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OPTIMAL CONTROL PROBLEMS
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Abstract

In this paper we consider optimal control problems with linear state constraints
where the states can be discontinuous at the boundary. In fact the state vector
models the position and velocity of a particle where the collisions with the bound-
ary that cause the discontinuities are elastic. Necessary conditions are derived by
looking at limits of approximate problems that are unconstrained.

1. Introduction

There are many instances when problems fit into the setting of optimal control
theory except that they allow discontinuities in the state variables. One can
find such examples in areas of application from fisheries [2] to rockets [7]. In
this paper we study constrained physical problems where discontinuities occur
in the velocity component of the state when the mass in question collides with
the boundary. An added condition that must be satisfied is that the collisions
are elastic so that the proper reflection law must be obeyed. An example of this
type of problem can be found in [6].

We derive optimality conditions for the problem by using a limiting proce-
dure involving unconstrained problems with a forcing term. These unconstrained
problems fit into the usual optimal control framework and their optimality condi-
tions are already known. The limit of these optimality conditions, as the forcing
term becomes larger and larger when the original constraints are violated, leads
to optimality conditions for the original problem.
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[2] Optimal control with elastic collisions 471

2. The problem and its approximations

In this paper we shall investigate the behaviour of optimal solutions of the
following problem, where an object can undergo elastic collisions with bound-
aries:

subject to x(t) = y(t)

y{t) = A(t)x(t) + B(t)y(t) + C{t)u(t) + a(t)
x{t0) = x0, y(t0) = j/o, x,y&Rn

u{t) € U{t) uGRm

x(t)EX = {x:DTx-d<0} DeRnxk, d(=Rk

and if x(t) is on the boundary of X with

Djx(t) - d, = 0 A is the tth column of D

Djx(t) - dj < 0 j # i
then \y(t~) = \y(t+)\ and y(t+) = y(t~) - AA for some A > 0, t0 and *i fixed.

The above minimisation is over all feasible controls, in other words over all
functions u that satisfy the constraints and where u is measurable.

This investigation will be carried out by using a penalty approach to convert
(Po) into approximate problems for which optimality results are available. The
approximate problems, denoted (P£) with e > 0 being a small parameter, are as
follows.

subject to x(t) = y(t)

y(t) = A(t)x(t) + B(t)y(t) + C(t)u(t) + a(t)
o if x(t) e x

(ai/£)Dt(Djx - di) if Djx - d{ > 0

where x(t0) = x0, y(t0) = J/o, u(t) e U(t), and â  > 0, i = 1, . . . , k, t0 and ti
fixed.

The following will be assumed to hold throughout this paper.

General assumptions, (i) The functions /o, dfo/dx and dfo/dy are continu-
ous.

(ii) The n x n matrix function A, the n x m matrix function C, and the n
vector function a are measurable. The n x n matrix function B is differ-
entiable and the components of A, B, C and a are bounded on [to, t\\.
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472 J. M. Murray [3]

(iii) U(t) is compact and convex for alH e [to,ti] and bounded on [to^i]-

(iv) The graph of U is 5C x <% measurable (see 4.1 of [3])
Since the final value of y may be used in the calculation of the objective value

for (Po) and it is feasible for y to be discontinuous, we must concern ourselves
with the case where it is possible for y to be discontinuous at t\. What value
do we then use for y{t\): do we assign it the value y{t^) or y{fl)l Either
case, specially when dealing with approximate solutions, has its advantages and
disadvantages, so we take the easy way out and assume that the optimal solutions
for (Po) and (P£) are such that this will not be a worry.

Assumption 1. Either /o is independent of y or there exists a 6 > 0 and an
e > 0 such that if (x£,y£) is an optimal solution for (P£) and (x*,y*) is an
optimal solution for (Po), then x£(ti) € X and xe{ti) is at least 8 distance away
from any boundary, for all e such that 0 < e < S, and likewise for x*(ti).

After all, if the optimal solution {x*,y*) did not satisfy this assumption, we
could change the final time ti to either just before ti or just after ti, depending
on whether we wanted y*(t~[) or j/*(<f), so that the assumption was satisfied.

Assumption 2. To simplify matters we assume that the object on its optimal
trajectory only hits one boundary at a time and at a finite number of isolated
instants of time in (Po).

This also guarantees, at least for e small enough, that we only need consider
the case where only one constraint at a time is infeasible for (Pe); that is, at any
time t, there is only one i such that Djx(t) - d» > 0.

We will derive optimality conditions for (Po) by looking at the limit of the
problem (P£).

3. The limit of optimal solutions of (P£)

DEFINITION. If g is a vector function of bounded variation then there exists a
one dimensional, nonnegative regular Borel measure 0 such that

for some Borel measurable function 7. We can then define the following norm

\\g\\v= [tl\g(t)\dt+ [U \i(t)\<W(t)
Jt0 Jto

whose value is independent of the choice of 0 and 7.
Suppose {z£} is a generalised sequence in the space of functions of bounded

variation on [to)*i]> and where z£(t) € Rn and z£(t) = ZQ for all e. If z* is the
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[4] Optimal control with elastic collisions 473

weak* limit of {z£} with z*(to) = ZQ then this means that

lini, fXp{t)-dze{t)= f'P(t)-dz*(t)

for all p e Cn[to, ti], the space of continuous n-vector functions on [to, ti].

Assumpt ion 3. Each (P£) has an optimal solution {xe,y£) and 3M > 0 inde-
pendent of e such that

\\(x£,y£)\\v<M.
The set V = {{x,y): \\(x,y)\\v < M) is metrisable in the weak* topology.

So if we are interested in the limit points of the generalised sequence {(xE, y£)}
it suffices to look at sequences contained within the generalised sequence. By
Theorem 33 of [4] we have that a subsequence of this sequence converges to a
pair (x*, y*) €V. Using Theorems 32 and 34 of [4], and by extracting a further
subsequence (which we shall still call {(xe,y£)}) if necessary, we have that

As implied by the assumption stated earlier, we only consider the case when
x* hits no corners of the boundary. Our first task is to show that (x*,y*) is
feasible for (Po).

PROPOSITION I . x*{t) belongs to X for all t e [to,ti]

PROOF. Since ||(x£,y£)||v < M we have that \x£(t)\ < M and hence \x£{i)\ <
XQ + Jo \xe{T)\dT < xo + M for all t and e. Therefore {x£} is bounded and
equicontinuous, so there is a subsequence once again called {x£} converging
uniformly to a limit x. It also converges weak* to x*. Let us show that these
are the same.

We also have a subsequence of {x£} converging weakly to a limit v. That
is, lime fi*8[t)ze(t)dt = Jt^s{t)v{t)dt Vs g Li[«0,«i]. Since x£(t) = x0 +
f*o X£(T) dr —> xo + //0 V(T) dr, we see that x(t) = x0 + //o V(T) dr and

x(t) = v{t) a.e.

We must also have then / £ p(t){x(t) - x*{t))dt = 0 Vp € Cn[t0,ti]. Hence
x = x*.

If x*(t) does not belong to X for all t, there is an interval (a, b), a number
S > 0 and some i such that Djx*(t) - di > 6 Vt 6 (a, b). We have that

Mt)\ > (ai/e)\Di(Djxe(t) - d{)\ - \A(t)xe(t) + B(t)y£(t) + C(t)u£(t) + a(t)\

for some N > 0 independent of e (because {x£}, {y£} and {u£} are bounded).
Since x£(t) converges to x*{t) for all t, then we must have for e sufficiently small

https://doi.org/10.1017/S0334270000006408 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006408


474 J. M. Murray [5]

that |ye(t)| > {Sai/2e)\Di\-Nmd \\y£\\v > {6ai/2e)\Di\{b-a)-N(b-a) > M,
which would be in violation of Assumption 3. Therefore x*(t) G -X" for all

PROPOSITION 2. {x*,y*) satisfies the differential equation x(t) = y(t).

PROOF. We have that

I p{t)dy*(t) Vp€C7B[t0,*i]./
Jtt0

£ y{t) dt - y{t) + / £Hence y{t0) + / £ y£{t) dt - y{t0) + / £ dy*(t). In other words, ye{ti)
By choosing the continuous functions p appropriately, we also obtain

p(*i)y«(*i) - p(to)y£(to) - / p(0v«(0 dt
Jto

-P(ti)if(«i)-P(*o)ir(to)- I* i>{t)y*{t)dt.
Jto

But j/e(f0) = J/*(«o) = 2/o and j/e(*i) -» y*(«i); so

(l p{t)y&)dt^ j''p{t)y*{t)dt
Jto Jto

for all differentiate functions p.
Now from before we have that y£ — xe

 wfi_>
y
 x* hence f** p(t)xe(t) dt —>

/ / ; p(t)i'(O d< and from above, / £ p(t)y.(O * -» //„' p(*)y*(O * Vp e Cn(t0, *i]-
But the left hand sides are equivalent for each e, and so must be the right hand
sides. Hence x*{i) = y*{t) a.e.

We now show that y* is feasible. Since y£ —• y* in the weak* topology we also
have that y£{t) —* y*{t) a.e. So the only way that y* could be discontinuous at
a point i is if y£ becomes large inside some interval around i. In other words,
only if x£(t) lies outside X for some t near i. Let us look at such a situation.

The penalty term in the differential equation only has an effect normal to the
constraint. By choosing z(t) = (Djx(t) — di) and f (t) = Djy(t), the differential
equations for (Pe) become

i(0 = i(0 {D ,
i(t) = DJlMt)x(t) + B(t)y(t) + *(t)u(t) + a(t)]-{pi/e)z(t)

where /?» = ctiDjDi and we only consider a time interval where x(t) lies outside
X. To that effect let t = rOe be such that Z(T0£) = 0 and ?(ro£) = foe- Let us
look at another system of differential equations with the same initial conditions

W = f(0, f (0 = i&/e)z{t). (D£)
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The solution to (De) is

ze{t) = ft£\A/Asin \Zf3i/e(t - r0£)

$e{t) = ?OE cos \ZPi/e(t - T0£).

Now zE becomes zero again when t = TQE + -Ky/F/Pi = T\e and at that time
fe(rie) = -foe- As e -+ 0, the interval [TOe,Tle] -> {f0}, fe(«) -> 0 and f(f+) =
—f(f). How close is the solution to (DE) for any e?

Introduce new variables w = y/7/WiS and r = \fPi/e(t-TQE). Then (I>e) and
(5£) can now be written as

z' =w, w' = {e/0i)Dj[A{T)x(T) + B(r)y(T) + C(r)u(r) + a(r)} - z

(De)

that is, ( '̂,) = F(r,2,w), and

z' = w, w' = —z (D£)

that is, (*',) = G{T,Z,W).

We have

\F(r,z,w) - G(r,z,w)\ = (e/0i)Dj\A(r)x + B(r)y + C{r)u + a(r)\

< {ae/(3x)N

for some number N independent of e, and

\G(T,ZI,WI) -G{T,Z-2,W2)\ = \(zi,wi) -(z2,wi)\

Using Theorem 3.3.1 from [5] we find that any solution {zE,wE) to (DE) is such
that |(ze(r)_,w£(r)) - (fe(r),tD£(r))| < {eN/0i)[eT - 1] where (ze,wE) is the so-
lution to (De). This implies

le" - 1], |f£(r0£ + ^ f ) | < VWiK[e" - 1].

So if we have a sequence of solutions (xE, yE) to (Pe) where xE(t) lies outside
X on the interval (TOE,TIE) with DjTiXE{joE) — di = DJXE(TIE) — di — 0 and
y£(roe) = J/0£) then the limit of these solutions (x*,y*) is such that Djx*(f0) —
dt = 0 and Z>,V(f0

+) = - I \ V ( f - ) .
This last equality implies y*^) + y*{fg) is orthogonal to Di. On the other

hand, if v is a vector orthogonal to Z?, then we have UTJ/*(TQ") = vTy*{fo~) so
that 2/*(f(j") — y*{fo) is orthogonal to v. Combining this information, we see
that dy*(f0) is feasible for (Po).

It only remains to show that the absolutely continuous part of dy* is feasible.
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476 J. M. Murray [7]

PROPOSITION 3. The limiting solution (x*,y*) satisfies the differential equation

y(t) = A{t)x{t) + B{t)y{t) + C(t)u(t) + a{t)

for some feasible u*.

PROOF. Let x*(t) € intX on the interval (ro,ri). Then on any subinterval
[70,7i] we have £ > 0 sufficiently small that xe(t) lies in intX when e < e and
so \y£(t)\ < N Vt € [70,71], Ve < e. By similar reasoning to that found in
Proposition 1 we have that a subsequence of {ye} converges uniformly to y* on
[7o,7i] and that {y£} converges weakly to y* there. Thus by Theorem 3.2 of [1]
there exists a convex combination of the tail of the sequence {y£} that converges
almost everywhere on [70,71] to y*. Therefore

y*(t) = A{t)x*(t) + B(t)y*(t) + C(t)u*(t) +a(t) a.e. on fto,7i]

where u* (t) is the limit of the same convex combination of the tail of the se-
quence {u£}. This is feasible since U(t) is compact and convex for each t. Since
y*(-) — A(-)x*(-) - B()y*(-) -a(-) is a measurable function on [70,71], then so
is C(-)u*(-). Hence y* is feasible on [70,71]- Since this is an arbitrary closed
interval within (TO,TI) it must also be true on (ro,ri).

4. Approximation of feasible points in (Po)

In the last section we looked at the limit {x*,y*) of a sequence {(xE,ye)} and
showed that the limit was feasible. Is the reverse true? That is, is any feasible
point in (Po) a limit of feasible points of (Pe) as e goes to zero?

Let (x, y) be feasible for (Po) and let y have discontinuities at say T\, r2 , . . . , rr.
Since we are really only concerned with optimal solutions, we can assume rr ^ t\
in line with Assumption 1. Choose an e > 0. Using the same control u that
generates (i, y), the solution to the differential equation for (P£), which we shall
call (x£,y£), is exactly the same as (x,y) until x£ hits the boundary at T\. Then
no matter what control u£(t) € U(t) is used while xe(t) lies outside X, we have

where /?< = a{DjDi and we are assuming that the zth constraint is violated.
So let us choose a feasible control u£ and suppose x£ lies outside X on {T\,TU).

Then we have that x£(fi£) and y£(he) satisfy the conditions as above but with
the exponent TT replaced by n + g(e) where g(e) —> 0. Since U is bounded we
also have that {x£(fie), y£(fi£)) and (z(fle), y(fi£)) are close. If we now use the
control u£(t) = u(t) again, we have that (x£(t),y£(t)) stays close to (x(t),y(t)).
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Now we merely repeat the above procedure when xe strikes the next boundary
and so on. Since there are only a finite number of boundary points, we have that
as e goes to zero (x£(t),y£(t)) converges to (x(t),y(t)) away from t e {TI, ..., rr},
and in particular (x£(ti),yE(ti)) converges to (x(ti),y(ti)).

Actually the proof of Theorem 3.3.1 of [5] shows that

||x£(r) - x£(r)\\v < He/hie* - 1], \\y£(r) - yt(r)\\v < yft/AN[e* - 1]

where {x£,ye) solves the system X'(T) = y(r), y'{r) = —/?J/£X(T) for r € [TJ,TJ +
ityJe/Pi]. These bounds, in conjunction with the ones we can obtain through
similar results on the variation of initial conditions, allow us to bound the vari-
ation of (x£,y£) to be close to that of (x,y); so given any M > \\(x,y)\\v there
exists an e > 0 such that for any e < e the sequence {(x£,y£)} we have con-
structed by the aforementioned process is such that ||(xe, y£)\\v < M. This says
in part that ||(x£,2/£)||,; —• ||(x,y)||v, so that the sequence {(x£,y£)} converges in
the strong topology, and so it also must converge in the weak* topology. Hence
given any feasible {x,y) from (Po), we can construct a sequence {(x£,y£)} where
each (x£,y£) is feasible for (P£) and where the sequence converges to (x, y) in
the weak* topology.

Thus every feasible point has an approximating sequence converging to it.
Since the objective function /o is a continuous function of the endpoints we
must have that lime_o/o(£e(*i),y£(<i)) = fo{x{ti),y{ti)).

PROPOSITION 4. (x*,y*) is optimal for (Po).

PROOF. Suppose this were not the case. Then there is another feasible point
(x, y) with a lower objective value. But it too has an approximating sequence
{(x£,y£)} where lim£_o/o(M*i),2/e(ti)) = /o(x(<i),y(ii)). However, for each
e we have that [xe,y£) is optimal for (P£) so that

fo{xe(ti)tye(h)) > /o(z«(*i),lfe(*i)),

which implies

contradicting (x,y) having a lower objective value. So (x*, j/*) is optimal.

Now let us consider a related question. If (x,y) is optimal for (Po) does
there exist a sequence {(xe,y£)} converging to (x, y) where {x£,y£) is optimal
for (Pe)? This is not necessarily true; however there is something just as good.
If we change the word "optimal" in the question to an appropriately defined
"locally optimal" then the answer is yes. The following definitions will lead to
this.
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478 J. M. Murray [9]

DEFINITIONS. Let (x, y) be feasible for (Po). The completion T(£,y) of (x,y) at
a point t G[to,ti] is given by

I W O = {(x, y): (*, y) = (x(t), \y(t-) + (1 - A)»(t+)), A € [0,1]}.

If y is continuous (which is the case for the completion of a feasible pair (x, y)
from (Pe)) then T(S,y) is just the graph of (x,y).

We will call the 6-tube around (x,y) the set Ts,s -•, given by

r(x,S) = {(t,x,y): 3{i,x,y) with (x,y) € r ( f i S )(t) with

\{t,x,y)-(i,x,y)\<6,ie[to,t1}}

A pair (z, y) will be said to be locally optimal for its respective problem (Po) o r

(P£) if there exists a 6 such that fo{x(ti),y(ti)) < fo{x(ti),y(ti)) for all feasible
pairs (x,y) that also satisfy (x{t),y{t)) € I%g)(i) V* G [<o,«i]-

THEOREM 1. If(x,y) is locally optimal for (Po) and y is not discontinuous at
t\ then there exists a sequence {(x£,ye)} converging to it in the weak!'' topology
where {x£,y£) is locally optimal for (P£)-

PROOF. Define the sets

•*(is) = {(x('i)>y(*i)): (X>V) i s feasible for (Po) and belongs to rfSifl)}

K\s,y) = {(*(*i),»(*i)): {x,y) is feasible for (P£) and belongs to I%ifi)} .

Let us show that for every 6 > 0 and £ > 0 the set &e\xty) is compact. Each
of the sets is bounded so it is only necessary to show closure. If we take any
sequence {{x*k(tl),y*k[tl))} f r o m J / ^ ^ and look at its limit {(x|(*i),y|(*i))>
then we can show that it is contained in s/J£ ^ by looking at the weak* limit of
the sequence {{xs

£k,y£k)} and showing that the limit exists, is feasible for (Pe)
and belongs to Vs, - -•>. This is done by essentially mirroring the proof in the first
section when we showed that the weak* limit of {(x£,y£)} was feasible for (Po).
The details of this procedure are omitted.

Now (x,y) is locally optimal so 3<5i > 0 such that fo{i{h),y{h)) <
fo(x{ti),y{ti)) for all (z(ti),y(ti)) € j/(«ifi)> for all 6 < 6^ By the previous
section there exists a sequence {(x£,y£)} converging weak* to (x,y), where each
(x£,y£) is feasible for (P£) and given the way it was constructed, there exists an
S > 0 such that for all e < ei we will also have (x£,y£) 6 T,ls -•.. By looking at a
decreasing sequence {£,} converging to zero and a corresponding sequence {e,}
we obtain a nonempty sequence of sets {s/g /L g%} each of which is nonempty.
They are also compact and since /o is continuous there exists an (xj(ti),yj(ti))
belonging to {s/£ ',- -•.} for all j , which minimises /o on ^ . / 2 ^y Since 6j goes
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to zero we have that the sequence {{xj,yj)} converges weak* to (x, y) and each
(xj,yj) is locally optimal for (P£j).

5. Necessary conditions for (Po)

What conditions must an optimal solution for (Po) satisfy? We have just dis-
covered that any optimal solution for (Po) will have an approximating sequence
{(x£,y£)} of locally optimal solutions for (P£). Each of the problems (P£) fits
into the general framework of optimal control problems analysed in the literature
so we can easily write down their necessary conditions. From there we shall try
to show that the optimal solution (x*, ym) for (Po) must satisfy the limit of these
necessary conditions, thereby giving us necessary conditions for (Po).

Let (x*,y*) be optimal for (Po) and {(x£,y£)} a sequence of locally optimal
solutions for (P£) that converges weak* to (x*,y*). For each e > 0 define the
Hamiltonian H£ as

H£(t, x, y, p, q, u) = pTy + qT(A{t)x + B{t)y + C(t)u + a(t))

0 if x e X

{al/e)qTDi(Djx - d,-) if Djx - <U > 0

Using Theorems 5.2.1 of [3], we see that for each (x£,y£), there exist absolutely

continuous vector functions p£ and q£ that satisfy

!

0 if xe(t) 6 intX

[0, (at/e)DtDTq(t)} if Djx£(t) - d{ = 0

(ai/e)DiDjq(t) if Djx£(t) - d, > 0

-q(t)=p(t) + B(t)Tq(t)
P(*i) = -

and the control u£ that generates {x£,y£) must maximise the Hamiltonian H£,
which is equivalent to qTC(t)u£{t) > qTC(t)u Vu € U{t).

Now we have a sequence {(p£,q£)}-

Assumption 4. There exists a K > 0 such that ||(pe)9e||i, < K, Ve > 0.
With this assumption we know that the sequence {(p£,q£)} converges weak*

to a vector function (p*, q") of bounded variation. It will suffice to show that
(p*,(7*) satisfies the limit of the previous conditions with (x£,y£) replaced by
(x*,y*). These will then be necessary conditions for (Po).

If Ajx£(t) — di > 0 on some interval of time then (pe, q£) must satisfy, for the
same times,

-p = A(t)Tq(t) - (ai/e)DiDjq(t), -q(t) = p(t) + B(t)Tq(t).
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Let r(t) = p(t) + B(t)Tq(t). Then these equations become

-r(t) = B(t)Tr(t) - B(t)Tq(t) + A(t)Tq(t) - (ai/e)DiDjq, -q(t) = r.

If we let w{t) = Djq(t), £{t) = -Djr{t) and ft = ctiDjDi then these convert
to

w(t) = £{t)

ft) = Dj[B(t)Tr(t) - B(t)Tq(t) + A(t)Tq{t)\ - (0,/e)w(t)

which is of the same form as (De). So its solution is close to the solution of

If DjxE(TOe) — di = 0 and Djxe(t) — di > 0 for some interval of time beyond
TOE, then we know that Djx£(t) — d, = 0 again approximately when t = TQS +
iryJe/Pi = rle, and on the interval (£oe>Tu) the solution {w, f) to (F£) is given
by

t»(«) = Ci cos{y/fh/e(t - r0£)) + <?2 sm(y/frfi{t - rOe))

€(«) = -Cty/fh/eainiy/fk/eit - rOe)) + C2y/fkfecoB(y/fc/e{t - r0£))

If i2}(rOe) = woe and |(roe) = Coe then Ci = woe and C2 = %/e//?i£oe, so

/ 7 < - r6e)) + y/e/Fitoe sin{^/0Je{t - r0e))

/fc/£{t - TOe)) + &)£ C /

However the maximum value of |f (£)| on [rO£,Tie] is approximately w0Ey/fii/e
and unless WQ£ goes to zero with e then we shall violate the last assumption. In
terms of the original q variable this says Djq*(To) = 0.

At the exit time Tu we find that w{tu) = —wo£, |(rie) = — £oe. This gives
us that DJT{TQ) = —DJT(TQ). On the other hand, if we look at vectors w and
I that are of the form vTq and -vTr, where v is a vector orthogonal to Di, we
would find that W(TQ) = W(TQ) and ?(TQ") = f(r^"). Hence, we must have

r(ro") = r(ro~) + v(To)Di for some /i(r0) > 0.

This implies dp*{r0) = ft(T0)Di and |p*(ro*)| = \P*(TQ)\.

For the case when x*(t) € intX, the proof that (p*,9*) satisfies

-p{t) = AT(t)q(t), -q(t) = p(t) + BT(t)q(t)

follows in similar fashion to the proof that x* and y* satisfied their differential
equations.

By taking the convex combination limit and applying it to the inequality

q](t)C(t)uE(t) > qJ(t)C(t)u Vu G U(t)
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we obtain the same inequality for the optimal control u* of (Po) which we can
write in terms of a Hamiltonian H for (Po) where H(t,x,y,p,q,u) — pTy +
qT{A(t)x + B(t)y + C{t)u + a(t)). We then have

The fact that (p£(t),q£(t)) converges to (p*(t),q*(t)) almost everywhere, in
particular everywhere except around discontinuities of y*, and when x* is not on
the boundary at the final time ti tells us that {pe(ti),qe{ti)) —• (p*(£i),<7*(*i))-
Similarly (xc(ti),ye(ti)) —> {x*(ti),y*(ti)) and because of the continuity of
dfo/dx and dfo/dy we have

We can now write down the analogous conditions to the necessary conditions for
the unconstrained problems.

THEOREM 2 {Necessary conditions for (Po))• If(x*,y*) is optimal for (Po)
and Assumptions 1,2,3 and 4 are satisfied then there exists a bounded variation
vector function p* and an absolutely continuous vector function q* that satisfy

-f(t) = A(t)Tq*(t), -q*(t) = p*(t) + B(t)Tq*(t)

and if y*{t) is discontinuous then \p*{t+)\ = |p*((~)|, dp*(t) = n{i)Di for some
H{t) > 0 andDjq*{t) = 0. Also p'(ti) = -d/0/dz(z*(<i),y*(*i)), q*(h) =
—dfo/dy(x*(ti),y*(ti)) and the control u* that generates (x*,y*) satisfies

H(t,x*(t),y*(t),p'(t),q*(t),u%t)) = max H(t,x'{t),y*(t),p*{t),qm{t)tu)
u€U(t)

almost everywhere on [to,ti).
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