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Topological Quantum Field Theory
and Strong Shift Equivalence
Patrick M. Gilmer

Abstract. Given a TQFT in dimension d + 1, and an infinite cyclic covering of a closed (d + 1)-dimensional
manifold M, we define an invariant taking values in a strong shift equivalence class of matrices. The notion
of strong shift equivalence originated in R. Williams’ work in symbolic dynamics. The Turaev-Viro module
associated to a TQFT and an infinite cyclic covering is then given by the Jordan form of this matrix away from
zero. This invariant is also defined if the boundary of M has an S1 factor and the infinite cyclic cover of the
boundary is standard. We define a variant of a TQFT associated to a finite group G which has been studied by
Quinn. In this way, we recover a link invariant due to D. Silver and S. Williams. We also obtain a variation on
the Silver-Williams invariant, by using the TQFT associated to G in its unmodified form.

Introduction

In this paper, we will describe a relation between a knot invariant defined by D. Silver and
S. Williams [9], [10], [11], [12], and Topological Quantum Field Theory (TQFT). As a
result, we will be able to give a new approach to the work of Silver and Williams. The
theorem of R. Williams which states that two shifts of finite type are conjugate if and only
if their adjacency matrices are strong shift equivalent (SSE) over the nonnegative integers
is replaced in our approach by the theorem which states that two Seifert surfaces for the
same link are stably equivalent. Both theorems have elementary proofs. In this sense, the
approach one might prefer depends on what one already knows and feels comfortable with.

The connection that we are exploring between TQFT and symbolic dynamics is a two
way street. Borrowing the idea of strong shift equivalence from symbolic dynamics allows
us to define, given a TQFT, an invariant of an infinite cyclic covering that is in principle
stronger than the associated Turaev-Viro module [4], [5]. We have found a new invariant
analogous to the Silver-Williams invariant by using a TQFT associated to a finite group as
discussed by Quinn [16]. On the other hand, Silver and Williams are finding further results
in their approach based on this connection.

In the first section, we will define our SSE-class invariants. We do not actually require
all the axioms of a TQFT. We only need a functor from a (weak) cobordism category to
the category of R-modules over some ring r. In the second section, we discuss Quinn’s ap-
proach to a TQFT associated to a finite group. We also define a variant of it. We discuss the
first indications of the relation between these TQFTs and the work of Silver and Williams.
In the third section, we combine the results of Sections 1 and 2. We discuss the SSE-class
invariants that we obtain in this way, and the relation to the work of Silver and Williams.
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We now give R. Williams’ definition of SSE in its original form. Let A,B be square matri-
ces with nonnegative entries. An elementary equivalence from A to B is a pair of rectangular
matrices (R, S) with nonnegative entries such that A = RS and B = SR. SSE is the equiva-
lence relation generated by elementary equivalences [17], [7]. This is the definition of SSE
that we will use in Section 3. In Section 1, we will generalize this notion.

The initial data used by Silver and Williams is an “augmented group system”, while our
initial data is topological. Thus the results that Silver and Williams obtain apply directly
to questions in combinatorial group theory. The connection we found between their work
and TQFT has led them to study the shift space we describe at the end of Section 3. They
have also found another shift of finite type which allows them to find a linear recursion
formula for the number conjugacy classes of representations of the fundamental group of
the branched cyclic covers of a knot. A future direction suggested by [16, Section 5] is the
introduction of cohomology classes for the finite group G into the initial data. Also needing
further exploration is the use of the more general notion of SSE introduced in Section 1 to
the study of, for instance, the TQFT’s discused in [2].

For convenience we work with smooth oriented manifolds.
We thank Dan Silver and Susan Williams for useful discussions.

1 SSE-Class Invariants

We will consider pairs (M, χ), where M is a compact connected (d + 1)-manifold and χ
is a primitive element in H1(M). Alternatively, χ is an epimorphism from H1(M) to Z.
We can think of χ as a choice of a connected infinite cyclic covering space (together with a
choice of generator for the group of covering translations). If M has boundary, we assume
that the boundary has the form P × S1, for some (d − 1)-manifold P. Moreover we insist
that χ restricted to the boundary is given by the projection on the second factor under the
canonical isomorphism H1(∂M) = H1(P × S1) ≈ H1(P) ⊕ Z. Thus the induced cover of
P× S1 is P× R, with the standard action. We may describe the situation that M is without
boundary by saying that P is empty.

A Seifert manifold for (M, χ) is a connected d-manifold, Σ, Poincaré-Lefshetz dual to
χ ∈ H1(M), such that Σ ∩ ∂M = ∂Σ = P × z, for some z ∈ S1. If d 6= 1, we insist that Σ
be connected.

We consider the following type of elementary modification of a Seifert manifoldΣ. Sup-
pose we have an embedding f of Dk × Dd−k+1 in the interior of M and f (Dk × Dd−k+1) ∩
Σ = f (Sk−1 × Dd−k+1). We assume here that k ≤ d+1

2 . Then we may let Σ ′ denote(
Σ − f (Sk−1 × Dd−k+1)

)
∪ f (Dk × Sd−k) after smoothing. Σ ′ is also a Seifert manifold.

We will say Σ ′ has been obtained by elementary expansion of Σ. The equivalence rela-
tion on Seifert manifolds generated by elementary expansions and isotopies is called stable
equivalence.

Let L be an oriented link in S3. Then we may take M to be the exterior of K together
with χ given by the linking number with L in S3. Then a Seifert manifold for (M, χ) is a
Seifert surface for L in the classical sense.

We have the following generalization of the stable equivalence of Seifert surfaces for
links. It may be proved by adapting the proof given in [6, p. 66]. The case where M is a
classical knot exterior has another elementary proof [1].

https://doi.org/10.4153/CMB-1999-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-023-4


192 Patrick M. Gilmer

Lemma 1.1 Any two Seifert manifolds for (M, χ) are stably equivalent.

Given a Seifert manifold Σ for M, we may consider, EΣ, M slit along Σ. We may view
this as a cobordism rel boundary from−Σ toΣ. Stacking a bi-infinite sequence of copies of
EΣ, we obtain Mχ the infinite cyclic cover of M classified by χ. We note EΣ is a fundamental
domain for the Z action on Mχ.

By a weak cobordism category, we mean the usual notion of cobordism category ex-
cept the operations of disjoint union need not be defined on either objects or morphisms.
See [2] or [16] for the notion of cobordism category. Let C(P) denote the weak cobordism
category whose objects consist of d-manifolds with boundary P and whose morphisms
from object Σ to object Σ ′ are (equivalence classes of) cobordisms rel boundary from−Σ
to Σ ′. We insist that both the objects and morphisms be nonempty connected manifolds
if d 6= 1. As usual, two cobordisms rel boundary from −Σ to Σ ′ are equivalent if there is
a diffeomorphism between them respecting the identification of parts of their boundary to
−Σ
∐
Σ ′.

Let r be a commutative ring. Now suppose that (Z,V ) is a functor from C(P) to the
category of finitely generated r-Modules, and r-Module homomorphisms. We follow the
tradition in TQFT of letting Z denote the application of the functor to morphisms and
letting V denote the application of the functor to objects. Let Z

(
C(P)
)

denote the algebroid
consisting of all the r-Module homomorphisms obtained by applying Z to a morphism of
C(P).

Given A,B ∈ Z
(
C(P)
)

, an elementary equivalence from A to B is a pair of elements
R, S ∈ Z

(
C(P)
)

such that A = RS and B = SR. We define strong shift equivalence (SSE) to
be the equivalence relation on Z

(
C(P)
)

generated by elementary equivalences.

Given A1 : V (Σ) → V (Σ), and A2 : V (Σ) → V (Σ), we will say A1 and A2 are similar if
there exists a diffeomorphism f : Σ → Σ such that Z( f )A1 = A2Z( f ). Here Z( f ) is the
map given by Z(C f ) where C f is the mapping cylinder of f . A similarity is an elementary
equivalence: let R = A1Z( f−1), and S = Z( f ), then RS = A1 and SR = A2. Thus changing
our identification of Σ with a model surface does not change the SSE class of Z(EΣ).

If Σ ′ is an elementary expansion of Σ, let R be formed by attaching a k-handle Dk ×
Dd−k+1 to Σ × I using the embedding f restricted to Sk−1 × Dd−k+1 as an attaching map.
Then R embeds in M so it is a relative cobordism between Σ and a pushed off copy of Σ ′.
Let S denote the closure of EΣ−R. Then S ◦R = EΣ and R ◦ S = EΣ ′ . Thus

(
Z(R),Z(S)

)
is an elementary equivalence between Z(EΣ) and Z(EΣ ′).

Moreover an isotopy betweenΣ andΣ ′ induces compatible diffeomorphisms betweenΣ
and Σ ′ and EΣ and EΣ ′ which yield an elementary equivalence between Z(EΣ) and Z(EΣ ′).

Theorem 1.2 For any two Seifert manifoldsΣ andΣ ′, Z(EΣ) and Z(EΣ ′) are SSE in Z
(
C(P)
)

.

We often may need to consider such extra structure on the manifolds used as objects and
morphisms of C(S) as a p1-structure or a submanifold (of possibly fixed codimension). The
above arguments easily adapt. The Seifert manifolds should be taken in general position
with respect to the submanifold.

In practice, we may not know much about Z
(
C(P)
)

. Then we may replace Z
(
C(P)
)

by
a larger algebroid, for instance all r-module homomorphisms.
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If r is an integral domain, we may tensor with the field of fractions, and then may take the
similarity class of the invertible part of Z(EΣ). This is essentially the Turaev-Viro module
Z(M, χ) discussed in [4] (in the case P = ∅). This procedure is discussed in [7, 7.4] in
the case when r = Z, and the modules are free. There is a weaker notion of equivalence
than strong shift equivalence called shift equivalence. Shift equivalence is easier to analyze
algebraically [7, 7.5]. Z(M, χ) is determined by the shift equivalence class of Z(EΣ). An
example over r = Z given in [7, 7.3.4] shows that shift equivalence is a finer invariant than
the similarity class of the invertible part over Q .

For the functors that we consider in the next section, V (Σ) is always a free Q-vector
space or Z-module with a fixed unordered basis. Diffeomorphisms induce maps on V (Σ)
which preserve this unordered basis. Moreover matrices which represent elements of
Z
(
C(P)
)

with respect to the given bases always have nonnegative integral entries, except
when d = 1 and Z = ZG. For this, it is important that the objects of C(P) be connected.

The above theorem then implies that matrices which represent Z(EΣ) and Z(EΣ ′) with
respect to these bases are SSE in the original sense of R. Williams.

2 Two TQFTs Associated to a Finite Group G

Quinn discusses a TQFT associated to a finite group (ZG,VG). Special cases were earlier
studied by Kontsevich, Dijkgraaf-Witten, Segal and Freed-Quinn [3]. We will generally
follow Quinn’s development [16]. However we depart from Quinn’s use of a single letter Z
for the application of the functor on objects and morphisms.

Quinn discusses how a cobordism category is constructed from a “domain category”
which consists of a pair of categories: “spacetimes” and “boundaries”. (ZG,VG) is defined
on a cobordism category C whose objects (“boundaries”) are finite CW complexes. A mor-
phism from Y1 to Y2 is an equivalence class of finite CW pairs (X,Y ) together with a home-
omorphism f : Y → Y1

∐
Y2 of boundaries. Two such triples (X,Y, f ), and (X ′,Y ′, f ′)

are equivalent if there is a homotopy equivalence G from (X,Y ) to (X ′,Y ′) which makes
the following diagram [16, p. 369] commute.

Y
G|Y
−−−−→ Y ′

f

y
y f ′

Y1
∐

Y2
identity
−−−−→ Y1

∐
Y2

The vector space associated to an object Y is the rational vector space with basis [Y,BG].
If Y is connected and nonempty, this can be identified with hom

(
π1(Y ),G

)
/G, the repre-

sentations of the fundamental group of Y into the group G, modulo the action given by
conjugation by G. Suppose (X,Y ) is a finite CW pair, and Y is provided with a homeo-
morphism to Y1

∐
Y2, where Y1 is to be thought of as the incoming boundary, and Y2 is to

be thought of as the outgoing boundary. Then Z(X,Y ) : V (Y1) → V (Y2) is defined. The
definition of this map in down to earth terms may be given in various cases in terms of the
number of components of Y1 [16, 4.13]. We only mention the two formulas that we will
use. If Y is empty, so X is closed, then Z(X) is an automorphism of V (∅) which is one
dimensional. Thus Z(X) is essentially a rational number. If X is nonempty and connected

https://doi.org/10.4153/CMB-1999-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-023-4


194 Patrick M. Gilmer

and Y is empty, we have:

(2.1) ZG(X) =
∑

[β]∈hom(π1(X),G)/G

1

#Cβ
=

∑
[β]∈hom(π1(X),G)/G

#[β]

#G
=

# hom
(
π1(X),G

)
#G

.

Here we use # to denote the number of elements in a set, and Cβ denotes the centralizer in
G of the image of β. This is taken from [3, 5.14] where we correct a typo.

Suppose X, Y1, and Y2 are all connected and nonempty. Let us pick a path σ in X from
y1 ∈ Y1 to y2 ∈ Y2. σ induces a homomorphism σ∗ : π1(X, y2)→ π1(X, y1), which sends a
loop γ at y2 to the loop σγσ−1 at y1. We may identify V (Yi) with Q

[
hom
(
π1(Y, yi),G

)
/G
]
.

If β : π1(X, y1) → G, let β1 : π1(Y1, y1) → G denote the map induced by inclusion from
π1(Y1, y1)→ π1(X, y1) composed with β. Let β2 : π1(Y2, y2)→ G denote the map induced
by inclusion from π1(Y2, y2)→ π1(X, y2) composed with σ∗ followed by β. For simplicity
we are pretending that the boundary identification f is the identity in these formulas. This
should cause no confusion. If α ∈ hom

(
π1(Y1, y1),G

)

(2.2) ZG(X,Y )
(

[α]
)
=

∑
β∈hom(π1(X,y1),G)3β1=α

[β2].

Given a morphism (X,Y, f ) from Y1 to itself, we may form the mapping torus
T((X,Y, f )) by identifying the two components of Y in X using f . By [16, 7.5], we have
ZG

(
T((X,Y, f ))

)
given by the trace of ZG(X,Y, f ).

Let (M, χ) be as in Section 1, and Σ a Seifert manifold for (M, χ). Let Md denote the
associated d-fold cyclic cover of M. Let EΣ now denote the morphism fromΣ to itself given
by EΣ. Note that Md = T(Ed

Σ). The Cayley-Hamilton Theorem implies that the powers
of a matrix satisfy a linear recursion relation. Taking the trace of this relation, we obtain
[4, 1.8].

Proposition 2.3 # hom
(
π1(Md),G

)
satisfies a linear recursion formula in d whose coeffi-

cients are given by the characteristic polynomial of ZG(EΣ).

We wish now to define (ẐG, V̂G), a variation of the above TQFT. We must first describe
a new domain category. The spacetimes will be triples (X,Y,W ) where (X,Y ) is a finite
CW pair, and W is a subcomplex of X such that the intersection of W with each path com-
ponent of Y and each path component of W is nonempty. An object is a “boundary”, i.e.,
a CW pair (Y,U ) where each path component of Y has a nonempty intersection with U .
V̂ (Y,U ) is the free Z-module with basis [(Y,U ), (BG, ∗)]. This basis can be identified with
hom
(
π1(Y/U ),G

)
, in the case that Y is nonempty. A morphism from (Y1,U1) to (Y2,U2)

is now an equivalence class of a 4-tuple (X,Y,W, f ) where f : Y → Y1
∐

Y2 is a homeo-
morphism and Ui denotes f (W ∩Y )∩Yi . The equivalence relation is the same as above for
(X,Y ), except that we no longer require that the map G : X → X ′ be a homotopy equiva-
lence but we do require that G map W to W ′, and that G induces a homotopy equivalence
from X/W to X ′/W ′. We let [W ] denote the point in X/W which is the image of W under
the quotient map. Similarly for [Ui], etc. One may check that Quinn’s axioms for a domain
category are satisfied.

We now define ẐG(X,Y,W ) in elementary terms. Note that we do not need to take
into consideration the number of components of Y1. If δ : π1(X/W, [W ]) → G, for i
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equal to one or two, let δi : π1(Yi ,Ui) → G denote the map induced by inclusion from
π1(Yi/Ui, [Ui]) → π1(X/W, [W ]) composed with δ. We are still pretending that f is the
identity in these formulas. We define

(2.4) ẐG(X,Y,W )(γ) =
∑

δ∈hom(π1(X/W,[W ]),G)3δ1=γ

δ2.

The functoriality of this map with respect to composition of morphisms now follows
directly from the Van-Kampen theorem as discussed for instance in Massey [8]. If Y is
empty, we have:

(2.5) ẐG(X,W ) = # hom
(
π1(X/W, [W ]),G

)
.

Let (M, χ) be as in Section 1. Suppose M contains a submanifold N in its interior.
Suppose that χ restricted to N is nontrivial. If Σ is a Seifert manifold transverse to N , then
N ∩ Σ is nonempty. Let Nd denote the associated d-fold cyclic cover of N . Note we may
view Nd as a submanifold of Md. Let (EΣ,N ∩ EΣ) denote the morphism from (Σ,Σ ∩ N)
to itself given by (EΣ,N ∩ EΣ). We have the following analog of (2.3).

Proposition 2.6 # hom
(
π1(Md/Nd),G

)
satisfies a linear recursion formula in d whose coef-

ficients are given by the characteristic polynomial of ẐG(EΣ,N ∩ EΣ).

Suppose L is a oriented codimension-2 link in Sn with µ components, M is its exterior,
χ the map which sends each oriented meridian to one, and N is the disjoint union of
one meridian for each component of L. Let Bd denote the d-fold cyclic branched cover
of Sn along L. Let Qd denote Md with µ 2-disks attached along the components of Nd.
Then Md/Nd is homotopy equivalent to the space obtained from Qd by identifying the µ
center points of these added 2-disks. Up to homotopy, this is equivalent to joining these
points with µ − 1 arcs. So π1(Md/Nd) = Fµ−1 ∗ π1(Qd). If n = 2, Bd = Qd. If n >
2, Bd may be obtained from Qd by thickening the µ 2-disks and then adding µ n-disks
along their whole boundaries. Thus π1(Bd) = π1(Qd). Thus π1(Md/Nd) = π1(Bd) ∗

Fµ−1. Since # hom
(
π1(Bd) ∗ Fµ−1,G

)
= (#G)µ−1

(
# hom

(
π1(Bd),G

))
, # hom

(
π1(Bd),G

)

also satisfies a linear recursion formula whose coefficients are given by the characteristic
polynomial of ẐG(EΣ,N ∩ EΣ). Thus the above proposition generalizes [10, Corollary 4.2].
This observation, in the case of knots, was the second indication that there was a connection
between [4], and [10].

The first indication of a connection was independent derivations of the following result
by W. Stevens [13], [14], and Silver-Williams [10]. For any finite abelian group G, the
homology of the d-fold branched cyclic cover of S3 along a fixed knot with coefficients in
G is periodic in d. I had conjectured this result based on computer experiments based on
Proposition 2.3 with G = Zpr . I gave this as a thesis problem to my student Stevens. He
gave an nice proof using classical techniques. Silver and Williams independently discovered
this result using symbolic dynamics.

We conclude this section with a remark which we have not seen in the literature. The
TQFT’s discussed in this section are not generally “cobordism generated” in the sense of [2]
or what is the same thing “nondegenerate” in the sense of [15, III.3.1]. To see this consider
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G = Zp, with p a prime, then ZG(Y ) is Q[H1(Y,Zp)]. A vacuum state must have constant
coefficients along the rays of H1(Y,Zp). By ray, we mean a line through the origin with the
origin deleted.

3 Symbolic Dynamics

Let d > 1. Suppose M is a connected (d + 1) dimensional manifold with N , a submanifold.
We are especially thinking of the case M is either a link exterior and N is a meridian for a
chosen component of the link, or M a homology Sd × S1 obtained by performing surgery
along a knot, and N is empty. There are, of course, many other possibilities. Let χ be a
primitive cohomology class as in Section 1 which remains nontrivial when pulled back to
N . Let Σ be a Seifert manifold transverse to N , and EΣ be M slit along Σ.

We may apply (ẐG, V̂G) to the endomorphism (EΣ,N∩EΣ) of (Σ,N∩Σ). V̂G(Σ,N∩Σ)
is a free Z-module which comes equipped with a choice of unordered basis. With respect
to this choice of basis and any ordering, a matrix for ẐG(EΣ,N ∩ EΣ) has entries which are
non-negative integers.

Thus by Section 1, the SSE equivalence class of a matrix for ẐG(EΣ,N ∩EΣ) with respect
to this basis is an invariant of the triple (M,N, χ), which we denote by IG(M,N, χ).

Given the endomorphism (EΣ, EΣ ∩ N), we may associate a directed graph Γ̂ as fol-
lows. Γ̂ has one vertex for each basis element for V̂G(Σ,Σ ∩ N), i.e., each element of

hom
(
π1

(
Σ/(Σ ∩ N)

)
,G
)

. We draw a(v, v ′) edges from vertex v to vertex v ′ if a(v, v ′) is

the v ′ coefficient of ZG

(
EΣ(v)

)
. Thus the matrix for ẐG(EΣ) is the adjacency matrix for Γ̂.

According to the classification theorem of R. Williams [7, 7.2.7], topological conjugacy
of the shift space XG of bi-infinite paths in a directed graph G corresponds exactly to SSE
equivalence of the adjacency matrix for G. Consider the shift space XΓ̂ of finite type given
by all bi-infinite paths in Γ̂. By the classification theorem, the topological equivalence class
of XΓ̂ is also invariant of the triple (M,N, χ). This invariant contains the same information
as IG(M,N, χ).

Note that the edges of Γ̂ can be put in 1-1 correspondence with hom
(
π1

(
EΣ/(EΣ ∩

N),G
))

. The edge corresponding to ρ ∈ hom
(
π1

(
EΣ/(EΣ ∩ N),G

))
goes from the ver-

tex corresponding to the “restriction” of ρ to the incoming copy of Σ to the vertex which
corresponds to ρ restricted to the outgoing copy of Σ. See (2.4). Thus a bi-infinite path
in XΓ̂ can be used to define a representation from π1(Mχ/Nχ, [Nχ]) to G and visa-versa.
Here Mχ denotes the infinite cyclic covering of M given by χ. Nχ is the associated infinite
cyclic covering of N . Both of these spaces and their quotients have Z actions on them. Thus
hom
(
π1(Mχ/Nχ, [Nχ]),G

)
is the shift space which corresponds to XΓ̂.

If M is a knot or link exterior, and N is a meridian to the chosen component, this can be
seen to be the shift space studied by Silver and Williams [9], [10].

Now we may also apply the functor (ZG,VG) to the endomorphism EΣ of Σ where N
is now taken to be empty. VG(Σ) is a rational vector space which comes equipped with a
choice of unordered basis. Recall that we specified that Seifert manifolds must be connected
in Section 1. It follows that with respect to the given choice of basis and any ordering, a
matrix for ZG(EΣ) has entries which are non-negative integers.

By Section 1, the SSE equivalence class of a matrix for ZG(EΣ) with respect to this basis

https://doi.org/10.4153/CMB-1999-023-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-023-4


Topological Quantum Field Theory 197

is an invariant of the pair (M, χ), which we denote by IG(M, χ).
As above we may also describe this new invariant as the topological conjugacy class of

the shift space given by bi-infinite paths in a directed graph Γ whose adjacency matrix is
the matrix for ZG(EΣ).
Γ has one vertex for each element of hom

(
π1(Σ),G

)
/G. In order to describe the edges

of Γ it is useful to consider the directed graph Γ̂ described above, but now assuming the N
is a circle which meets Σ in a single point. Then G acts by conjugation of the vertices of Γ̂,
and the vertices of Γ are the orbits of this action. If v stands for a vertex of Γ̂, let [v] denote
the vertex of Γ given by the orbit of v. Comparing (2.2) and (2.4), we see that the number
of edges joining [v] to [w] in Γ is the number of edges in Γ̂ joining v to some vertex in the
orbit of w.
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