ON THE HOLONOMY GROUP OF THE CONFORMALLY
FLAT RIEMANNIAN MANIFOLD

MINORU KURITA

The main purpose of the present paper is to show that the local homo-
geneous holonomy group of the conformally flat Riemannian manifold is the

full rotation group with some exceptions.

1. Let M be an n-dimensional conformally flat Riemannian manifold
(n = 3), the metric being given by ds®=d’> dx; in a coordinates neighborhood
U with a function a=alx1, ..., x,) of class 2. We take rectangular frames

in the tangent spaces at each point of U and put according to the frames
(1) ds* = > ol

When we put

(2) w; = ani,

Sin: is a flat metric, and if we take mi; such that
(3) dri = ni\7wji, Tij = — mji,
then we have by the flatness of >z}

(4) dmij = Tk A TRS.

Next we put

(5) dala=bin;

(6) wij = nij+ binj — bjmi
and we get

7 dw; = wjp wji, wij = = Wji.

Thus w;; are the parameters of the Riemannian connection of M in U. Now

we calculate the curvature forms of M. Putting
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(8) >ibi=0"

(9) db; + br wki — —%bzm:azliknk

we get for the curvature forms

(10) Rij = dwij — Wik A Wk = Aikwr A ©F + OiA Ajk OF,

using the relations (3), (4), (6). Taking an exterior differential of (5) we get

(11) Aij = Aji.

We put Qij= —; Rijtnoppon (Rijen = — Rijae) and we have by (10)
Rijkn = 2irOjn — Ain Ok — Ajk 0in + Ajn Oik.

Contracting with respect to 7 and 7 we get Ricci’s tensor

(12) Rit = (n—2) e+ 4j5, R=Ri;=2(n-1)1j.

Hence we can represent 4;; as follows,

(13) Zij = 71-1_—2“ (Rij -

1

T Rdij)-

We take a geodesic of the manifold M. It satisfies the differental equations

and along it we have by (5), (9)

Aijwiwj _ d (i chz) (1 da)"’ 18

dass T ds ads/ 2 a

(14) 2 at

This gives an interpretation of the tensor (4;) in terms of @ and b.

2. We assume that our metric is not flat in the coordinate neighborhood U
and the local homogeneous holonomy group H, (cf. [1]) at any point of U is
not the full rotation group SO(n). Then we take a point p at which the tensor
(2i7) is not a zero tensor. When we take a suitable rectangular frame e;, ..., e,
at p, we can reduce the tensor (1;7) into the diagonal form with the diagonal

elements A1, . .., A». Then we get for (10)
(15) Qij= Qi+ 2)wiaw; (not summed for 4, j)

at p. Conversely if the curvature forms are represented as (15) by a suitable

choice of rectangular frames, the manifold is conformally flat under the as-
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sumption # = 4. This can be verified by the vanishing of the conformal curva-
ture tensor.

We denote by H, the local homogeneous holonomy group at » and by 9»
the Lie algebra of Hy. Let S; be a skew symmetric matrix (su) such that
sij= —sji=1 and all the other su’s are zero. Then by virtue of (15) $, con-
tains a subalgebra generated by S; if ;i +4;%0. Let O, ..., i) be a sub-
group of a full rotation group SO(#) which induces the full rotation in the linear
subspaces generated by e;, ..., e, and fixes the remaining fundamental vec-
tors. As at least one of ;4 1; is not zero at p, D, contains S;; for such ¢ and
j. Hence Hj, contains O(i, j). If Hp is not the full rotation group, there exist
k and 4, ..., i such that H, contains O(4, ..., 7) but does not contain
O(i, ..., ik, j) for any 7. We change the indices suitably and assume that
Hj contains O(1, . .., k) but does not contain O(1, ..., &k, j) for any j. Then
9, does not contain Sz (a=1,...,%k; r=k+1,..., n) and we get

latdr=0 (a=1,...,k;r=Ek+1,...,n).
By putting A = 4; we have
(16) M= ...=2=1, Iet1= oo =Ap= =2 (42 0).
In this section and the next we assume that the indices run as follows,
a, b=1,...,k 7,s=k+1,...,n i, j=1,..., n
‘We have by (15)
{(17) Qab =2wap b, 2rs= —2Aw,pnws all the others zero.

Next we take a point g in the neighborhood of » and choose a suitable rec-

tangular frame at the point. Then we have at ¢
Qii= Qi+ ) winw; (not summed for 7, 7).

“The eigenvalues of the symmetric matrix (4;) are continuous with respect to
the values of A; in the sense that those of (i) for 1ij=ai; are in arbitrary
small neighborhoods of those for 1;;=b;; if ais are sufficiently near to b;;.

‘When the point q is sufficiently near to p, we conclude by (17)

'(18) ..Qab = (ja+xb)(l)a/\(0b 2 O, .Qrs = (Ar‘l‘ Xs)l.l)r/\(l)s ES 0

(not summed for a, b, 7, s)
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as it is so at the point p. Hence H, contains Ss and S,s and so H,; contains
O1,...,k and O(E+1,..., n). If H, contains none of O(1, ..., & j),
(17) holds good at q. If H, contains at least one of O(1, ..., &, j), we change
the indices of eg+1, ..., €, in such a way that H, contains O(1, ..., & k+1,
...,k+1) and none of O(1, ...,k k+1,...,k+1, E+1+m). Then we

get by the repetition of the above process
2rs=0 (r=k+1,...,k+1l;s=k+1+1,..., n.

This contradicts (18). Thus we can take frames at each point of U in such a
way that (17) holds good with the same k.  These frames can be so taken as
to satisfy the differentiability, because the eigenvalues of (A;) satisfy the re-
lation (16) and the process of transforming (A;) into the diagonal form can be
taken analytic except at the point such that A;= ... =1,, namely A=0. These
circumstances are discussed precisely in section 7. We treat at first the neighbor-
hood in which A never vanishes, the non-existence of the point at which A=0

being assured thereafter.

3. The next step is to find the Riemannian metric which satisfies the re-
lation (17). In this sectin we treat the case n—%k 22, k> 2.

By Bianchi’s identity we have
ARar = = Qai pwir + waip Lir.
By virtue of (17) we get
0= — Qasp0br + wasp 2sr = ~ 22 (wap 0sAObr + Was A Osp ©r).
Putting waes = Aasiwi we get by the assumption 2 % 0
(19) wap wWbA Abri wi + Aasi wip 0spwr = 0.
As n—k =2, k=22, we have

Abrs = 0, Aasb =0
and so

War = — Wra = 0.
Consequently (7) takes the forms
dwa = Wi Wia = Wb Wha, dwr = Wip Wir = OspA Osr

and by E. Cartan’s lemma the metric of our manifold decomposes, namely
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(20) ds’ = ds; + ds,
where
dsi = g (%1, - . . , %) d¥adxs, dss = Grs(Xps1, « « o , Xn) d¥rdxs

with suitably chosen coordinates. When we take suitably chosen rectangular
frames in each manifold with the metric ds; and ds3, ws’s are expressed by the
coordinates %1, . . ., %¢ and w,’s by %k+1, . . ., ¥2. As the relations (17) holds
good, 1 is constant and ds: is a metric of constaht curvature K, while ds; is one
of constant curvature - K.

Thus any point of U at which A does not vanish has a neighborhood in
which (16) holds good with non zero constant. The set V of all points at which
(16) holds good with the same constant is open.” On the other hand V is closed
as A’s are continuous. V is closed and open in U. As U is connected, V

coincides with U and there is no point in U at which 4 = 0.

4. Next we treat the case n—k=1, n=4. In this section we assume

that the indices run as @, b,c=1,..., n—1. By (17)
(21) Qab = 2 Awa p 0, Lan=0.
By virtue of (19) we get Aunn=0 and we can put
(22) Wan = Aabws.
By (21) we have for Bianchi’s identity
dQab = — Lac A wcb + wac A Leb
and this can be written as
dApwapwb+ Adwa pwb — Awa pdws = — Awa \Wc A\ Wb + Wac A A0 A Wb,
Hence by (7) and (21)

Al A Wa pwb = A(On/\(Abcﬂ)a/\wc + Aac(ﬂc/\wb)
and so
Apc=0 (¢ =a, b).

Putting As = As (not summed for a) we get
(23) di — 2(As+ As) Wn = Pwae+ quo

for all 2 and b (@ %b). As k=23, A+ A; is independent of ¢ and & and so Aa
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is independent of a. We put Acs=A. We also get from (23) p=0, ¢=0. Thus
we have

(24) dk - ZXACUn = 0, Wan = Awa.

By the relation (17) we get

0 = 2an = dwan — Wab A Won = A A wa + Adwa — wab N Aws
=dANwa+ Avnpwna= (dA — A’ wn) A wa.
Hence
dA = A’w,.

In the neighborhood of the point at which A % 0 we have
dA/Az = Wn.
Hence putting x»= — A~ we get

Wn = dxn
and by virtue of (24)

A= —24/%n* dxn, A=C/x% (C const)
and
Wan = — wal%n.

Hence

dwa = ObAWba + OnAWna = Wb AWba + AXn \Wa/ Xn.
Putting wq = %npa wWe get

dpa = pb A Wba

and

ds® =200 =8 %1, « « . , Xn-1) dXadxs

for suitably chosen coordinates %1, . .., ¥z-1. Also we have

dwab — Wae A 0ch = Lab + Wan A Onb = 2 Aoa p 0p — A’wa p b
= (22x% — A%x%) panps = (2C — 1) pa p po.
Hence do® is a metric of constant curvature, and our metric is
ds’ = x5dd® + dxs.

But the local homogeneous holonomy group Hp of this manifold does not keep
the direction e, invariant. As the holonomy group H, contains O(1, ..., n—1),

Hp is a full rotation group. The manifold affords an example of the one for
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which the curvature forms satisfy the relations (21) for suitably chosen frames
and yet the metric does not decompose.
Now we need only to treat the case that A is identically zero. Then by

virtue of (24) 4 is constant and we» =0 and we get
(25) ds’ = do® + d’;

where ds* is a metric of constant curvature. This holds good in U by the
same discussion as at the end of the preceding section.

5. Lastly we treat the case n=3. If the group Hp is not the full rotation
group in U, it is reducible and we can take rectangular frames in such a way

that the metric can be written as
(26) ds’ = 0l + w3 + ws,
where w;, w. are Pfaffian forms in the variables x;, x2 and
(27) w3 = d%s.
For the parameters wi; of the Riemannian connection we have
(28) w =0, weg =0,
and for curvature forms
212 = — Koip w0z, £15=0, £23=0.
For Ricci’s tensor we have
(29) Ry= —K, Ry= —K, all the others zero R= —-2K.

Now a 3-dimensional Riemannian manifold with the metric ds’=> w} is con-

formally flat when and only when
(30) Dpirpwr =0,
where D denotes covariant differential and

Pi= - n—i7 (R"f - f‘g'(;,l_T) R5if)-

This is a formulation in rectangular frames of the well known property. In our

case pi; reduces to

bij= — Rij+ }1 Roij
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and we have by (29)
1 1 .
Du= ~2~K, D= 7K all the other pi; vanish.

By these and (28) the relation (30) reduces to dKaw: =0, dKpaw:=0 and so
dK =0 and K is constant. Hence our metric (26) is conformally flat when and
only when do* = wi+ w} is of constant curvature. Thus the metric for which (30)

holds good in some neighborhood has been found.
6. In summary we get the following theorem.

TueoreM. The local homogeneous holonomy group Hp of an n-dimensional
conformally flat Riemannian manifold of class Cs is in general the full rotation
group SO(n). If Hy is not SO(n) for any point of a coordinate neighborhood
U, we can classify into the following three cases:

1) Hp is an identity and the metric is flat in U.

2) Hy is SO(k) x SO(n~ k) and U is a direct product of a k-dimensional
manifold of constant curvature K and an n— k-dimensional manifold of constant
curvatur — K (K % 0).

3) Hy is SO(n—1) and U is a direct product of a straight line (or a seg-

ment) and an n— 1-dimensional manifold of constant curvature.

The set N of all the point of M at which H, is SO(n) is closed. In fact
when p is a limit point of IV any neighborhood of » has a point ¢q € IV and by
Lemma 3.2 in [1] we have Hy, D H;=SO(n) and so Hp=SO(n). For any point
p at which Hp % SO(n) (if exist) we can take a neighborhood U such that
U~ N is empty and by our theorem one of 1), 2), 3) holds good in U. By the
Theorem 3 in [1] we can conclude that if there is no point on an #-dimensional
conformally flat connected manifold M at which Hp is SO(#u), the restricted
homogeneous holonomy group of M is an identity, or SO(k) x SO(n — k), or
SO(n—1). In fact A’s in our discussion are continuous and (17) holds good
for all the points of M with the same number %, and dim H, is constant over
M. An example of the case in which Hp is SO (n) in some points and SO(k)

X SO(n — k) in other points can easily be given.

7. Here we give an attention to a symmetric covariant tensor field of

second order over an #n-dimensional Riemannian manifold. Let the components
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of the tensor with respect to certain rectangular frames be (ai;j). When the
metric, frames and (a;;) satisfy certain differentiability conditions (for example
class Cp) it is not sure that the frames can be taken in such a way that (ai)
reduces to a diagonal form and yet the frames satisfy the differentiability of
the same kind. An example is given by a symmetric tensor field with the

components

a1 = p1cos’ O + P, sin’ 6, @ = pisin® 0+ prcos’ f
Qs = @ = 2(Ppy— o) sin b cos 6,

where 6 = -3.&1--_1??2, Dpi—po=(x1—x)" (p; is class C»), on the euclidean plane
with the rectangular coordinates %;, x.. The eigenvalues of (aij) are p; and ps.
But the angle of rotation which transforms the components of the tensor into a
diagonal form is # and it is not continuous at the points such that x1=%.. In
general this singularity appears at the points at which the  multiplicities of
eigenvalues of (ay;) differ from those at the sufficiently near points. In fact
if the multiplicities of the eigenvalues of (ai;) are each constant in some
neighborhood, the eigenvalues are analytic functions of (ai;) as they are simple
roots of the polynomials obtained from ¢(#) = det (ai; — 8i;#) by a suitable suc-
cessive differentiation. When the eigenvalues are analytic functions of (aij),
we can transform it into a diagonal form by an analytic process. In the treat-
ment of the preceding sections the relation (16) is satisfied and there was no

obstacle to the discussion.

8. In a conformally flat Riemmanian manifold we can take rectangular

frames such that the curvature forms reduce to
(31) Qii=(Xi+4j) vinw; (not summed for 7, )

and according to the discussion of the previous section this can be accomplished
by a differentiable process with an exception of certain points. Analogously if
we take suitable rectangular frames in an n-dimensional Riemannian manifold

of imbedding class one, we have for the curvature forms
(32) Qij = — kikjwinw; (not summed for i, 7).

(31) is a sufficient condition for the conformal flatness if the dimension of the
manifold is greater than 3, while (32) is a sufficient condition for the imbedding
class one if at least three of %, ..., ks are not zero. The latter is a different
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formulation of T. Y. Thomas’ well known result and we can give a proof by
using Bianchi’s identities, the clue of the proof being the verification of the
structural equations in the # + 1-dimensional euclidean space.

Now we consider the Riemannian manifolds whose curvature forms reduce

to

(33) 2ij = K;joipw; (not summed for 7, j)

by a suitable choice of rectangular frames. We calculate Ricci’s tensor and get
(34) Rj= 6;]-};Kik (not summed for 7)

and so the fundamental vectors e;, ..., €, are in Ricci's principal directions.
As an application there exist in a conformally flat Riemannian manifold of im-
bedding class one rectangular frames for which curvature forms are represented
at the same time by (31) and (32). The treatment in my previous paper [4]
was along that line and the proofs of Theorem 3 in 2.2 and Theorem 4 in 2.3
could be simplified.

The manifolds whose curvature forms are represented by (33) for suitably
chosen rectangular frames have some simple properties. If none of Kj; is zero
at a point p, the local homogeneous holonomy group Hp at the point is SO(n).
For example H, of the Riemannian manifold of imbedding class one is SO(#)
if none of % is zero. This is so for the closed hypersurfaces in the #z+1-
dimensional euclidean space, as was proved by S. Kobayasi [5]. If the group
H, is SO(n) the Riemannian manifold cannot be Kaehlerian, and hence the
non-existence of non flat, conformally flat Kaehlerian manifold (cf. [2], p. 181)
can be deduced, as well as the non-existence of the Kaehlerian manifold of im-
bedding class one such that none of k; is zero.

There exist for any Riemannian manifold closed differential forms such as
Ri5 A L2ji, it A Lrki A L2jn A Lhiy « - .

(cf. [3], p. 37). All these vanish for those manifolds which satisfy the relation
(33). The geometrical characterization and examples of such manifolds except
the conformally flat one and the one of imbedding class one are unknown to
the author.
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