SOLUTIONS

P 57. Let m,n be relatively prime positive integers:
(m,n) =1. Write

() (1-x)(1-x)

(1-x " )(1-%")

and show

(i) f(x) is a polynomial of degree (m-1)(n-1) whose non-
zero coefficients are alternately +1 and -1 .

(ii) the number of non-zero coefficients is
Mm + Nn - 2MN
where M, N are integers defined by Mm - Nn=1, 0< M<n .
J.D. Dixon, California Institute of Technology

Solution by L. Carlitz, Duke University.

It follows from
Mm - Nn = 1

that

Mo - (1- P (NP L M

(1-x )(1-x")

) .

O i YOO "aio WO U B i (B
(1-x ) (1-x") (1-x )(1-x")
U xn(m-“)(i P M
-1+ xm+ R xm(n-‘i))(i x4 xn(N-“
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Clearly f{(x) is a polynomial.
Now if
rn+ sm = pm + gn

where 0<r<m, 0<s<M, 0£p<n, 05q<N, it
follows at once that

(r-g)n = (p-s)m ,

so that n | p-s, which implies p=s , g=r. Consequently
we get
N +sm m+gn
) x "fx) = =T x" S
N<r<m M<p<n
0<s<M 0<q<N

Moreover there is no further cancellation. Hence the number
of non-vanishing terms on the right of (*) (which is also the
number of terms in f(x)) is equal to

M{m-N) + N(n-M) = Mm + Nn - 2MN ,

as asserted.

Finally to show that the nonvanishing coefficients in £(x)
are alternately positive and negative, we write

)
f(x) = (1-x)(1 + x + ...+ xm(n_“) = m
r=0
n-1 0 +
- (1-x) = = rntsm
s =0 r=0
Since deg f(x) = (m-1)(n-1) we need only consider those terms
in which r<m . Thus we have
k1 k2 k3
flx) = (1-x)(1+x  +x " +x  +...)4+ ...
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where 0 < k1 < k‘2 < k3 <.... Itfollows that

k k +1 k k_+1
1 2

f(x):i-x+x1—x +x  -x + ...

The assertion about the alternating signs is now evident. For

example if k1 =1, k_, =3, we get

2
2 3

flx) =1-x +x - ....

Also solved by N. Kimura and the proposer.

Editor's comment: This problem has some connection with the
following:

If ezmn-m-n, (m,n)=1, show that every integer
k> e is represented by

sm+yn, x>0, y>0
x and y integers
and of the integers in the interval [0,e] exactly half are
represented. (This can be proved by observing that k is
represented if and only if e - k is not; since k< 0 is not
represented, every k> e is; and the statement about [0, e]

also follows immediately.)

If v(k) denotes the number of representations, clearly

© K 1
Z v(kx = glx) = ————
k=0 (1-x M1-x)
-1 b
ai a2 m r
T ti= T T
(1-x) r=1 (1-p x)
n-1 C
+ = S

s=1 (1-0 sx)

where
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p = exp (2mi/m) ,
o = exp (27i/n)

The numerators of the partial fractions are easily evaluated:

_ 1/ _ m+n-2"
a, = mn , 2 T omn
1 1
t m(i-p ) n(1-o )
Comparing coefficients we obtain
v(k) = k m+n
mn 2mn
1 m-1 kr 1 n-1 ks
+— Z £ +— Z £
- -ms
Moo 1-p e s=1 1-p m
k
*Ta t O(1) .

For example, the number of solutions of k =2x 4+ 3y is

k 5 1 k

v(k) = 3 +T2- +Z(_1)
+1cos 2wk 1 s 2wk
3°9°737 T303 M3

Returning to the original problem, if

e+1

f = d
(x) d0 + 1x + + de+1x

then

e+1
1-x X - d + ... + d X

+ higher terms;
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thus

dk = v(k) - v(k-1) (k=0,1,...,e+1), (and therefore

v(k):d0+d1+... +dk, k=0,...,e+1). For the above
example this is

1 1 k 1 2tk
d = —+—=(- - =
K 6+2(1)+3cos3
1 s 2tk
J3 T3
and in general
m-1 rk -r
k mn m r=1 i - p-rn
A n-1 0_sk(i_o_ s)
n s=1 1 - F oS

P 60. Let [x] denote the largest integer not exceeding x.
Prove that

M s

[Ni] = [Nn] (én - 2[«fn]2 - 3[Nn] + 5)/6 .

n=1

Can one give a simpler closed eXpression for the left hand side?
Leo Moser, iJniversity of Alberta

See the note by H. W. Gould on page 275.

Also solved by L. Artiaga, M. M. Brisebois, L. Carlitz,
T.M. K. Davison, N. Kimura, and the proposer.

P 61. Find all solutions of &¢(n) = T(n) . Here ¢(n) is
Euler's totient function and T(n) is the number of divisors of
n.

Leo Moser, University of Alberta
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Solution by W.J. Blundon, Memorial University of
Newfoundland.

It is required to solve in integers the equation Q(n) =1,
where Q(n) =¢(n)/7T(n). Since ¢(n) and T(n) are multipli-
cative, so is Q(n) .

-1 -1

If p>q(p, q primes), then Q(p) =-I-)-2— >q—2—
that, for p prime, Q(p) increases strictly with p. Also,

for k>1, Q(pk+1)/Q(pk) = p(1+k)/(2+k) > 2(1+k)/(2+k) > 1,

=0Q(q) , so

k
so that, for fixed p, Q(p ) increases strictly with k.
k
Clearly min Q(p ) =Q(2) =1/2.

k
Enumerating all Q(p ) <2, we have

Q(2) = 1/2 Q(3) =1 Q(5) = 2
Q(4) = 2/3 Q(9) = 2

Q) =1

Q(16) = 8/5

Using the fact that Q(n) is multiplicative, we easily enumerate
the complete set of solutions to Q(n) =1 as follows:

1 = Q(3)

1 = Q(8)

1 = Q(2). Q(5) = Q(10)

1 = 0Q(2). Q) = Q(18)

1 = Q(3). Q(8) = Q(24)

1 = Q(2). Q(3). Q(5) = Q(30) .

Thus all solutions of ¢(n) =7(n) are given by

n =1, 3, 8, 10, 18, 24, 30 .

Also solved by 1. Carlitz, N. Kimura, M.V. Subba Rao,
and the proposer.
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