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Mean-field dynamo due to spatio-temporal
fluctuations of the turbulent kinetic energy

Kishore Gopalakrishnan1,† and Nishant K. Singh1,†
1Inter-University Centre for Astronomy & Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007, India

(Received 23 February 2023; revised 24 June 2023; accepted 9 September 2023)

In systems where the standard α effect is inoperative, one often explains the existence of
mean magnetic fields by invoking the ‘incoherent α effect’, which appeals to fluctuations
of the mean kinetic helicity at a mesoscale. Most previous studies, while considering
fluctuations in the mean kinetic helicity, treated the mean turbulent kinetic energy at the
mesoscale as a constant, despite the fact that both these quantities involve second-order
velocity correlations. The mean turbulent kinetic energy affects the mean magnetic field
through both turbulent diffusion and turbulent diamagnetism. In this work, we use a
double-averaging procedure to analytically show that fluctuations of the mean turbulent
kinetic energy at the mesoscale (giving rise to η-fluctuations at the mesoscale, where the
scalar η is the turbulent diffusivity) can lead to the growth of a large-scale magnetic field
even when the kinetic helicity is zero pointwise. Constraints on the operation of such
a dynamo are expressed in terms of dynamo numbers that depend on the correlation
length, correlation time and strength of these fluctuations. In the white-noise limit, we
find that these fluctuations reduce the overall turbulent diffusion, while also contributing
a drift term which does not affect the growth of the field. We also study the effects of
non-zero correlation time and anisotropy. Turbulent diamagnetism, which arises due to
inhomogeneities in the turbulent kinetic energy, leads to growing mean-field solutions
even when the η-fluctuations are statistically isotropic.

Key words: dynamo theory

1. Introduction

Astrophysical magnetic fields are observed on galactic, stellar and planetary scales
(Brandenburg & Subramanian 2005; Jones 2011). Some stars even exhibit periodic
magnetic cycles. The Earth itself has a dipolar magnetic field that shields it from the solar
wind. Dynamo theory studies the mechanisms behind the generation and maintenance
of these large-scale magnetic fields by fluid flows at much smaller scales (Ruzmaikin,
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Shukurov & Sokoloff 1988; Brandenburg & Subramanian 2005; Jones 2011; Rincon
2019). Mean-field magnetohydrodynamics takes advantage of scale separation to make
the problem analytically tractable (Moffatt 1978; Krause & Rädler 1980).

The turbulent electromotive force, which is determined by correlations between the
fluctuating velocity and magnetic fields, plays a crucial role in mean-field dynamo theory.
For homogeneous and isotropic turbulence, using the quasilinear approximation, one can
express the turbulent electromotive force in terms of the turbulent transport coefficients α

(which is proportional to the mean kinetic helicity) and η (the turbulent diffusivity, which
is proportional to the mean kinetic energy) when the magnetic field is weak (Moffatt 1978,
chapter 7). The contribution of α, if non-zero, may cause growth of the mean magnetic
field, while η always dissipates it when the turbulence is homogeneous.

Even when the mean kinetic helicity is zero, Kraichnan (1976) found that fluctuations of
the kinetic helicity can suppress the turbulent diffusivity. If the fluctuations are strong or
long lived enough, the effective diffusivity may become negative, leading to growth of the
large-scale magnetic field (Kraichnan 1976; Moffatt 1978, § 7.11; Singh 2016). This effect,
usually referred to as the ‘incoherent α effect’, has also been studied in combination with
shear (Sokolov 1997; Vishniac & Brandenburg 1997; Silant’ev 2000; Sridhar & Singh
2014). The ‘incoherent α-shear dynamo’ has been invoked (Brandenburg et al. 2008)
to explain the generation of a large-scale magnetic field in simulations of non-helical
turbulence with background shear (Yousef et al. 2008; Singh & Jingade 2015).

To derive his result, Kraichnan (1976) used a process of double averaging, where one
first obtains the mean-field equations at some mesoscale, and then fluctuations of the
mesoscale transport coefficients may lead to effects at some larger scale upon subsequent
averaging. There are two viewpoints (not mutually exclusive) on the applicability of this
method. One is that we require the system to have scale separation, such that the turbulent
spectra peak at some small scale, while averaged quantities themselves fluctuate at some
mesoscale, and then there exists an even larger scale where a magnetic field can grow
(e.g. Moffatt 1978, p. 178). As an example of a physical system where such a picture
may be relevant, we note that, in the solar photosphere, mesoscales can be identified
with granulation or supergranulation (for a review on supergranulation, see Rincon &
Rieutord 2018). Another viewpoint is to think of multiscale averaging as a renormalization
procedure which tells us something about the contributions of higher moments of the
velocity field to the turbulent transport coefficients (e.g. Moffatt 1983, § 11; Silant’ev
2000, p. 341). In support of this, we note that Knobloch (1977) and Nicklaus & Stix (1988)
(the latter point out some errors made by the former) have used a cumulant expansion
to calculate the lowest-order corrections to the quasilinear approximation. In agreement
with the results obtained by multiscale averaging, they find that the turbulent diffusivity is
suppressed.

Regardless of one’s viewpoint, it seems natural to wonder why fluctuations of the
helicity should have a more privileged position than fluctuations of the kinetic energy
(i.e. the turbulent magnetic diffusivity). Dynamos can be driven or boosted by spatial
variations of the microscopic magnetic diffusivity or the magnetic permeability (Busse
& Wicht 1992; Giesecke et al. 2010; Pétrélis, Alexakis & Gissinger 2016; Rogers &
McElwaine 2017; Gressel, Rüdiger & Elstner 2023). Further, in simulations, it is found that
fluctuations of α coexist with fluctuations of η (e.g. Brandenburg et al. 2008, figure 10).
While Silant’ev (1999, 2000) has considered fluctuations of the turbulent diffusivity (and
found that the effective turbulent diffusivity is suppressed), he has not included the effect
of turbulent diamagnetism (expulsion of the magnetic field from turbulent regions); the
latter is a natural consequence of spatial variations of the turbulent kinetic energy, and
thus cannot be ignored.
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Here, we explore the effects of mesoscale fluctuations of the turbulent magnetic
diffusivity, with non-zero correlation time, on the evolution of the large-scale magnetic
field. The procedure we follow is the same as that of Singh (2016).

In § 2, we derive the evolution equation for the large-scale magnetic field, along with an
expression for its growth rate, by using the quasilinear approximation. In § 3, we simplify
the expression for the growth rate, assuming the fluctuations of η are isotropic. In § 4, we
explain how the growth rate is modified by anisotropy. In § 5, we relate the growth in some
regimes to a negative effective turbulent diffusivity. In § 6, we show how to estimate the
dynamo numbers in astrophysical systems, taking the solar photosphere as an example.
Finally, we discuss the implications of our results and possible future directions in § 7.

2. Derivation of the evolution equation and the growth rate

2.1. Set-up and assumptions
The mean magnetic field, B, evolves according to (e.g. Moffatt 1978, (7.7))

∂B
∂t

= ∇ × (V × B + E) + ηm∇2B, (2.1)

where V is the mean velocity; ηm is the microscopic magnetic diffusivity; and E , the
turbulent electromotive force (EMF), is related to the correlation between the fluctuating
velocity and magnetic fields. Since the magnetohydrodynamic equations are nonlinear,
the evolution equations for moments of a particular order depend on moments of higher
orders. For example, the EMF in (2.1) is a double correlation of the fluctuating fields. To
keep the system of equations manageable, one has to truncate this hierarchy by applying a
closure. To avoid solving for the fluctuating magnetic field, one requires an expression for
the EMF in terms of the mean magnetic field itself. If the mean magnetic field is weak and
varies slowly, one typically assumes that the EMF depends only on the mean magnetic field
and its first derivatives, obtaining a general expression of the form Ei = αijBj + ηijk∂jBk.
Here, and in what follows, repeated indices are summed over. The tensors αij and ηijk may
depend on the statistical properties of the velocity field. The expressions for these tensors
depend on the closure used.

One of the most widely used closures in dynamo theory is the quasilinear approximation
(also called the first-order smoothing approximation (FOSA); or the second-order
correlation approximation (SOCA)) (e.g. Moffatt 1978, § 7.5; Krause & Rädler 1980,
§ 4.3). The quasilinear approximation is rigorously valid only when either the magnetic
Reynolds number (the ratio of the diffusive to the advective time scale) or the Strouhal
number (the ratio of the velocity correlation time to its turnover time) is small (Krause &
Rädler 1980, p. 49). The former is never small in the astrophysical systems of interest,
while it is unclear if the latter is small. Nevertheless, in the context of mean-field
dynamo theory, the quasilinear approximation often remains qualitatively correct well
outside its domain of formal validity. More complicated closures such as the eddy-damped
quasinormal Markovian (EDQNM) closure (e.g. Pouquet, Frisch & Léorat 1976) and the
direct interaction approximation (DIA) (Kraichnan 1977) are extremely difficult to work
with.

For weakly inhomogeneous non-helical turbulence, the EMF is given in the quasilinear
approximation by (Roberts & Soward 1975, (3.11))

E = −1
2∇η × B − η∇ × B, (2.2)

where η is the turbulent diffusivity (proportional to the turbulent kinetic energy). We
note that Silant’ev (1999, 2000) did not consider the first term above (Appendix B
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describes how the absence of this term qualitatively changes the behaviour of the system).
Comparing this term with the V × B term in (2.1), we see that the former can be thought
of as describing an effective velocity −∇η/2 that acts on the mean magnetic field.
This transports the magnetic field in the direction in which the turbulent kinetic energy
decreases. By analogy with the reduction of the magnetic field in diamagnetic materials,
this is usually referred to as ‘turbulent diamagnetism’ or ‘diamagnetic pumping’. For
stratified turbulence, or in the presence of small-scale magnetic fields, additional terms
arise (Vainshtein & Kichatinov 1983), but we ignore those effects in this work. As
mentioned in the introduction, the effect of helical turbulence (α) has been extensively
studied, so we restrict ourselves to turbulence that is non-helical pointwise. The first term
of (2.2) may be considered one of many contributions to the off-diagonal components of
αij. In the literature, such contributions are sometimes described in terms of a vector γ ;
see Rädler, Kleeorin & Rogachevskii (2003, (42)). While the calculations we present can
be carried out using the αij and ηijk tensors in their full glory, we use a simpler expression
in order to keep the results interpretable.

Although the mean-field approach does not formally require scale separation, we
associate averages with length/time scales for clarity of exposition. Let us assume that
η fluctuates at length/time scales (henceforth referred to as the mesoscales) much larger
than the scales at which the turbulent velocity fluctuates. We employ a double-averaging
approach (Kraichnan 1976; Singh 2016), in which we treat η (at the mesoscale) as a
stochastic scalar field which is a function of both position and time (i.e. η = η(x, t)). For
any mesoscale quantity �, we use 〈�〉 and �̄ to denote its averages at the larger scale. We
assume this average satisfies Reynolds’ rules (e.g. Monin & Yaglom 1971, § 3.1).

If we set the mean velocity to zero, ignore the microscopic diffusivity (which is usually
much smaller than the turbulent diffusivity in the systems of interest) and use (2.2), we
can write (2.1), the evolution equation for the mesoscale magnetic field, as

∂B
∂t

= ∇ ×
(

−1
2
∇η × B − η∇ × B

)
. (2.3)

In § 2.3, we assume the fluctuations of η are statistically homogeneous, stationary and
separable in order to obtain an integro-differential equation for the large-scale magnetic
field. In § 2.4, we simplify this equation by assuming the fluctuations of η are white noise,
while in § 2.5, we also keep terms linear in the correlation time of η.

2.2. Evolution equation in Fourier space
We now move to Fourier space with

f̃ (k, t) ≡
∫

dx
(2π)3 eik · xf (x, t), (2.4)

where we have used a tilde to denote the spatial Fourier transform of a quantity. The
convolution theorem takes the form∫

dx
(2π)3 eik · xf (x)g(x) =

∫
dp f̃ (p)g̃(k − p). (2.5)

Equation (2.3) then becomes (omitting the temporal arguments whenever there is no
ambiguity)

∂B̃(k)

∂t
= k ×

∫
dp
(

k + p
2

)
× B̃(p) η̃(k − p). (2.6)
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Taking the average of the above, we obtain

∂

∂t
〈B̃(k)〉 = k ×

∫
dp
(

k + p
2

)
× (〈η̃(k − p)〉〈B̃(p)〉 + 〈μ̃(k − p) b̃(p)〉), (2.7)

where we have split the mesoscale fields into their mean and fluctuating parts, i.e. B̃ =
〈B̃〉 + b̃ and η̃ = 〈η̃〉 + μ̃. We write the equation for b̃ as

∂ b̃(k)

∂t
= k ×

∫
dp
(

k + p
2

)
× (〈η̃(k − p)〉b̃(p) + μ̃(k − p)〈B̃(p)〉

+ μ̃(k − p) b̃(p) − 〈μ̃(k − p) b̃(p)〉). (2.8)

We now apply the quasilinear approximation, where the equations for the fluctuating fields
are truncated by keeping only terms which are at most linear in the fluctuating fields. We
then obtain

∂ b̃(k)

∂t
= k ×

∫
dp
(

k + p
2

)
× (〈η̃(k − p)〉b̃(p) + μ̃(k − p)〈B̃(p)〉). (2.9)

2.3. Homogeneity and separability
To simplify the preceding expression, we assume that the moments of η(x, t) are
statistically homogeneous and stationary. We can then write, say, 〈μ(x, τ1)μ(y, τ2)〉 =
C(x − y, τ1 − τ2). Further, we assume that 〈μ(x, τ1)μ(y, τ2)〉 can be written as the
product of a temporal correlation function and a spatial correlation function, i.e. C(x −
y, τ1 − τ2) = Q(x − y) S(τ1 − τ2). In Fourier space, these assumptions can be expressed
as

〈η̃(k, t)〉 = η̄ δ(k), (2.10a)

〈μ̃(p, τ1)μ̃(q, τ2)〉 = Q̃ (p) S(τ1 − τ2) δ(p + q). (2.10b)

For S, we require

2
∫ ∞

0
S(t) dt = 1, (2.11)

and define the correlation time of η as

τη ≡ 2
∫ ∞

0
tS(t) dt. (2.12)

We can then write

k ×
∫

dp
(

k + p
2

)
× b̃(p)〈η̃(k − p)〉 = −η̄k2b̃(k), (2.13)

and

k ×
∫

dp
(

k + p
2

)
× 〈B̃(p)〉〈η̃(k − p)〉 = −η̄k2〈B̃(k)〉. (2.14)

Using (2.13), (2.9) can be written as

∂ b̃(k)

∂t
= −η̄k2b̃(k) + k ×

∫
dp
(

k + p
2

)
× 〈B̃(p)〉μ̃(k − p), (2.15)
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which gives us

b̃(k, t) = k ×
∫ t

0
dτ

∫
dp exp(−η̄k2 (t − τ))

(
k + p

2

)
× 〈B̃(p, τ )〉μ̃(k − p, τ )

+ b̃(k, 0). (2.16)

We assume that the initial fluctuations of the mesoscale magnetic field are uncorrelated
with μ. Using the above along with (2.10b), we can write

〈μ̃(q, t) b̃(k, t)〉 = k ×
∫ t

0
dτ exp(−η̄k2 (t − τ))

(
k + q

2

)
× 〈B̃(k + q, τ )〉Q̃ (q) S(t − τ). (2.17)

Putting the above in (2.7) gives us an equation for 〈B̃(k + q, τ )〉. However, this is an
integro-differential equation which is difficult to solve in general. The resulting equation
can be simplified by assuming τη is small. In § 2.4, we assume τη = 0 and simplify the
evolution equation for the large-scale magnetic field. In § 2.5, we simplify the evolution
equation neglecting O(τ 2

η ) terms.

2.4. Evolution equation with white-noise fluctuations
Assuming S(t) = δ(t), we write (2.17) as

〈μ̃(q, t) b̃(k, t)〉 = 1
2

k ×
[(

k + q
2

)
× 〈B̃(k + q, t)〉

]
Q̃(q) . (2.18)

Recalling that k · 〈B̃(k, t)〉 = 0, we can use the above to write

k ×
∫

dp
(

k + p
2

)
× 〈μ̃(k − p, t) b̃(p, t)〉

=
∫

ds
1
8

Q̃(s) (4k4 − 8k2k · s + 3 (k · s)2 + 2k2s2 − s2k · s)〈B̃(k, t)〉, (2.19)

where s ≡ k − p. Defining

A(0) ≡ Q(0), A(1)
i ≡ ∂Q(ξ)

∂ξi

∣∣∣∣
ξ=0

, A(2)
ij ≡ ∂2Q(ξ)

∂ξi∂ξj

∣∣∣∣
ξ=0

, A(3)
i ≡ ∂3Q(ξ)

∂ξi∂ξj∂ξj

∣∣∣∣
ξ=0

,

(2.20a–d)
we write

k ×
∫

dp
(

k + p
2

)
× 〈μ̃(k − p, t) b̃(p, t)〉

= 1
8
(4A(0)k4 − 8iA(1)

i k2ki − 3A(2)
ij kikj − 2A(2)

ii k2 + iA(3)
i ki)〈B̃(k, t)〉. (2.21)

Note that the functions defined in (2.20a–d) depend only on the value of Q(ξ) and its
spatial derivatives at the origin. Putting this in (2.7) and using (2.14), we obtain

∂

∂t
〈B̃(k)〉 = (−η̄k2 + g(k))〈B̃(k)〉 + ih(k)〈B̃(k)〉, (2.22)
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where

g(k) ≡ − 3
8 A(2)

ij kikj − 1
4 A(2)

ii k2 + 1
2 A(0)k4, (2.23a)

h(k) ≡ 1
8 A(3)

i ki − A(1)
i k2ki. (2.23b)

We see that g(k) describes corrections to the turbulent diffusivity (along with a k4

hyperdiffusive term), while the term involving h(k) describes advection of the large-scale
magnetic field with an effective velocity A(3)

i /8 − A(1)
i k2.

To aid the interpretation of (2.22), we note that, if the spatial correlation function of the
fluctuations of η is an isotropic Gaussian (see Appendix A), we can write

∂

∂t
〈B̃(k)〉 = −

(
η̄ − 9

8
β

)
k2〈B̃(k)〉 + O(k4), (2.24)

where β ≡ A(0)/l2c > 0 represents the diffusivity arising from fluctuations of η with a
correlation length lc. Thus, we find that fluctuations of η reduce the turbulent diffusion of
the large-scale magnetic field.

2.5. Evolution equation with non-zero correlation time
We expand

〈B̃(p, τ )〉 = 〈B̃(p, t)〉 − (t − τ)
∂

∂t
〈B̃(p, t)〉 + O((t − τ)2). (2.25)

The idea is that when we substitute this into (2.17), assume t � τη and perform the time
integral, the powers of (t − τ) become powers of τη. The convergence of this series
requires that the large-scale magnetic field vary on a time scale much larger than τη.
Note that on the right-hand side of the above, we can neglect O(t − τ) contributions to
∂/∂t〈B̃(p, t)〉 and use (2.22). Similarly, we can expand

exp (−η̄k2(t − τ)) = 1 − (t − τ)η̄k2 + O((t − τ)2). (2.26)

We then write (2.17) as

〈μ̃(k − p, t) b̃(p, t)〉 = Q̃ (k − p) p ×
[(

k + p
2

)
× B(k, t)

]
, (2.27)

where

B(k, t) ≡ 1
2
〈B̃(k, t)〉 − τη

2
∂

∂t
〈B̃(k, t)〉 − 〈B̃(k, t)〉τη

2
η̄k2. (2.28)

Using (2.22), we write

B(k, t) = 1
2
〈B̃(k, t)〉 − τη

2
g(k)〈B̃(k, t)〉 − iτη

2
h(k)〈B̃(k, t)〉. (2.29)

We note that k · B(k, t) = 0 (since ∇ · B = 0) and use (2.27) and (2.29) to write

k ×
∫

dp
(

k + p
2

)
× 〈μ̃(k − p, t) b̃(p, t)〉

= [
g(k) + ih(k)

] [
1 − τηg(k) − iτηh(k)

] 〈B̃(k, t)〉, (2.30)
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where h and g are defined in (2.23). Putting this in (2.7) and using (2.14), we write

∂

∂t
〈B̃(k)〉 = [

g(k) + ih(k)
] [

1 − τηg(k) − iτηh(k)
] 〈B̃(k)〉 − η̄k2〈B̃(k)〉 + O(τ 2

η ).

(2.31)

2.6. Growth rate of the large-scale magnetic field
Let us now focus on the problem of whether a particular Fourier mode of the large-scale
magnetic field grows or decays. We assume 〈B̃(k, t)〉 ∝ exp(λt). Plugging this into (2.31)
and taking its real part, we find

Re(λ) = −η̄k2 + g(k) − τη[g(k)]2 + τη [h(k)]2 + O(τ 2
η ), (2.32)

where h and g are defined in (2.23). From the fact that, above, only [g(k)]2 contains a
k8 term, we can see that the growth rate always becomes negative for large-enough k
(small-enough scales) as long as τη /= 0. Note that while in the white-noise case, h(k)

only contributed a drift term, it now affects the growth rate as well.
Since we assumed the large-scale magnetic field varies on time scales much larger than

τη, our derivation is self-consistent only when
∣∣τηλ

∣∣ 	 1.

3. Dynamo numbers when the fluctuations are isotropic

If Q(ξ) is isotropic, i.e. Q(ξ) = Q(|ξ |) (see Monin & Yaglom 1975, § 12.1), we can write
the quantities defined in (2.20a–d) as

A(1)
i = 0, A(2)

ij = δij
A(2)

mm

3
, A(3)

i = 0, (3.1a–c)

so that

h(k) = 0, g(k) = 4A(0)k4 − 3k2A(2)
mm

8
. (3.2a,b)

Equation (2.32) can then be written as

Re(λ) = −k2

(
η̄ + 3A(2)

mm

8

)
+ k4

(
A(0)

2
− 9τη

64
[A(2)

mm]2

)

+ 3τηA(0)A(2)
mmk6

8
− τη[A(0)]2k8

4
. (3.3)

If we further define

D1 ≡ −3A(2)
mm

8η̄
, D2 ≡ 9τη

32
[A(2)

mm]2

A(0)
, lc ≡

√
−3A(0)

A(2)
ii

, K ≡ klc, T ≡ l2c
η̄

,

(3.4a–e)
we can write (3.3) as

T Re(λ) = −K2 (1 − D1) + 4D1K4

9
(1 − D2) − 32D1D2K6

81
− 64D1D2K8

729
. (3.5)

The growth rate at a particular wavenumber is thus determined by two dynamo numbers,
D1 and D2. Note that if the correlation function attains a maximum at zero separation,
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Figure 1. The mode growth rate (T Re(λ), (3.5)) as a function of the wavenumber for two combinations of

D1 and D2.

A(2)
mm < 0; this implies D1 > 0. In Appendix A, we express the dynamo numbers in

terms of more observationally relevant quantities by assuming a particular form for the
correlation function Q. We see that D1 describes how strong the fluctuations of η are as
compared with its mean value, while D2/D1 is proportional to the ratio of the correlation
time of the fluctuations to the diffusion time scale determined from the mean of η and the
correlation length of its fluctuations.

Figure 1 shows the growth rate (3.5) for two sets of dynamo numbers. We see that
depending on the parameters, the growth rate may peak at large scales or at small scales.

To understand the qualitative behaviour of (3.5), we can schematically write it as

Re(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−k2 − k4 − k6 − k8; D2 > 1, D1 < 1
−k2 + k4 − k6 − k8; D2 < 1, D1 < 1
k2 + k4 − k6 − k8; D2 < 1, D1 > 1
k2 − k4 − k6 − k8; D2 > 1, D1 > 1.

(3.6)

In the first case, Re(λ) is always negative, and so there is no dynamo. In the last two cases,
Re(λ) is positive for small k and becomes negative for large wavenumbers. In the second
regime, it seems to be difficult to say anything concrete (depending on the values of the
coefficients, one can either have growth in a range of wavenumbers or growth nowhere).

Since (3.5) is a polynomial in K, one can easily solve for its extrema. In figure 2, we show
the dynamo growth rate (where positive) and the wavenumber of the resulting large-scale
field, as a function of D1 and D2.

If we drop the terms of order K6 and K8 in (3.5) (this does not change the qualitative
behaviour when D2 > 1), we can estimate that if D1 > 1, the growth rate attains a
maximum value at Kpeak, where

Kpeak ≈
√

9 (D1 − 1)

8D1 (D2 − 1)
, [T Re(λ)]max ≈ 9 (D1 − 1)2

16D1 (D2 − 1)
. (3.7a,b)

Broadly speaking, there are two kinds of regimes in which the dynamo is excited.
One, D1 > 1, corresponds to the fluctuations being strong enough that the effective
diffusivity itself becomes negative (but the growth itself is still cut off at small scales
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Figure 2. (a) The peak growth rate (T Re(λ), (3.5)). In the white regions, the growth rate is negative for all
K. (b) The wavenumber (K) at which the growth rate peaks. Recall that, for a mode with wavelength lc, the
wavenumber would be K = 2π ≈ 100.8.

due to higher-order terms). The other, D2 < 1 (with D1 also < 1), corresponds to growth
with the effective diffusion remaining positive; one can see, however, from figure 2 that
this growth happens at smaller scales than in the other regime (but may still be at scales
larger than lc). While D2 	 1 can formally lead to growing solutions regardless of the
value of D1, the growth then occurs at scales � lc.

4. The effect of anisotropy

Although we have not done so in the above, it seems natural to assume that the temporal
correlation function S, that appears in (2.10b), is even. This would allow one to take∫∞
−∞ S(t) dt = 1 and define the correlation time of η as τη ≡ ∫∞

−∞ |t| S(t) dt.
Because μ is a scalar, assuming its double correlation is invariant under time reversal

immediately implies Q̃(k) = Q̃(−k). We then conclude that

A(1)
i = A(3)

i = h(k) = 0, (4.1)

when the fluctuations of η are separable, homogeneous, stationary and time-reversal
invariant; this holds even without assuming that the fluctuations of η are isotropic! We
now study the dynamo assuming the double correlation of μ is time-reversal invariant and
anisotropic.

Let us choose the coordinate axes 1, 2, 3 to be along the principal axes of the matrix A(2)

(defined in (2.20a–d)), with the corresponding eigenvalues being −a1, −a2 and −a3 (such
that a1 ≥ a3 ≥ a2). By analogy with (3.4a–e), one can define the correlation length along
each axis as l(i)c ≡

√
A(0)/ai. It is physically reasonable to assume Q(ξ) attains a local

maximum at the origin, and that its correlation length is finite. This means a1, a2, a3 > 0.
Analogous to (3.4a–e), we define

D1 ≡ 9a3

8η̄
, D2 ≡ 81τηa2

3
32A(0)

, lc ≡
√

A(0)

a3
, K ≡ klc, T ≡ l2c

η̄
. (4.2a–e)
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Figure 3. The mode growth rate (T Re(λ), (4.6)) as a function of the wavenumber. In all the cases, we have

taken D1 = 2 and D2 = 5. Other parameters not mentioned in the legend have been set to zero.

We also define the new quantities

χ1 ≡ a1

a3
− 1, χ2 ≡ 1 − a2

a3
, n1 ≡ |K1|

K
, n2 ≡ |K2|

K
, (4.3a–d)

and a modified dynamo number

D̃1 ≡ D1

[
1 + χ1

9
(2 + 3n2

1) − χ2

9
(2 + 3n2

2)
]
. (4.4)

Since 0 ≤ χ2 < 1, 0 ≤ χ1 < ∞ and 0 ≤ n1, n2 ≤ 1, we find that D̃1 > 0. We write g(k)

(2.23) as

Tg(k) = D̃1K2 + 4D1

9
K4. (4.5)

Noting that τη/T = 4D2/(9D1), one can substitute (4.5) in (2.32) to obtain the following
expression for the growth rate:

T Re(λ) = K2(D̃1 − 1) + 4D1K4

9

(
1 − D2D̃2

1

D2
1

)
− 32D2D̃1K6

81
− 64D1D2K8

729
. (4.6)

As expected, this reduces to (3.5) on setting D̃1 = D1. Replacing D1 → D̃1 and D2 →
D2D̃2

1/D2
1, our comments in § 3 on the qualitative behaviour of (3.5) also apply to this

equation. Unlike in the isotropic case, the growth rate now depends on the direction of K
through the direction cosines n1 and n2. Figure 3 shows the growth rate as a function of
the wavenumber for various parameter values.

5. Suppression of turbulent diffusion

Neglecting terms with more than two spatial derivatives of 〈B〉, (2.31) can be written as
∂

∂t
〈B̃(k)〉 = −η̄k2〈B̃(k)〉 − 1

8
(3kmknA(2)

mn + 2k2A(2)
mm)〈B̃(k)〉

+ i
8

kmA(3)
m 〈B̃(k)〉 + τη

64
kmkiA(3)

m A(3)
i 〈B̃(k)〉 + O(k3). (5.1)

Following the reasoning used in § 4 for D̃1, one can see that the coefficient of 〈B̃(k)〉 in
the second term above is always positive as long as the spatial correlation function of the
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η-fluctuations attains a maximum at zero separation; the turbulent diffusion is suppressed.
This can be seen more clearly in (2.24), which assumes a particular form for the spatial
correlation function. The third term just describes advection with an effective velocity
A(3)/8, analogous to ‘Moffatt drift’ (Moffatt 1978, § 7.11). The fourth term can never be
negative, and is non-zero only when the fluctuations of η are anisotropic and not invariant
under time reversal. As noted in § 3, the higher powers of k neglected in (5.1) can cause
growth of the large-scale magnetic field even when the effective diffusivity is positive.
They also ensure that the growth rate becomes negative at small scales.

It may seem counter-intuitive that a dissipative term (η) at the mesoscale leads to
a dynamo at larger scales. However, it must be noted that, in addition to dissipation,
η also contributes an effective advection term (usually referred to as ‘turbulent
diamagnetism’; see (2.2)) when spatial variations at the mesoscale are properly accounted
for. Heuristically, it seems possible to explain the suppression of turbulent diffusion by
turbulent diamagnetism as follows: turbulent diamagnetism causes the magnetic field to
be preferentially concentrated in regions where the turbulent diffusivity is minimal. The
effective turbulent diffusivity acting on the magnetic field is then less than what would
be inferred by taking an average over the entire system. See Silant’ev (1999, p. 49) for a
more general explanation of reduced turbulent diffusion when two scattering mechanisms
contribute to the diffusion process.

6. Estimates of the dynamo numbers

Unfortunately, fluctuations of the turbulent diffusivity in astrophysical systems are
not sufficiently constrained by observations. The situation in the solar photosphere is
comparatively better, as observations of granulation give us an idea of the order of
magnitude of various quantities. To make crude estimates, we use (A1a,b), which assumes
a specific form for the correlation function of η.

Let us assume lc = 3 Mm (peak of the granulation’s power spectrum as observed by
Roudier & Muller 1986, figure 2) and τη = 400 s (granule lifetime measured by Bahng
& Schwarzschild 1961). The turbulent diffusivity in the photosphere is a scale-dependent
quantity, which is moreover not very well constrained (Abramenko et al. 2011, figure 10).
For the length scales of interest, it is not unreasonable to take η̄ = 600 km2 s−1. Let us also
assume f = 0.1 ( f ≡ 〈μ2〉/η̄2). We then find D1 ≈ 6 × 10−3 and D2 ≈ 4 × 10−4. These
estimates appear to rule out the operation of such a dynamo in the solar photosphere.
However, we note that assuming slightly different values of lc and τη brings the dynamo
numbers to within the regime where a large-scale field can be generated; for example,
taking lc = 300 km and τη = 900 s gives us D1 ≈ 1.4 and D2 ≈ 18. The dynamo numbers
are also affected by uncertainties in f . Further, anisotropy can have a significant effect on
the growth rates. Better estimates of the dynamo numbers would require measurements of
the spatio-temporal correlation and strength of fluctuations of the turbulent diffusivity (or
the kinetic energy) in the solar photosphere.

7. Conclusions

We have used a double-averaging procedure and found that just like helicity fluctuations,
fluctuations of the turbulent kinetic energy can drive the growth of a large-scale magnetic
field. While Silant’ev (1999, p. 49) has also reported that spatio-temporal fluctuations of
the turbulent kinetic energy reduce the effective turbulent diffusion, we are not aware of
any detailed studies of this effect that consistently account for the concomitant spatial
gradients.
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In the white-noise limit, we have found that η-fluctuations cause a reduction in the
overall turbulent diffusion (in agreement with previous work), while also contributing a
drift term which does not affect the growth of the field. We have then explored effects
of non-zero correlation times and found the possibility of growing mean-field solutions
despite the overall turbulent diffusion remaining positive. When the fluctuations are
isotropic, the growth rate of a particular Fourier mode of the large-scale magnetic field
depends on the magnitude of its wavevector and on two dynamo numbers. Anisotropy
leads to a dependence on, among other things, the direction of the wavevector.

We have studied the conditions under which this new dynamo can operate. However, the
lack of precise estimates of the quantities involved makes it hard to conclusively rule out
or support the resulting dynamo in various astrophysical scenarios.

Given the prevalence of shear in astrophysical systems, an obvious extension of
the current work would be to study the implications, for a large-scale magnetic
field, of fluctuations of the turbulent kinetic energy in a shearing background. Since
inhomogeneities in the density and in the small-scale magnetic energy also give rise to
pumping (Vainshtein & Kichatinov 1983), we expect them to have effects similar to those
described here.
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Appendix A. Dynamo numbers for a simple correlation function

To physically interpret D1 and D2 (defined in (3.4a–e)), it is helpful to explicitly write
them out for a specific functional form of Q (see (2.10b)). We take

Q(ξ) = C exp

(
−|ξ |2

2l2c

)
, S(t) = 1

2τη

exp
(

−|t|
τη

)
, (A1a,b)

which gives us

A(0) = C > 0, A(1)
i = 0, A(2)

ij = −C
l2c

δij, A(3)
i = 0. (A2a–d)

If we define

τ̃ ≡ τη

T
= τηη̄

l2c
, f ≡ 〈μ2〉

η̄2 , (A3a,b)
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and use the fact that 〈μ2〉 = C/(2τη) (recall that μ ≡ η − η̄), the dynamo numbers
(3.4a–e) become

D1 ≡ 9f τ̃
4

, D2 ≡ 81f τ̃ 2

16
. (A4a,b)

Note that, when τ̃ → 0, D1 remains constant, while D2 → 0. Here, f represents the
strength of the fluctuations of η, while τ̃ is a scaled measure of their correlation time.

Appendix B. What if we did not have turbulent diamagnetism?

Instead of (2.2), let us consider the following expression for the EMF

E = −η∇ × B. (B1)

Equation (2.7) is then replaced by

∂

∂t
〈B̃(k)〉 =

∫
dp k × [p × {〈η̃(k − p)〉〈B̃(p)〉 + 〈μ̃(k − p) b̃(p)〉}]. (B2)

Equation (2.9) is replaced by

∂ b̃(k)

∂t
=
∫

dp k × [p × (〈η̃(k − p)〉b̃(p) + μ̃(k − p)〈B̃(p)〉)]. (B3)

Equations (2.13) and (2.14) remain unchanged. Equation (2.17) becomes

〈μ̃(q, t)b̃(k, t)〉

=
∫ t

−∞
dτ exp(−〈η〉k2 (t − τ)) k × [(k + q) × 〈B̃(k + q, τ )〉]Q̃ (q) S(t − τ). (B4)

Assuming S(t) = δ(t) and plugging (B4) into (B2), we obtain the following evolution
equation for the large-scale magnetic field:

∂

∂t
〈B̃(k)〉 = −η̄k2〈B̃(k)〉 + 1

2

∫
ds Q̃ (s) (k2δij − kikj)sjs · 〈B̃(k)〉

+ 1
2

∫
ds Q̃ (s) (k2 − k · s)2〈B̃(k)〉. (B5)

The second term on the right-hand side above is qualitatively different from any term
present in (2.22); due to this term, the various components of the large-scale magnetic
field may become coupled when the fluctuations of η are anisotropic. This equation (or its
extension to the case of non-zero correlation time) may also be used to describe scenarios
where the microscopic conductivity itself exhibits stochastic fluctuations. Pétrélis et al.
(2016) and Gressel et al. (2023) have studied such systems.
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