On vector spaces of certain modular forms of given weights

A.R. Aggarwal and M.K. Agrawal

Let p be a rational prime and Q_p be the field of p-adic numbers. Jean-Pierre Serre [Lecture Notes in Mathematics, 350, 191-268 (1973)] had defined p-adic modular forms as the limits of sequences of modular forms over the modular group $SL_2(Z)$. He proved that with each non-zero p-adic modular form there is associated a unique element called its weight k. The p-adic modular forms having the same weight form a Q_p -vector space. The object of this paper is to obtain a basis of p-adic modular forms and thus to know precisely all p-adic modular forms as a Q_p vector space is countably infinite.

1. Notations and definitions

Let Z be the ring of rational integers and Q the field of rational numbers. From now on we will write for the modular forms over $SL_2(Z)$ simply "modular forms".

Let v_p denote the valuation of the field of *p*-adic numbers Q_p which is normalised so that $v_p(p) = 1$. Let Z_p be the ring of *p*-adic integers; that is, $Z_p = \{x \mid x \in Q_p, v_p(x) \ge 0\}$.

For an even integer $k \ge 2$, take

Received 13 January 1977.

$$E_k = 1 - \frac{2k}{b_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n)q^n$$
,

where b_k is the kth Bernoulli number and $\sigma_{k-1}(n) = \sum_{d \mid n} d^{k-1}$. For $k \ge 4$, E_k is a modular form of weight k. We will denote E_2 , E_4 , and E_6 by P, Q, R respectively.

As usual, we take,

$$\Delta = 2^{-6} 3^{-3} (Q^3 - R^2) = \sum_{n=1}^{\infty} \tau(n) q^n = q \prod_{n=1}^{\infty} (1 - q^n)^{24}$$

Then Δ is a cusp form of weight 12.

Let $\mathbb{Q}_p\big[[q]\big]$ be the ring of formal power series in q with coefficients in \mathbb{Q}_p .

DEFINITION 1.1. Let
$$f = \sum_{n=0}^{\infty} a_n q^n \in \mathbb{Q}_p[[q]]$$
. Define
 $v_p(f) = \inf_n v_p(a_n)$.

DEFINITION 1.2. Let $\{f_i\}$ be a sequence of elements of $\mathbb{Q}_p[[q]]$. We say that $f_i \neq f$, if the coefficients of f_i tend uniformly to those of f; that is, $v_p(f-f_i) \neq \infty$ as $i \neq \infty$.

DEFINITION 1.3. Let $\{f_i\}$, $f_i = \sum_{n=0}^{\infty} a_n^{(i)} q^n$, be a sequence of modular form with coefficients $a_n^{(i)}$ rational. Let $f_i \neq f = \sum_{n=0}^{\infty} a_n q^n$, with a_n in Q_p , in the sense of Definition 1.2. Then f is called a *p*-adic modular form.

DEFINITION 1.4. Let m be an integer greater than or equal to 1 if $p \neq 2$ and $m \ge 2$ if p = 2. Define

372

$$X_{m} = \begin{cases} (\mathbb{Z}/p^{m-1}\mathbb{Z}) \times \mathbb{Z}/(p-1)\mathbb{Z} , \text{ if } p \neq 2 , \\ \\ \\ \mathbb{Z}/2^{m-2}\mathbb{Z} , & \text{ if } p = 2 . \end{cases}$$

Let X be the limit of the projective system $\{X_m\}$. Then

$$X = \lim_{\leftarrow} X_m = \begin{cases} Z_p \times Z/(p-1)Z , \text{ if } p \neq 2 , \\ \\ \\ Z_2 , & \text{ if } p = 2 . \end{cases}$$

Now we have the following theorem proved in [1].

THEOREM (Serre). Let f be a p-adic modular form and let $\{f_i\}$ be a sequence of modular forms with rational coefficients. Let the weight of f_i be k_i and let $f_i + f$. Then $\{k_i\}$ has a limit k in the group X. This limit depends only on f and not on the choice of the sequence $\{f_i\}$.

DEFINITION 1.5. The limit k in X of $\{k_i\}$ as stated in the above theorem of Serre is called the *weight* of the *p*-adic modular form f.

DEFINITION 1.6. A series $\sum_{n=0}^{\infty} g_n$, where the g_n 's are p-adic modular forms is called an *isobaric* series if each g_n has the same weight.

REMARK 1. In the theorem of Serre, since each k_i is an even integer, the limit k of $\{k_i\}$ is an element of 2X. This implies that

```
(i) if p is an odd prime and k = (s, u), then s ∈ Z<sub>p</sub> and u is an even integer mod(p-1), and
(ii) if p = 2, then k = s, with s ∈ Z<sub>2</sub>.
REMARK 2. If {f<sub>i</sub>} is a sequence of p-adic modular forms with
```

weights k_i , and $f_i \neq f$ then f is a p-adic modular form. We prove the following elementary lemma.

LEMMA. Let f and g be any two formal series in q with coefficients from \mathbf{Q}_p . Then,

$$v_p(fg) = v_p(f) + v_p(g) .$$

Proof. Let

$$f = \sum_{n=0}^{\infty} a_n q^n$$

and

374

$$g = \sum_{n=0}^{\infty} b_n q^n ,$$

where $a_n, b_n \in \mathbb{Q}_p$. Also let $v_p(f) = A$ and $v_p(g) = B$. Let (i) $v_p(a_k) = A$, $v_p(a_n) > A$ for $n = 0, 1, \dots, k-1$, and (ii) $v_p(b_l) = B$, $v_p(b_n) > B$ for $n = 0, 1, \dots, l-1$.

Now $fg = \sum_{n=0}^{\infty} c^n q^n$, where $c_n = \sum_{i+j=n} a_i b_j$. So

$$\begin{split} & \nu_p(fg) = \inf_n \nu_p(c_n) \geq A + B \ . \ \text{Also} \ \nu_p(c_{k+l}) = \nu_p \Big(\sum_{i+j=k+l} a_i b_j \Big) = A + B \ , \\ & \text{whence} \ \nu_p(fg) \leq A + B \ . \ \text{Combining the two inequalities, we obtain the} \\ & \text{desired result.} \qquad // \end{split}$$

We can imbed Z_p in X if $p \neq 2$ by mapping $s \in Z_p$ to (s, 0) in X. Now we prove the following theorem.

THEOREM 1. Let p be a prime number greater than or equal to 5 and let $s \in Z_p$. Let $\{s_n\}$ be a sequence of non-negative rational integers such that $s_n \rightarrow s$ in Z_p . Then the sequence $\{E_{p-1}^{s_n}\}$ of modular forms (the weight of $E_{p-1}^{s_n}$ is $(p-1)s_n$), is convergent in the sense of Definition 1.2 and its limit is a p-adic modular form of weight (p-1)s. Proof. Since $s_n \rightarrow s$ in Z_p , so $s_{n+1} \equiv s_n \mod p^{n+1}$ for $n = 0, 1, 2, \ldots$. Let $|s_{n+1} - s_n| = \lambda_{n+1} p^{n+1}$, where λ_{n+1} is an integer greater than or equal to 0. Hence

$$\sum_{p=1}^{s_{n+1}} - \sum_{p=1}^{s_n} = \sum_{p=1}^{t} \left(\sum_{p=1}^{\lambda_{n+1}} \sum_{p=1}^{n+1} -1 \right) ,$$

where $t_n = \min(s_{n+1}, s_n)$, and $\varepsilon = 1$ or -1.

Therefore

$$v_p \begin{pmatrix} s_{n+1} & s_n \\ p-1 & -E_{p-1} \end{pmatrix} = v_p \begin{pmatrix} \lambda_{n+1} p^{n+1} \\ E_{p-1} & -1 \end{pmatrix} \text{ by Lemma 1 and the fact that } v_p \begin{pmatrix} E_{p-1} \end{pmatrix} = 0$$
$$\geq (n+1) .$$

Thus ${{ {B} \atop {p-1}}^{s}}$ is a convergent sequence of modular forms. Let its limit be denoted by ${ {B} \atop {p-1}}^{s}$ in the sense of Definition 1.2. Hence ${ {B} \atop {p-1}}^{s}$ is a *p*-adic modular form and its weight is $\lim_{n \to \infty} (p-1)s_n = (p-1)s$.

REMARK. The case p = 2, 3. If we take E_2 in place of E_{p-1} and replace the word "modular forms" by p-adic modular forms in the above theorem then by using Corollaire 2 of Théorème 21' of Serre [1] we find the theorem holds in these cases too.

Let p be an odd prime and let f be any p-adic modular form of weight k = (s, u), $s \in \mathbb{Z}_p$, $0 \le u < p-1$, and u is even for $n = 0, 1, 2, \ldots$. Choose any non-negative integers a(n) and b(n) satisfying

$$4a(n) + 6b(n) + 12n \equiv u \mod(p-1)$$

Consider

(1)
$$f_n = q^{a(n)} R^{b(n)} \Delta^n E_{p-1}^{s_n}$$

for n = 0, 1, 2, ..., where

$$s_n = \frac{s - [12n + 4a(n) + 6b(n)]}{p - 1} \in \mathbb{Z}_p$$
.

From Theorem 1, it follows that E_{p-1}^{s} is a p-adic modular form of weight $(p-1)s_n$ and hence f_n is a p-adic modular form of weight k = (s, u). Let

(2)
$$f_n = \sum_{m=0}^{\infty} a_m^{(n)} q^m$$
.

Since $\Delta^n = q^n + \dots$, and the constant term in each of Q, R, and E_{p-1} is 1, so

(3)
$$a_m^{(n)} = 0 \text{ for } 0 \le m < n \text{ and } a_n^{(n)} = 1$$
.

With the notations as above for f_n we have the following theorem.

THEOREM 2. f is a p-adic modular form of weight k iff $f = \sum a_n f_n$ with $v_p(a_n) \neq \infty$ as $n \neq \infty$.

Proof. Let f be a p-adic modular form and let

$$f = \sum b_m^{(0)} q^m , \quad b_m^{(0)} \in \mathbb{Q}_p .$$

The series $f - b_0^{(0)} f_0$ has no constant term and is a *p*-adic modular form of weight k. Let

$$f - b_0^{(0)} f_0 = \sum_{m=1}^{\infty} b_m^{(1)} q^m$$
.

Now consider

$$f - b_0^{(0)} f_0 - b_1^{(1)} f_1 \left(= \sum_{m=2} b_m^{(2)} q^m (say) \right)$$

It is a *p*-adic modular form of weight *k*. Continuing this process, we see that $f - \sum_{\gamma=0}^{t} b_{\gamma}^{(\gamma)} f_{\gamma}$ is a *p*-adic modular form of weight *k* for every non-negative integer *t*, and has no terms containing q^{m} for m = 0, 1, ..., t. Hence we can find $b_{\gamma}^{(\gamma)} \in \mathbb{Q}_{p}$ $(\gamma = 0, 1, 2, ...)$ such

376

that as formal series in
$$q$$
, $f = \sum_{n=0}^{\infty} b_n^{(n)} f_n$; that is, $f = \lim_{n \to \infty} g_t$

where $g_t = \sum_{\gamma=0}^{t} b_{\gamma}^{(\gamma)} f_{\gamma}$. Now each g_t is a *p*-adic modular form of weight k and $\{g_t\}$ is a convergent sequence, so $v_p(g_{t+1}-g_t) + \infty$ as $t + \infty$. Hence $v_p(b_{t+1}^{(t+1)}-f_{t+1}) + \infty$ with t. Now $v_p(f_{t+1}) = 0$ for each t, so $v_p(b_{t+1}^{(t+1)}) + \infty$. Hence taking $b_n^{(n)} = a_n$, we get $f = \sum a_n f_n$ with $v_p(a_n) + \infty$ as $n + \infty$.

Conversely let $f = \sum_{n=0}^{\infty} a_n f_n$, with $(a_n) \neq \infty$ as $n \neq \infty$. As above,

taking $g_t = \sum_{\gamma=0}^t a_\gamma f_\gamma$, which is a *p*-adic modular form of weight *k*. Since $v_p(a_n) \neq \infty$ with *n* and $v_p(f_n) = 0$, so $\{g_t\}$ is a convergent sequence with its limit equal to *f*. Hence *f* is a *p*-adic modular form.

COROLLARY 1. Any p-adic modular form can be written as an isobaric series in Q, R , and $\rm E_{p-1}$.

Proof. Obvious.

COROLLARY 2. The dimension of the Q_p -vector space of p-adic modular forms of weight k is countably infinite.

Proof. In view of property (3) above the f_n 's are linearly independent over Q_p . Also from Theorem 2 any *p*-adic modular form can be written as a linear combination over Q_p of f_n 's. So $\{f_n \mid n = 0, 1, 2, \ldots\}$ is a basis of *p*-adic modular forms of the given weight *k*.

REMARK i. The case p = 2. Here we take

(4)
$$f_n = \Delta^n E_2^n$$
, $s_n = \frac{s-12n}{2}$

Since $s \in 2\mathbb{Z}_2$, so $s_n \in \mathbb{Z}_2$. These f_n 's have the property (3) and

Theorem 2 and its corollaries are true if we replace E_{p-1} by E_2 (= P).

REMARK 2. With the notations of [1], $\left\{\Delta^{n}E_{k-12n}^{\star} \mid n = 0, 1, 2, 3, \ldots\right\}$ also forms a basis of *p*-adic modular forms of weight k.

Reference

 [1] Jean-Pierre Serre, "Formes modulaires et fonctions zêta p-adiques", *Modular functions of one variable III*, 191-268 (Proc. Internat. Summer School, University of Antwerp, RUCA, 1972. Lecture Notes in Mathematics, 350. Springer-Verlag, Berlin, Heidelberg, New York, 1973).

```
Department of Mathematics,
Panjab University,
Chandigarh,
India,
and
I.B. College,
Panipat,
India;
Department of Mathematics,
Panjab University,
Chandigarh,
India.
```

378