

(j)
0 ), which is tail equivalent to Z0

by assumption and Breiman’s lemma. Thus, in order to prove (2.10), we only need to show that,
for some δ > α, E[(Zi ∧ ViZj )

δ] < ∞. This is true. Indeed, since E[V q
i ] < ∞ for all q > 1,

we can apply Hölder’s inequality with q arbitrarily close to 1. This yields, for p−1 + q−1 = 1,

E[(Zi ∧ ViZj )
δ] ≤ E[(1 ∨ Vi)

δ(Zi ∧ Zj )
δ] ≤ E1/p[(1 ∨ Vi)

pδ] E1/q [(Zi ∧ Zj )
qδ].

The tail index of (Zi ∧ Zj ) is 2α, and, thus, E1/q [(Zi ∧ Zj )
qδ] < ∞ for any q and δ such that

qδ < 2α. Thus, E[(Zi ∧ViZj )
δ] < ∞ for any δ ∈ (α, 2α) and (2.10) holds. The proof of (2.9)

is similar.

Proof of Lemma 2.3. We omit the proof of the regular variation and the tail equivalence
between Y0Yh and Z0Z1 which is a straightforward consequence of the assumption. We
prove (2.10). Using the notation in the proof of Lemma 2.2, by the subadditivity property
of σ , we have, for j > i > 0 and some constant C,

P(Y0Yi > x, Y0Yj > x)

= P(σ0σ(X̂i + ciη0)Z0Zi > x, σ0σ(X̌i,j + cjη0 + cj−iηi)Z0Zj > x}
≤ P(Cσ0|Z0|{σ(X̂i) + σ(ciη0)}{σ(X̌i,j ) + σ(cjη0) + σ(cj−iηi)}(|Zi | ∧ |Zj |) > x)

≤ P(Cσ0|Z0|σ(X̂i)σ (X̌i,j )(|Zi | ∧ |Zj |) > x)

+ P(Cσ0|Z0|σ(X̂i)σ (cjη0)(|Zi | ∧ |Zj |) > x)

+ P(Cσ0|Z0|σ(X̂i)σ (cj−iηi)(|Zi | ∧ |Zj |) > x)

+ P(Cσ0|Z0|σ(ciη0)σ (X̌i,j )(|Zi | ∧ |Zj |) > x)

+ P(Cσ0|Z0|σ(ciη0)σ (cjη0)(|Zi | ∧ |Zj |) > x)

+ P(Cσ0|Z0|σ(ciη0)σ (cj−iηi)(|Zi | ∧ |Zj |) > x).

Now, under the assumptions of the lemma, each of the last six probabilities can be expressed
as P(Z̃U > x), where Z̃ is tail equivalent to Z0 and U is independent of Z̃ and E[|U |q ] < ∞
for some q > α. Thus, by Breiman’s lemma, Z̃U is also tail equivalent to Z0, and, thus,
P(Y0Yi > x, Y0Yj > x) = O(P(|Z0| > x)) = o(P(|Y0Y1| > x)), which proves (2.10).

6.1. Proof of Propositions 3.1, 3.2, 3.3, and 3.4

We omit some details of the proof, since it is a slight modification of the proofs of
Theorems 3.1 and 3.2 of [11], adapted to a general stochastic volatility with possible leverage
and long memory. Note that the proof of [11, Theorem 3.2] refers to the proof of Theorem 2.4
of [12]. The latter proof uses Condition (2.6) of [12], which rules out long memory.
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The proof is in two steps. In the first step we consider an m-dependent approximation X(m)

of the Gaussian process and prove point process convergence for the corresponding stochastic
volatility process Y (m) for each fixed m. The second step naturally consists in proving that the
limits for the m-dependent approximations converge when m tends to ∞, and that this limit is
indeed the limit of the original sequence.

Step 1. Let X
(m)
i = ∑m

k=1 ckηi−k and Y
(m)
i = σ(X

(m)
i )Zi , and accordingly define Y

(m)
n,i .

Note that the tail properties of the process {Y (m)
i } are the same as those of the process {Yi}, since

the latter are proved without any particular assumptions on the coefficients cj of expansion (2.2)
apart from square summability. In order to prove the desired point process convergence, as
in the proof of [11, Theorem 3.1], we must check the following two conditions (which are
Equations (3.3) and (3.4) of [11]):

P(Y
(m)
n,1 ∈ ·) v→ νm, (6.4)

lim
k→+∞ lim sup

n→+∞
n

[n/k]∑
i=2

E[g(Y
(m)
n,1 )g(Y

(m)
n,i )] = 0. (6.5)

Here νm is the mean measure of the limiting point process and (6.5) must hold for any continuous
bounded function g, compactly supported on [0, 1] × [−∞, ∞]h \ {0}.

Convergence (6.4) is a straightforward consequence of the joint regular variation and the
asymptotic independence properties (2.9) and (2.10) of Y0, Y0Y1, . . . , Y0Yh. Let us now
prove (6.5). Note first that, because of asymptotic independence, for any fixed i,

lim
n→+∞ n E[g(Y

(m)
n,1 )g(Y

(m)
n,i )] = 0.

Next, by m-dependence, for each k, as n → +∞, we have

n

[n/k]∑
i=2+m+h

E[g(Y
(m)
n,1 )g(Y

(m)
n,i )] = n

[n/k]∑
i=2+m+h

E[g(Y
(m)
n,1 )] E[g(Y

(m)
n,i )]

∼ 1

k
(n E[g(Y

(m)
n,1 )])2

→ 1

k

(∫
g dνm

)2

.

This yields (6.5). Thus, we obtain

n∑
i=1

δ
(i/n,Y

(m)
n,i )

⇒
h∑

l=1

∞∑
k=1

δ
(tk,j

(m)
k,l el )

,

where
∑∞

k=1 δ
(tk,j

(m)
k,0 )

, . . . ,
∑∞

k=1 δ
(tk,j

(m)
k,h )

are independent Poisson processes with respective
mean measures

λ0,m(dx) = α{βmx−α−11(0,∞)(x) + (1 − βm)(−x)−α−11(−∞,0)(x)} dx, (6.6)

λs,m(dx) = α{d(m)
+ (s)x−α−11(0,∞)(x) + d

(m)
− (s)(−x)−α−11(−∞,0)(x)} dx, (6.7)

where the values of d
(m)
+ (s) and d

(m)
− (s) depend on the process considered and

βm = β E[σα(X(m))]
E[σα(X)] .
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Step 2. We must now prove that
Nm ⇒ N (6.8)

as m → +∞ and that, for all η > 0,

lim
m→+∞ lim sup

n→+∞
P(�(Nn, N

(m)
n ) > η) = 0, (6.9)

where � is the metric inducing the vague topology; cf. Equations (3.13) and (3.14) of [11]. To
prove (6.8), it suffices to prove that

lim
m→+∞ βm = β, (6.10)

lim
m→+∞ d

(m)
+ (s) = d+(s), lim

m→+∞ d
(m)
− (s) = d−(s). (6.11)

To prove (6.9), as in the proof of [11, Theorem 3.3], it suffices to show that, for all ε > 0,

lim
m→+∞ lim sup

n→+∞
n P(a−1

n |Y0 − Y
(m)
0 | > ε) = 0, (6.12)

lim
m→+∞ lim sup

n→+∞
n P(b−1

n |Y0Ys − Y
(m)
0 Y (m)

s | > ε) = 0. (6.13)

If (2.3) holds for some q > α and if σ is continuous, then (6.10) holds by bounded convergence,
in both the LMSV case and the case of leverage. We now prove (6.12). Since Y0 and Z0 are
tail equivalent, by Breiman’s lemma we have

lim sup
n→+∞

n P(a−1
n |Y0 − Y

(m)
0 | > ε) ≤ Cε−α E[|σ(X

(m)
0 ) − σ(X0)|α].

The continuity of σ , assumption (2.3) with q > α, and the bounded convergence theorem imply
that limm→+∞ E[|σ(X

(m)
0 ) − σ(X0)|α] = 0. This proves (6.12) in both the LMSV case and

the case of leverage. We now split the proofs of (6.11) and (6.13) between the LMSV and
leverage cases.

LMSV case. In this case we have

d
(m)
+ (s) = d+(s)

E[σα(X
(m)
0 )σα(X

(m)
s )]

E[σα(X0)σα(Xs)] , d
(m)
− (s) = d−(s)

E[σα(X
(m)
0 )σα(X

(m)
s )]

E[σα(X0)σα(Xs)] .

For s = 1, . . . , h, define

Wm,s = σ(X
(m)
0 )σ (X(m)

s ) − σ(X1)σ (X1+s).

The continuity of σ implies that Wm,s
p−→ 0 as m → +∞. Under the Gaussian assumption,

X(m) d= umX for some um ∈ (0, 1). Thus, if (2.3) holds for some q ′ > α then it also holds that

sup
m≥1

E[σq ′
(X(m))] < ∞;

hence Wm converges to 0 in Lq for any q < q ′. Likewise, since assumption (2.3) holds for
some q ′ > 2α, Wm,s converges to 0 in Lq for any q < q ′. Since |Wm| and |Wm,s | converge to 0
in Lα , d(m)

+ (s) and d
(m)
− (s) converge to the required limits. We now prove (6.13). Since Z0Zs is
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tail equivalent to Y0Y1, by another application of Breiman’s lemma, we obtain, for s = 1, . . . , h

and ε > 0,

lim sup
n→+∞

P(b−1
n |Y0Ys − Y

(m)
0 Y (m)

s | > ε) ≤ lim sup
n→+∞

n P(b−1
n |Z0Zs ||Wm,s | > Cε)

≤ C−αε−α E[|Wm,s |α],
which converges to 0 as m → +∞. This concludes the proof of (6.13) in the LMSV case.

To prove (6.13) in the case of leverage, we further split the proof between the cases σ(x) =
exp(x) and σ subadditive.

Case of leverage with σ(x) = exp(x). Define

X̂s =
∞∑

j=1, j �=s

cj ηs−j , X̂(m)
s =

m∑
j=1, j �=s

cj ηs−j ,

and
W̃m,s = | exp(X0 + X̂s) − exp(X

(m)
0 + X̂(m)

s )|.
As previously, we see that W̃m,s converges to 0 in Lq for some q > α. Thus, we obtain

n∑
i=1

δ
(i/n,Y

(m)
n,i )

⇒
h∑

s=0

∞∑
k=1

δ
(tk,j

(m)
k,s es )

as n → +∞,

where
∑∞

k=1 δ
(tk,j

(m)
k,0 )

, . . . ,
∑∞

k=1 δ
(tk,j

(m)
k,h )

are independent Poisson processes with respective

mean measures λs,m(dx), s = 0, . . . , h, defined in (6.6)–(6.7) with the constants d
(m)
+ (s) and

d
(m)
− (s) that appear therein given by

d
(m)
+ (s) = d+(s)

E[exp(α(X
(m)
0 + X̂

(m)
s ))]

E[exp(α(X0 + X̂s))]
, d

(m)
− (s) = d−(s)

E[exp(α(X
(m)
0 + X̂

(m)
s ))]

E[exp(α(X0 + X̂s))]
.

Since |W̃m,s | converges to 0 in Lq , we obtain

∞∑
k=1

δ
(tk,j

(m)
k,s )

⇒
∞∑

k=1

δ(tk,jk,s ) as m → +∞, s = 0, . . . , h.

Then, for s = 1, . . . , h, we obtain, with Z̃
(s)
0 = Z0 exp(csη0), for ε > 0,

lim sup
n→+∞

n P(b−1
n |Y0Ys − Y

(m)
0 Y (m)

s | > ε) = lim sup
n→+∞

n P(b−1
n |Z0Z̃

(s)
0 ||W̃m,s | > ε)

≤ Cε−α E[|W̃m,s |α],
which converges to 0 as m → +∞. This proves (6.13) and concludes the proof in the case of
leverage with σ(x) = exp(x).

Case of leverage with σ subadditive. We have to bound

n P(|Z0Zs ||σ(X0)σ (Xs) − σ(X
(m)
0 )σ (X(m)

s )| > εbn).

It suffices to bound two terms:

I1(n, m) = n P(|Z0Zs ||σ(X0) − σ(X
(m)
0 )|σ(X(m)

s ) > εbn),

I2(n, m) = n P(|Z0Zs |σ(X0)|σ(Xs) − σ(X(m)
s )| > εbn).
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Recall that X
(m)
s = X̂

(m)
s + csη0 and Xs = X̂s + csη0. By the subadditivity of σ , we have, for

some constant δ,

I1(n, m) ≤ n P(|Z0Zs ||σ(X0) − σ(X
(m)
0 )|σ(X̂(m)

s ) > Cεbn)

+ n P(|Z0Zs ||σ(X0) − σ(X
(m)
0 )|σ(csη0) > δεbn).

The product Z0Zs is independent of |σ(X0) − σ(X
(m)
0 )|σ(X̂

(m)
s ) and tail equivalent to Y0Y1;

thus, we obtain

lim sup
n→+∞

n P(|Z0Zs ||σ(X0) − σ(X
(m)
0 )|σ(X̂(m)

s ) > δεbn)

≤ Cε−α E[|σ(X0) − σ(X
(m)
0 )|ασα(X̂(m)

s )].
We have already seen that σ(X

(m)
0 ) converges to σ(X0) in Lα; thus, the latter expression

converges to 0 asm → +∞. By assumption, σ(csη0)|Z0Zs | is either tail equivalent to |Z0Zs |or
E[σq(csη0)|Z0Zs |q ] < ∞ for some q > α, and since it is independent of |σ(X0) − σ(X

(m)
0 )|,

we obtain

lim sup
n→+∞

n P(σ (csη0)|Z0Zs ||σ(X0) − σ(X
(m)
0 )| > εbn) ≤ Cε−α E[|σ(X0) − σ(X

(m)
0 )|α],

where C = 0 in the latter case. In both cases, this yields

lim
m→+∞ lim sup

n→+∞
n P(σ (csη0)|Z0Zs ||σ(X0) − σ(X

(m)
0 )| > εbn) = 0.

Thus, we have obtained limm→+∞ lim supn→+∞ I1(n, m) = 0.
For the term I2(n, m), we use assumption (3.2) with x = csη0, y = X̂s , and z = X̂

(m)
s . Thus,

I2(n, m) ≤ n P(|Z0Zs |(σ (csη0) ∨ 1)W̃m,s > εbn),

with
W̃m,s = σ(X0){(σ (X̂s) ∨ 1) + (σ (X̂(m)

s ) ∨ 1)}|X̂s − X̂(m)
s |.

Note that W̃m,s is independent of |Z0Zs |(σ (csη0)∨1) and W̃m,s converges to 0 when m → +∞
in Lq for some q > α. Since |Z0Zs |σ(csη0) is tail equivalent to |Y0Y1| or has a finite moment
of order q ′ for some q ′ > α, we have

lim sup
n→+∞

n P(|Z0Zs |(σ (csη0) ∨ 1)W̃m,s > εbn) ≤ C E[W̃α
m,s],

where the constant C can be 0 in the latter case. In both cases, we conclude that

lim
m→+∞ lim sup

n→+∞
n P(|Z0Zs |(σ (csη0) ∨ 1)W̃m,s > εbn) = 0.

6.2. Proof of Theorem 4.1

We start by studying Sp,n. Write

[nt]∑
i=1

(|Yi |p − E[|Y0|p]) =
[nt]∑
i=1

(|Yi |p − E[|Yi |p | Fi−1]) +
[nt]∑
i=1

(E[|Yi |p | Fi−1] − E[|Y0|p])

=: Mn(t) + Rn(t).
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Note that E[|Yi |p | Fi−1] = E[|Z0|p]σp(Xi) is a function of Xi and does not depend on Zi .
Then, by [2, Theorem 6], for τp(1 − H) < 1

2 , we have

n−1ρ
−τp/2
n Rn

D⇒ Jτp (σp) E[|Z1|p]
τp! Rτp,H . (6.14)

If τp(1 − H) > 1
2 then by [2, Theorem 4] we obtain

n−1/2Rn
D⇒ ς E[|Z0|p]B, (6.15)

where B is the standard Brownian motion and ς2 = var(σp(X0)) + 2
∑∞

i=1 cov(σp(X0),

σp(Xi)). We will show that, under the assumptions of Theorem 4.1, we have

a
−p
n Mn

D⇒ Lα/p. (6.16)

Convergences (6.14), (6.15), and (6.16) conclude the proof of the theorem. We now prove (6.16).
The proof is very similar to the proof of the convergence of the partial sum of an i.i.d. sequence
in the domain of attraction of a stable law to a Lévy stable process. The differences are some
additional technicalities. See, e.g. [27, Proof of Theorem 7.1] for more details. For 0 < ε < 1,
decompose it further as

Mn(t) =
[nt]∑
i=1

{|Yi |p1{|Yi |<εan} − E[|Yi |p1{|Yi |<εan} | Fi−1]}

+
[nt]∑
i=1

{|Yi |p1{|Yi |>εan} − E[|Yi |p1{|Yi |>εan} | Fi−1]}

=: M(ε)
n (t) + M̃(ε)

n (t).

The term M̃
(ε)
n (·) is treated using the point process convergence. Since, for any ε > 0, the

summation functional is almost surely continuous from the set of Radon measures on [0, 1] ×
[ε, ∞) onto D([0, 1], R) with respect to the distribution of the Poisson point process with mean
measure ν0 (see, e.g. [27, p. 215]), from Proposition 3.1 we conclude that

a
−p
n

[n·]∑
i=1

|Yi |p1{|Yi |>εan}
D⇒

∑
tk≤(·)

|jk|p1{|jk |>ε}. (6.17)

Taking the expectation in (6.17) we obtain

lim
n→+∞[nt]a−p

n E[|Y0|p1{|Y1|>εan}] = t

∫
{x : |x|>ε}

|x|pλ0(dx) (6.18)

uniformly with respect to t ∈ [0, 1] since it is a sequence of increasing functions with a
continuous limit. Furthermore, we claim that

a
−p
n

∣∣∣∣
[nt]∑
i=1

{E[|Y0|p1{|Y1|>εan}] − E[|Yi |p1{|Yi |>εan} | Fi−1]}
∣∣∣∣ p−→ 0 (6.19)

uniformly in t ∈ [0, 1]. We use the variance inequality (A.3) below to bound the variance of
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the last expression by

a
−2p
n [nt]2ρ[nt] var(E[|Y1|p1{|Y1|>εan} | F0]) ≤ a

−2p
n [nt]2ρ[nt] E[(E[|Y1|p1{|Y1|>εan} | F0])2].

If p < α < 2p, by Karamata’s theorem (see [27, p. 25]) and Potter’s bound,

E[σp(x)|Z1|p1{|σ(x)Z1|>εan}] ≤ Cn−1a
p
n

F̄Z(εan/σ(x))

F̄Z(an)
≤ Cn−1a

p
n σα+ε(x).

Since, by assumption, E[σ 2α+2ε(X0)] < ∞ for some ε > 0, for each t , we have

var

(
a

−p
n

[nt]∑
i=1

{E[|Y0|p1{|Y0|>εan}] − E[|Yi |p1{|Yi |>εan} | Fi−1]}
)

≤ Cn−2[nt]2ρ[nt]

≤ Cn2H−2+εt2H−ε,

where the last bound is obtained for some ε > 0 by Potter’s bound. This proves convergence
of the finite-dimensional distribution to 0 and tightness in D([0, 1], R). As in [27, p. 216], we
now argue that (6.17), (6.18), and (6.19) imply that

a
−p
n M̃(ε)

n
D⇒ L

(ε)
α/p,

and it also holds that L
(ε)
α/p

D⇒ Lα/p as ε → 0. Therefore, to show (6.16), it suffices to show

the negligibility of a
−p
n M

(ε)
n . By Doob’s martingale inequality we obtain

E

[(
sup

t∈[0,1]
a

−p
n

[nt]∑
i=1

{|Yi |p1{|Yi |<εan} − E[|Yi |p1{|Yi |<εan} | Fi−1]}
)2]

≤ Cna
−2p
n E[(|Y1|p1{|Y1|<εan} − E[|Y1|p1{|Y1|<εan} | F0])2]

≤ 4Cna
−2p
n E[|Y1|2p1{|Y1|<εan}].

Recall that α < 2p. By Karamata’s theorem (see [27, p. 25]),

E[|Y1|2p1{|Y1|<εan}] ∼ 2α

2p − α
(εan)

2pF̄Y (εan) ∼ 2α

2p − α
ε2p−αa

2p
n n−1.

Applying this and letting ε → 0 we conclude that a
−p
n M

(ε)
n is uniformly negligible in L2 and

so in probability, and, thus, we conclude that a
−p
n Mn

D⇒ Lα/p.
For p > α, E[|Y0|p] = ∞. In that case it is well known (see, e.g. [10, Theorem 3.1]) that the

convergence of a
−p
n Sp,n to an α/p-stable Lévy process follows directly from the convergence of

the point process
∑n

i=1 δYi/an to a Poisson point process, and that no centering is needed. In the
present context, this entirely dispenses with the conditioning argument and the long-memory
part does not appear. Therefore, convergence to a stable Lévy process always holds.

As for the sum Sn, since E[Y0] = E[Z0] = 0, the long-memory part Rn is identically
vanishing, and, thus, in this case also, only the stable limit arises.
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6.3. Proof of Theorem 5.2

Let Ui = |YiYi+s |. We now write

n∑
i=1

(U
p
i − E[Up

0 ]) =
n∑

i=1

(U
p
i − E[Up

i | Fi−1]) +
n∑

i=1

(E[Up
i | Fi−1] − E[Up

0 ])

= Mn,s +
n∑

i=1

K∗
p(Xi, X̂i,s)

= Mn,s + Tn,s .

As mentioned above, the second part is the partial sum of a sequence of a function of the bivariate
Gaussian sequence (Xi, X̂i,s). The proof of the convergence to a stable law mimics the proof
of Theorem 4.1. We split Mn,s between big jumps and small jumps. Write M

(ε)
n,s + M̃

(ε)
n,s , with

M(ε)
n,s =

n∑
i=1

(U
p
i 1{Ui≤bnε} − E[Up

i 1{Ui≤bnε} | Fi−1]).

The point process convergence yields the convergence of the big jumps part by the same
argument as in the proof of Theorem 4.1. In order to prove the asymptotic negligibility of the
small jumps part, the only change that has to be made comes from the observation that M̃

(ε)
n,s is

no longer a martingale. However, assuming for simplicity that we have (s + 1)n observations
Yi , we write, with Ui,k = U(s+1)i−k = |Y(s+1)i−kY(s+1)i+s−k|,

M(ε)
n,s =

s∑
k=0

n∑
i=1

{Up
i,k1{Ui≤bnε} − E[Up

i,k1{Ui≤bnε} | F(s+1)i−k−1]} =:
s∑

k=0

M
(ε)
n,s,k.

Clearly, each M
(ε)
n,s,k, k = 0, . . . , s, is a martingale with respect to the filtration {Fi(s+1),

1 ≤ i ≤ n}; therefore, we can apply Doob’s inequality and conclude the proof with the
same arguments as previously.

6.4. Proof of Theorem 5.3

Again, we mimic the proof of Theorem 4.1; however, some technical modifications are
needed. We use the decomposition between small jumps and big jumps. To prove negligibility
of the small jumps, we use the same splitting technique as in the proof of Theorem 5.2. To deal
with the big jumps, the only adaptation needed is to obtain a bound for the quantity

b
−2p
n n2ρn E[(E[|Y0Ys |p1{|Y0Ys |>εbn} | F−1])2]. (6.20)

To show that (6.19) still holds in the present context, we must prove that the expectation in (6.20)
is of the order n−2b

2p
n . The rest of the arguments to prove the convergence of the big jumps part

remains unchanged. Note that E[|Y0Ys |p1{|Y0Ys |>εbn} | F−1] = G(X0, X̂0,s); thus, we need an
estimate for the bivariate function

G(x, y) = σp(x) E[|Z0Zs |pσp(csη0 + ςsζ + y)1{|Z0Zs |σ(csη0+ςsζ+y)>εbn}],
where ζ is a standard Gaussian random variable, independent of Z0, η0, and Zs . We obtain this
estimate first in the case σ(x) = exp(x) and then for subadditive functions.
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Let σ(x) = exp(x). As in the proof of point process convergence, we write

Y0Ys = Z0Zs exp(csη0) exp(X0 + X̂s).

By Lemma 2.2, Z0Zs exp(csη0) is regularly varying and tail equivalent to Z0Zs . Since
exp(pςsζ ) is independent of Z0Zs exp(csη0) and has finite moments of all orders, we find
that Z0Zs exp(csη0) exp(pςsζ ) is also tail equivalent to Z0Zs , and, hence, to Y0Y1. Thus, by
Karamata’s theorem and Potter’s bounds, we obtain, for some δ > 0,

G(x, y) = exp(p(x + y))

× E[|Z0Zs |p exp(pcsη0) exp(pςsζ )1{|Z0Zs | exp(pcsη0) exp(ςsζ )>εbn exp(−y)}]
≤ Cn−1b

p
n exp(px) exp((p − α + δ)(y ∨ 0)).

Since the log-normal distribution has finite moments of all orders, we obtain E[G2(X0, X̂0,s)] =
O(n−2b

2p
n ), which is the required bound. This concludes the proof in the case σ(x) = exp(x).

Now let the assumptions of Proposition 3.4 be in force. Using the subadditivity of σp, we
obtain G(x, y) ≤ ∑4

i=1 Ii(x, y) with

I1(x, y) = σp(x) E[|Z0Zs |pσp(ϑs)1{|Z0Zs |σ(ϑs)>εbn}],
I2(x, y) = σp(x) E[|Z0Zs |pσp(y)1{|Z0Zs |σ(y)>εbn}],
I3(x, y) = σp(x) E[|Z0Zs |pσp(ϑs)1{|Z0Zs |σ(y)>εbn}],
I4(x, y) = σp(x) E[|Z0Zs |pσp(y)1{|Z0Zs |σ(ϑs)>εbn}],

where for brevity we have definedϑs = csη0+ςsζ . We now give the bounds for E[I 2
j (X0,X̂0,s)],

j = 1, 2, 3, 4. Since, by the assumptions, |Z0Zs |σ(ϑs) is tail equivalent to |Z0Zs |, Karamata’s
theorem yields

σp(x) E[|Z0Zs |pσp(ϑs)1{|Z0Zs |σ(ϑs)>εbn}] ≤ Cn−1b
p
n σp(x),

and since E[σ 2p(X0)] < ∞ by assumption, we obtain, by integrating, E[I 2
1 (X0, X̂0,s)] =

O(n−2b
2p
n ). For I2, again using Karamata’s theorem and Potter’s bound, we obtain, for some

δ > 0,

σp(x) E[|Z0Zs |pσp(y)1{|Z0Zs |σ(y)>εbn}] ≤ Cn−1b
p
n σp(x)(σ (y) ∨ 1)p−α+δ.

Since |Z0|σ(ϑs) is tail equivalent to |Z0| and Zs is independent of Z0σ(ϑs), we easily obtain
a bound for the tail of |Z0Zs |(σ (ϑs) ∨ 1):

P(|Z0Zs |(σ (ϑs) ∨ 1) > x) ≤ P(|Z0Zs |σ(ϑs) > x) + P(|Z0Zs | > x) ≤ C P(Z0Zs > x)

for large x. Thus, applying Karamata’s theorem and Potter’s bound to |Z0Zs | yields, for some
arbitrarily small δ > 0,

I3(x, y) ≤ Cσp(x) E[|Z0Zs |p1{σ(y)|Z0Zs |>εbn}] ≤ Cn−1b
p
n σp(x)(σ (y) ∨ 1)α+δ,

and, thus, we conclude that E[I 2
3 (X0, X̂0,s)] = O(n−2b

2p
n ). Finally, we write,

I4(x, y) ≤ σp(x)σp(y) E[|Z0Zs |p(σp(ϑs) ∨ 1)1{|Z0Zs |(σ (ϑs)∨1)>εbn}]
and by the same argument as for I3 we obtain E[I 2

4 (X0, X̂0,s)] = O(n−2b
2p
n ).
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Appendix A. Gaussian long-memory sequences

For the sake of completeness, we recall in this appendix the main definitions and results
pertaining to Hermite coefficients and expansions of square-integrable functions with respect
to a possibly nonstandard multivariate Gaussian distribution. Expansions with respect to the
multivariate standard Gaussian distribution are easy to obtain and describe. The theory for
nonstandard Gaussian vectors is more cumbersome. The main reference is [2].

A.1. Hermite coefficients and rank

Let G be a function defined on R
k , and let X = (X(1), . . . , X(k)) be a k-dimensional centered

Gaussian vector with covariance matrix �. The Hermite coefficients of G with respect to X

are defined as

J (G, X, q) = E

[
G(X)

k∏
j=1

Hqj
(X(j))

]
,

where q = (q1, . . . , qk) ∈ N
k . If � is the k × k identity matrix (denoted by Ik), i.e. the

components of X are i.i.d. standard Gaussian, then the corresponding Hermite coefficients are
denoted by J ∗(G, q). The Hermite rank of G with respect to X is the smallest integer τ such
that

J (G, X, q) = 0 for all q such that 0 < |q1 + · · · + qk| < τ.

A.2. Variance inequalities

Now consider a k-dimensional stationary centered Gaussian process {Xi , i ≥ 0} with
covariance function ρn(i, j) = E[X(i)

0 X
(j)
n ], and assume that either

∞∑
n=0

|ρn(i, j)| < ∞ for all 1 ≤ i, j ≤ k (A.1)

or there exist H ∈ ( 1
2 , 1) and a function � slowly varying at ∞ such that

lim
n→+∞

ρn(i, j)

n2H−2�(n)
= bi,j , (A.2)

where the bi,j s are not identically 0. Define ρn = n2H−2�(n). Then, we have the following
cases.

• If (A.2) holds and 2τ(1 − H) < 1, then, for any function G with Hermite rank τ with
respect to X0,

var

(
n−1

n∑
j=1

G(Xj )

)
≤ Cρτ

n var(G(X0)). (A.3)

• If (A.2) holds and 2τ(1 − H) > 1, then, for any function G with Hermite rank τ with
respect to X0,

var

( n∑
j=1

G(Xj )

)
≤ Cn var(G(X0)). (A.4)

• If (A.1) holds then (A.4) still holds.

In all these cases, the constant C depends only on the Gaussian process {Xi} and not on
the function G. Bounds (A.3) and (A.4) are Equations 3.10 and 2.40 of [2], respectively.
Bound (A.4), under assumption (A.1), is a consequence of Equation 2.18 of [2, Theorem 2].
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A.3. Limit theorems

We now recall [2, Theorem 6]. Again, let {Xi} be a stationary sequence of k-dimensional
Gaussian vectors with covariance matrix G and such that (A.2) holds, and let τ be the Hermite
rank of G with respect to X0. If τ(1 − H) < 1

2 , there exists a process RG,τ,H such that

1

nρ
τ/2
n

[n·]∑
i=1

(G(Xi ) − E[G(X0)]) D⇒ RG,τ,H .

In particular, if k = 1 then

1

nρ
τ/2
n

[n·]∑
i=1

{G(Xi) − E[G(X0)]} D⇒ Jτ (G)

τ ! Rτ,H ,

where Jτ (G) = E[G(X1)Hτ (X1)] and Rτ,H is the so-called Hermite or Rosenblatt process of
order τ , defined as a τ -fold stochastic integral

Rτ,H (t) = K1(τ, H)

∫ ∞

−∞
· · ·

∫ ∞

−∞
exp(it (x1 + · · · + xτ )) − 1

x1 + · · · + xτ

×
τ∏

i=1

x
−H+1/2
i W(dx1) · · · W(dxτ ),

where W is an independently scattered Gaussian random measure with Lebesgue control
measure and

K2
1 (τ, H) = (τ (H − 1) + 1)(2τ(H − 1) + 1)

τ ! {2�(2 − 2H) sin π(H − 1/2)}τ .

In particular, for τ = 1, then the limiting process is the fractional Brownian motion, which is
a Gaussian process, so

1

nρ
1/2
n

n∑
i=1

{G(Xi) − E[G(X0)]} d−→ N

(
0,

J (1)

H(2H − 1)

)
.

On the other hand, if 1 − τ(1 − H) < 1
2 then

1√
n

[n·]∑
i=1

{G(Xi) − E[G(X0)]} D⇒ ςB,

where B is the standard Brownian motion and ς2 = var(G(X0))+2
∑∞

j=1 cov(G(X0), G(Xj )),
the latter series being absolutely summable.
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