On vector spaces of certain modular forms of given weights

A.R. Aggarwal and M.K. Agrawal

Abstract

Let p be a rational prime and Q_{p} be the field of p-adic numbers. Jean-Pierre Serre [Lecture Notes in Mathematics, 350, 191-268 (1973)] had defined p-adic modular forms as the limits of sequences of modular forms over the modular group $\mathrm{SL}_{2}(Z)$. He proved that with each non-zero p-adic modular form there is associated a unique element called its weight k. The p-adic modular forms having the same weight form a Q_{p}-vector space. The object of this paper is to obtain a basis of p-adic modular forms and thus to know precisely all p-adic modular forms of a given weight k. The dimension of such modular forms as a $Q_{p}-$ vector space is countably infinite.

1. Notations and definitions

Let Z be the ring of rational integers and Q the field of rational numbers. From now on we will write for the modular forms over $\mathrm{SL}_{2}(Z)$ simply "modular forms".

Let v_{p} denote the valuation of the field of p-adic numbers Q_{p} which is normalised so that $v_{p}(p)=1$. Let Z_{p} be the ring of p-adic integers; that is, $Z_{p}=\left\{x \mid x \in Q_{p}, \nu_{p}(x) \geq 0\right\}$.

For an even integer $k \geq 2$, take

Received 13 January 1977.

$$
E_{k}=1-\frac{2 k}{b_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}
$$

where b_{k} is the k th Bernoulli number and $\sigma_{k-1}(n)=\sum_{d \uparrow n} d^{k-1}$. For $k \geq 4, E_{k}$ is a modular form of weight k. We will denote E_{2}, E_{4}, and E_{6} by P, Q, R respectively.

As usual, we take,

$$
\Delta=2^{-6} 3^{-3}\left(Q^{3}-R^{2}\right)=\sum_{n=1}^{\infty} \tau(n) q^{n}=q \prod_{1}^{\infty}\left(1-q^{n}\right)^{24}
$$

Then Δ is a cusp form of weight 12 .
Let $Q_{p}[[q]]$ be the ring of formal power series in q with coefficients in Q_{p}.

DEFINITION 1.1. Let $f=\sum_{n=0}^{\infty} a_{n} q^{n} \in Q_{p}[[q]]$. Define

$$
v_{p}(f)=\inf _{n} v_{p}\left(a_{n}\right)
$$

DEFINITION 1.2. Let $\left\{f_{i}\right\}$ be a sequence of elements of $Q_{p}[[q]]$. We say that $f_{i} \rightarrow f$, if the coefficients of f_{i} tend uniformly to those of f; that is, $\nu_{p}\left(f-f_{i}\right) \rightarrow \infty$ as $i \rightarrow \infty$.

DEFINITION 1.3. Let $\left\{f_{i}\right\}, f_{i}=\sum_{n=0}^{\infty} a_{n}^{(i)} q^{n}$, be a sequence of modular form with coefficients $a_{n}^{(i)}$ rational. Let $f_{i} \rightarrow f=\sum_{n=0}^{\infty} a_{n} q^{n}$, with a_{n} in Q_{p}, in the sense of Definition 1.2. Then f is called a p-adic modular form.

DEFINITION 1.4. Let m be an integer greater than or equal to 1 if $p \neq 2$ and $m \geq 2$ if $p=2$. Define

$$
\begin{aligned}
& \text { Vector spaces of modular forms } \\
& X_{m}= \begin{cases}\left(z / p^{m-1} Z\right) \times z /(p-1) Z, & \text { if } p \neq 2, \\
z / 2^{m-2} Z, & \text { if } p=2 .\end{cases}
\end{aligned}
$$

Let X be the limit of the projective system $\left\{X_{m}\right\}$. Then

$$
X=\frac{\lim }{} X_{m}= \begin{cases}Z_{p} \times Z /(p-1) Z, & \text { if } p \neq 2 \\ Z_{2}, & \text { if } p=2\end{cases}
$$

Now we have the following theorem proved in [1].
THEOREM (Serre). Let f be a p-adic modular form and let $\left\{f_{i}\right\}$ be a sequence of modular forms with rational coefficients. Let the weight of f_{i} be k_{i} and let $f_{i} \rightarrow f$. Then $\left\{k_{i}\right\}$ has a limit k in the group X. This limit depends only on f and not on the choice of the sequence $\left\{f_{i}\right\}$.

DEFINITION 1.5. The limit k in X of $\left\{k_{i}\right\}$ as stated in the above theorem of Serre is called the weight of the p-adic modular form f.

DEFINITION 1.6. A series $\sum_{n=0}^{\infty} g_{n}$, where the g_{n} 's are p-adic modular forms is called an isobaric series if each g_{n} has the same weight.

REMARK 1. In the theorem of Serre, since each k_{i} is an even integer, the limit k of $\left\{k_{i}\right\}$ is an element of $2 X$. This implies that
(i) if p is an odd prime and $k=(s, u)$, then $s \in Z_{p}$ and u is an even integer $\bmod (p-1)$, and
(ii) if $p=2$, then $k=s$, with $s \in Z_{2}$.

REMARK 2. If $\left\{f_{i}\right\}$ is a sequence of p-adic modular forms with
weights k_{i}, and $f_{i} \rightarrow f$ then f is a p-adic modular form. We prove the following elementary lemma.

LEMMA. Let f and g be any two formal series in q with coefficients from Q_{p}. Then,

$$
v_{p}(f g)=v_{p}(f)+v_{p}(g)
$$

Proof. Let

$$
f=\sum_{n=0}^{\infty} a_{n} q^{n}
$$

and

$$
g=\sum_{n=0}^{\infty} b_{n} q^{n},
$$

where $a_{n}, b_{n} \in Q_{p}$. Also let $\nu_{p}(f)=A$ and $\nu_{p}(g)=B$. Let
(i) $\nu_{p}\left(a_{k}\right)=A, \nu_{p}\left(a_{n}\right)>A$ for $n=0,1, \ldots, k-1$, and
(ii) $\nu_{p}\left(b_{z}\right)=B, \nu_{p}\left(b_{n}\right)>B$ for $n=0,1, \ldots, Z-1$.

Now $f g=\sum_{n=0}^{\infty} e^{n} q^{n}$, where $c_{n}=\sum_{i+j=n} a_{i} b_{j}$. So
$\nu_{p}(f g)=\inf _{n} \nu_{p}\left(c_{n}\right) \geq A+B$. Also $v_{p}\left(c_{k+l}\right)=v_{p}\left(\sum_{i+j=k+l} a_{i} b_{j}\right)=A+B$,
whence $v_{p}(f g) \leq A+B$. Combining the two inequalities, we obtain the desired result. //

We can imbed Z_{p} in X if $p \neq 2$ by mapping $s \in Z_{p}$ to $(s, 0)$ in X. Now we prove the following theorem.

THEOREM 1. Let p be a prime number greater than or equal to 5 and let $s \in Z_{p}$. Let $\left\{s_{n}\right\}$ be a sequence of non-negative rational integers such that $s_{n} \rightarrow s$ in Z_{p}. Then the sequence $\left\{\begin{array}{c}E_{n}^{n} \\ p-1\end{array}\right\}$ of modular forms (the weight of $E_{p-1}^{s_{n}}$ is $(p-1) s_{n}$), is convergent in the sense of Definition 1.2 and its limit is a p-adic modular form of weight ($p-1$)s.

Proof. Since $s_{n} \rightarrow s$ in Z_{p}, so $s_{n+1} \equiv s_{n} \bmod p^{n+1}$ for $n=0,1,2, \ldots$. Let $\left|s_{n+1}-s_{n}\right|=\lambda_{n+1} p^{n+1}$, where λ_{n+1} is an integer greater than or equal to 0 . Hence

$$
{ }_{E_{p-1}^{s}}^{n_{n+1}}-{ }_{E}^{s_{p-1}^{n}}=\varepsilon E_{p-1}^{t_{n}}\left(E_{p-1}^{\lambda_{n+1} p^{n+1}}-1\right)
$$

where $t_{n}=\min \left(s_{n+1}, s_{n}\right)$, and $\varepsilon=1$ or -1 .
Therefore
$\begin{aligned} \nu_{p}\left(E_{p-1}^{s}-E_{p-1}^{s}\right) & =v_{p}\left(E_{p-1}^{\lambda_{n+1} p^{n+1}}-1\right) \text { by Lemma } 1 \text { and the fact that } v_{p}\left(E_{p-1}\right)=0 \\ & \geq(n+1) .\end{aligned}$
Thus $\left\{\begin{array}{c}s \\ E_{p-1}\end{array}\right\}$ is a convergent sequence of modular forms. Let its limit be denoted by E_{p-1}^{s} in the sense of Definition 1.2. Hence E_{p-1}^{s} is a p-adic modular form and its weight is $\lim _{n \rightarrow \infty}(p-1) s_{n}=(p-1) s$.

REMARK. The case $p=2,3$. If we take E_{2} in place of E_{p-1} and replace the word "modular forms" by p-adic modular forms in the above theorem then by using Corollaire 2 of Théorème 21' of Serre [1] we find the theorem holds in these cases too.

Let p be an odd prime and let f be any p-adic modular form of weight $k=(s, u), s \in Z_{p}, 0 \leq u<p-1$, and u is even for $n=0,1,2, \ldots$. Choose any non-negative integers $a(n)$ and $b(n)$ satisfying

$$
4 a(n)+6 b(n)+12 n \equiv u \bmod (p-1)
$$

Consider

$$
\begin{equation*}
f_{n}=q^{a(n)}{ }_{R}^{b(n)} \Delta^{n_{E}} E_{p-1}^{s} \tag{1}
\end{equation*}
$$

for $n=0,1,2, \ldots$, where

$$
s_{n}=\frac{s-[12 n+4 a(n)+6 b(n)]}{p-1} \in Z_{p}
$$

From Theorem 1, it follows that $E_{p-1}^{s} n$ is a p-adic modular form of weight $(p-1) s_{n}$ and hence f_{n} is a p-adic modular form of weight $k=(\varepsilon, u)$. Let

$$
\begin{equation*}
f_{n}=\sum_{m=0}^{\infty} a_{m}^{(n)} q^{m} \tag{2}
\end{equation*}
$$

Since $\Delta^{n}=q^{n}+\ldots$, and the constant term in each of Q, R, and E_{p-1} is 1 , so

$$
\begin{equation*}
a_{m}^{(n)}=0 \quad \text { for } 0 \leq m<n \text { and } a_{n}^{(n)}=1 \tag{3}
\end{equation*}
$$

With the notations as above for f_{n} we have the following theorem.
THEOREM 2. f is a p-adic modular form of weight k iff $f=\sum a_{n} f_{n}$ with $\nu_{p}\left(a_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Proof. Let f be a p-adic modular form and let

$$
f=\sum b_{m}^{(0)} q^{m}, b_{m}^{(0)} \in Q_{p}
$$

The series $f-b_{0}^{(0)} f_{0}$ has no constant term and is a p-adic modular form of weight k. Let

$$
f-b_{0}^{(0)} f_{0}=\sum_{m=1}^{\infty} b_{m}^{(1)} q^{m}
$$

Now consider

$$
f-b_{0}^{(0)} f_{0}-b_{1}^{(1)} f_{1}\left(=\sum_{m=2} b_{m}^{(2)} q^{m}(\text { say })\right)
$$

It is a p-adic modular form of weight k. Continuing this process, we see that $f-\sum_{\gamma=0}^{t} b_{\gamma}^{(\gamma)} f_{\gamma}$ is a p-adic modular form of weight k for every non-negative integer t, and has no terms containing q^{m} for $m=0,1, \ldots, t$. Hence we can find $b_{\gamma}^{(\gamma)} \in Q_{p}(\gamma=0,1,2, \ldots)$ such
that as formal series in $q, f=\sum_{n=0}^{\infty} b_{n}^{(n)} f_{n} ;$ that is, $f=\lim g_{t}$ where $g_{t}=\sum_{\gamma=0}^{t} b_{\gamma}^{(\gamma)} f_{\gamma}$. Now each g_{t} is a p-adic modular form of weight k and $\left\{g_{t}\right\}$ is a convergent sequence, so $v_{p}\left(g_{t+1}-g_{t}\right) \rightarrow \infty$ as $t \rightarrow \infty$. Hence $v_{p}\left(b_{t+1}^{(t+1)}-f_{t+1}\right) \rightarrow \infty$ with t. Now $v_{p}\left(f_{t+1}\right)=0$ for each t, so $\nu_{p}\left(b_{t+1}^{(t+1)}\right) \rightarrow \infty$. Hence taking $b_{n}^{(n)}=a_{n}$, we get $f=\sum a_{n} f_{n}$ with $\nu_{p}\left(a_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$.

Conversely let $f=\sum_{n=0}^{\infty} a_{n} f_{n}$, with $\left(a_{n}\right) \rightarrow \infty$ as $n \rightarrow \infty$. As above, taking $g_{t}=\sum_{\gamma=0}^{t} a_{\gamma} f_{\gamma}$, which is a p-adic modular form of weight k. Since $v_{p}\left(a_{n}\right) \rightarrow \infty$ with n and $\nu_{p}\left(f_{n}\right)=0$, so $\left\{g_{t}\right\}$ is a convergent sequence with its limit equal to f. Hence f is a p-adic modular form.

COROLLARY 1. Any p-adic modular form can be written as an isobaric series in Q, R, and E_{p-1}.

Proof. Obvious.
COROLLARY 2. The dimension of the Q_{p}-vector space of p-adic modular forms of weight k is countably infinite.

Proof. In view of property (3) above the $f_{n}^{\prime \prime} s$ are linearly independent over Q_{p}. Also from Theorem 2 any p-adic modular form can be written as a linear combination over Q_{p} of $f_{n}^{\prime \prime s}$. So $\left\{f_{n} \mid n=0,1,2, \ldots\right\}$ is a basis of p-adic modular forms of the given weight k.

REMARK 1. The case $p=2$. Here we take

$$
\begin{equation*}
f_{n}=\Delta^{n} E_{2}^{8} n, \quad s_{n}=\frac{8-12 n}{2} \tag{4}
\end{equation*}
$$

Since $s \in 2 Z_{2}$, so $s_{n} \in Z_{2}$. These f_{n} 's have the property (3) and

Theorem 2 and its corollaries are true if we replace E_{p-1} by $E_{2}(=P)$.
REMARK 2. With the notations of [1],
$\left\{\Delta^{n} E_{k-12 n}^{*} \mid n=0,1,2,3, \ldots\right\}$ also forms a basis of p-adic modular forms of weight k.

Reference

[1] Jean-Pierre Serre, "Formes modulaires et fonctions zêta p-adiques", Modular functions of one variable III, 191-268 (Proc. Internat. Summer School, University of Antwerp, RUCA, 1972. Lecture Notes in Mathematics, 350. Springer-Verlag, Berlin, Heidelberg, New York, 1973).

Department of Mathematics, Panjab University, Chandigarh, India, and
I.B. College,

Panipat,
India;
Department of Mathematics, Panjab University, Chandigarh, India.

