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Abstract
Much historical yield-monitor data is from fields where a uniform rate of nitrogen was applied. A new
approach is proposed using this data to get site-specific nitrogen recommendations. Bayesian methods are
used to estimate a linear plateau model where only the plateau is spatially varying. The model is then
illustrated by using it to make site-specific nitrogen recommendations for corn production in Mississippi.
The in-sample recommendations generated by this approach return an estimated $9/acre on the example
field. The long-term goal is to combine this information with other information such as remote sensing
measurements.
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1. Introduction
Precision agriculture technology is currently available to apply different levels of fertilizer across a
field. Multiple firms such as the Climate Corporation™ have been created to guide producers in
choosing fertilizer rates and making other decisions. Precision nitrogen fertilizer applications,
however, have not been widely adopted. Presumably, this is due to the available agricultural
economics and agronomic research being not yet sufficient to make it profitable. To make
precision nitrogen application profitable, it may require gathering information from multiple
sources. The question addressed here is how to make better use of historical yield-monitor data
that were based on uniform rate applications. Yield-monitor data are already widely available and
so these data are a potential low-cost source of information. The problem is that most historical
yield-monitor data are based on using the same nitrogen rate across the whole field, which makes
it difficult to estimate a production function with different parameters for each site. The solution
proposed here is to use Bayesian Kriging to estimate a linear plateau model where the plateau is
the only parameter that varies across the field. Bayesian Kriging works because it uses information
from nearby plots to estimate the plateau parameters.

Considerable research has used spatial data to estimate yield response to nitrogen, such as by
using spatial error models (Anselin et al., 2004), but such models do not have spatially varying
coefficients. To allow parameters to vary across space, past studies seeking site-specific
recommendations defined subareas of the field and used dummy variables to allow expectations
to spatially vary across the subareas (Hurley et al., 2004; Lambert et al., 2004; Lambert et al.,
2006; Liu et al., 2006). The arbitrarily defined subarea dummies are likely less precise than
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letting the model select the spatial relationships. The dummy-variable also does not allow
defining the causality of the site heterogeneity as a function of distance, which could be
measured as Euclidean distance, soil type similarity, or elevation. The dummy variable approach
does not allow response coefficients to vary smoothly across the field, either. Further, these past
studies required on-farm experiment data where nitrogen was varied randomly over the field.
But in practice, most historical yield data will be from fields where a uniform rate was applied on
the entire field.

If enough years of data were available, input response coefficients for every site could be
obtained with separate regressions for each site. For instance, if there are N sites, then N separate
regressions would be needed with each using only one site’s observation. Most available time series
are too short to accurately estimate site-specific parameters in this way. The geographically
weighted regression (GWR) models of Lambert and Cho (2022) and Trevisan et al. (2021) can
estimate spatially varying coefficients, but they cannot consider the case of uniform nitrogen rates.
In most cases, producers will have informative priors and limited data, so the Bayesian approach
offers potential advantages in precision over GWR.

Note that machine learning methods that have proven successful in predicting both yield (Ruan
et al., 2022) and nitrogen response (Kakimoto et al., 2022) do not have spatially varying coefficients.
With a spatially varying coefficient model, there will be few observations at each location and the
restrictions provided by a parametric model are necessary to make the model estimable.

The new method is illustrated using five years of data collected from continuous corn
production in Mississippi. Yield data were obtained from a high-resolution yield monitor and
were aggregated to a grid with 100 × 100-m cells. A linear stochastic plateau production function
was used as in Tembo et al. (2008) to estimate a different plateau for each cell. The other
parameters were not spatially varying.

2. Bayesian modeling framework
2.1. Crop response function

Past research on crop yield response to nitrogen fertilizer used a variety of functional forms
(Dhakal and Lange, 2021; Miguez and Poffenbarger, 2022). Many of them such as Nafziger and
Rapp (2021) use various forms of plateau models. Plateaus can potentially vary across locations
and years. The stochastic linear response plateau function (Tembo et al., 2008) lets the plateau
vary across time, but not space. Stochastic plateau models with year-random effects have been
estimated with both classical (Dhakal et al., 2019; Tembo et al., 2008) and Bayesian econometric
methods (Ouedraogo and Brorsen, 2018). Table 1 summarizes the methods used in a subset of
the related literature. The research is innovative in two ways. First, it is the only one of the
studies that has both stochastic time-varying parameters and spatially varying coefficients. Most
importantly, it is the only model that can produce spatially varying coefficients from a field
where a uniform rate was applied. The plateau is the only spatially varying coefficient, which
means that each cell has its own plateau. Thus, the plateau Pi at location i is spatially correlated
and varies across locations within the field. With a linear plateau model, each parameter has its
own individual interpretation, so it is more plausible to have some parameters vary across space
and not others than it would be if a quadratic plateau model were used (with a quadratic plateau,
differentiability is imposed at the switch point and so changing the plateau changes the other
parameters). The model assumes uniform nitrogen input data, a linear response, and normality.
The proposed site-specific stochastic plateau function can be defined as

ykt � min α� βNt ; Pk � vt� � � ut � εkt (1)
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where Nt and ykt are the nitrogen input and response yield on the kth cell in year t,
k = 1, : : : , K and t = 1, : : : , T, the plateau follows a multivariate Gaussian spatial process1,
P � MVGP�P;Σ�, where P � �P1; . . . ;PK �0, P is a K × 1vector of the mean plateau across all
locations, where P � �P; . . . ; P�0 and an exponential spatial covariance function was assumed
so Σkj � ρe	Dkj=θ where Dkj is distance, vt and ut are plateau and intercept year-random effects
that were assumed to follow vt � N�0; σ2

v� and ut � N�0; σ2
u�, respectively, and εkt is an

independently identically distributed error εit � N�0; σ2�. As discussed in Tembo et al., (2008,
p. 426), the specification in (1) can equivalently be written as having intercept and plateau
random effects with a restriction on the covariance of the two effects. The space and time
effects are independent here. Wikle et al., (2019) discuss spatio-temporal models where space
and time effects interact, but the data used here are insufficient to estimate such a model.

Table 1. Summary of methods used in the current study and in previous research

Study
Functional
form

Estimation
method

Time varying
parameters SVC

SVC using data
from
uniform rates

Current study LRSP Bayesian Yes Yes Yes

Makowski and Wallach
(2002)

LRSP NME Yes-all No No

Tembo et al. (2008) LRSP MLE Yes No No

Nafziger et al. (2022) QRP NLS Yes-fixed Across fields No

Lambert and Cho (2022) LRP GWR No Yes No

Tembo et al. (2008) LRSP MLE Yes No No

Trevisan et al. (2021) quadratic GWR No Yes No

Li et al. (2023) QRP GWR No Yes No

Poursina and Brorsen
(2021)

LRP Bayesian No Yes No

Ouedraogo and Brorsen
(2018)

LRSP Bayesian Yes No No

Boyer et al. (2013) LRSP, QRSP MLE Yes No No

Biermacher et al. (2009) LRSP MLE Yes No No

Ramsey and Rejesus
(2021)

ANOVA Bayesian Yes-fixed Yes-intercept No

Moeltner et al. (2021) LRP Bayesian No No No

Villacis et al. (2020) LRSP NME Yes-all No No

Note: LRSP = Linear response stochastic plateau; LRP = Linear response plateau; SR = Switching regression;
QRP = Quadratic response plateau; QRSP = Quadratic response stochastic plateau; ANOVA = analysis of variance (dummy variables);
GWR = Geographically weighted regression; SRP = Switching regression plateau; NME = Nonlinear mixed-effects estimation; MLE =

Maximum likelihood estimation.

1Suppose P � MVGP�P;Σ� and so the data were assumed to be generated from a single draw. So for the K× 1 vector
P = [P1, : : : , PK] 0 , the average of the vector elements should be close to P if K is large enough, but can differ in small samples.
It is possible to impose that 1

K

P
K
i�1P � P, but was not done here since there was no advantage to doing so in terms of

predictions.
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Intuitively, P was modeled as a deterministic constant P plus a spatial random effect2. Each
spatial random effect is estimated rather than estimating its variance so the effects are included
when obtaining expected yields.

An important point here is modeling the input response: µt � α� βNt . Most yield-monitor
data, including the data used here, are based on uniform nitrogen applications. Since the nitrogen
applied did not vary, there is limited information to estimate parameters α and β (they could not
be estimated with a single year of data). Therefore, instead of estimating the response coefficients,
µt was interpreted as the uniform target yield, say µ, to reflect the empirical dataset with uniform
nitrogen available3, say Ñ.

In terms of Bayesian thinking, there would be uncertainty about the intercept (α) and the slope
(β) parameters. As discussed by Liu et al. (2006), there might also be a year-to-year variation in the
target yield due to variations in nitrogen available from natural sources. To address these
uncertainties, an informative prior was imposed on the μ. Year-to-year variation was included and
thus target yield μt varied by year.

2.2. Hierarchical structure

As in Park et al. (2019), the proposed Bayesian Kriging approach has three hierarchical layers,
which are the likelihood layer, process layer, and prior layer. First, in the likelihood layer, crop
yields are assumed normally distributed conditional on the spatial and year-random effects.
Second, the process layer models the distribution of the spatial random effects and the spatial
structure of their density. The third layer contains the priors for all parameters.

Let Y denote a K× T matrix of actual crop yield observations that includes all sites and years,
which is assumed to follow a conditional Gaussian distribution. Also, the error term εt is assumed
to be independently normally distributed N�0; σ2I�, where σ2 is the independently identically
distributed pure error variance and I is an K× K identity matrix.

To define the layers of the hierarchical model, it is helpful to define three sets of parameters.
First, are the parameters used in the likelihood layer but not drawn through the process layer,
Θ1 � [μt, σv2, σu2, σ2] 0. Second, are the spatially smoothed site-specific plateau parametersΘ2 =
(P) that are used in the likelihood layer but drawn through the process layer. Third, are the
parameters that determine the distribution of P through the process layer, also known as hyper
parameters, Θ3 � �ρ; θ�0. The hierarchy is thus

Y jΘ1;Θ2;Θ3 � fY Y jΘ1;Θ2� �
Θ2jΘ3 � fΘ2

Θ2jΘ3� �
Θ1 � f1 Θ1� � and Θ3 � f 3 Θ3� � (2)

2Conceptual estimation steps are as follows. Suppose the goal is to obtain posterior of the plateau means P = [P1, : : : , PK] 0,
where K is the number of locations. In order to generateMMarkov Chain Monte Carlo (MCMC) samples, for eachmth draw,
the model first generates an K × 1 spatially standardized normal random vector zm = [z1m, : : : , zKM] 0 , zk∼N(0,1), where
m = 1, : : : ,M. Since the model assumes Gaussian spatial process,

P
K
i�1zim 
 0 for every mth MCMC draw. Second, the

model decomposes (Cholesky) a spatial correlation matrix obtained from the most currently updated (mth) Kriging
parameters of θm and ρm,Σm � ψ�Dij; θm; ρm� � LmLm

0 , where Lm is a decomposed lower triangular matrix. Then the model
draws the random effect component, Lmzm�1, and the �m� 1�th candidate posterior plateau Pm�1 is generated from the
following relation, Pm�1 � Pm � Lmzm�1. Finally, the model applied the Metropolis and Hastings acceptance step, and decide
whether to accept or reject the �m� 1�th candidate.

3The proposed Bayesian Kriging model can allow estimating spatially varying intercept (α) and input response parameter (β)
as well with a dataset that has variable nitrogen applications. In general, farmers in Mississippi set a target level 120% higher than
the historical average they observed. Therefore, 120% of the historical average yield of 259.59 bushels/acre (216.32 bushels/acre *
120%) on the field was used as the target yield. The model was also estimated under different target yield priors (110% and 130%
of the historical average yield) to verify the robustness of the plateau estimates. The results are presented in Fig. 4.
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where f() are the densities associated with each layer of the hierarchy, likelihood layer, process
layer, and prior layer, Y is a K× T matrix of crop yield observations.

By Bayes’ theorem, the posterior distribution of the model is

f Θ1;Θ2;Θ3jY� �∝ fY Y jΘ1;Θ2� � × fΘ2
Θ2� jΘ3� × f3�Θ3� × f1�Θ1� (3)

Therefore, the joint posterior density of the model f �Θ1;Θ2;Θ3jY� is proportional to the
multiplication of the three layers, which are specified in the following subsections.

2.2.1. Likelihood layer
A likelihood function of the crop yield forms the first layer of the model. Let yt be a vector of crop
yield at year t that spans all locations, yt = [y1t, : : : ,yKt] 0. Since the model assumes conditional
normality of crop yield distributions, the first layer of the model in equation (2) is

fY Y jΘ1;Θ2� � �
YT
t�1

1��������������
2π Λtj jp exp

yt 	 µt
� �0ΨΛ	1

t yt 	 µt
� �� yt 	 P

� �0 I 	Ψ� �Λ	1
t yt 	 P
� �

2

(4)

where Y is a matrix of historical yield outcomes spanning all locations and years, Y = [y1, : : : , yT],
μt is a K× 1 vector of uniform target yields at year t, μt = [μt, : : : , μt] 0, P is a vector of site-specific
plateau, Ψ is a K× K diagonal matrix where the ith diagonal elements are 1 if μ< Pk, 0 otherwise,
I is an K× K identity matrix, Λt is a K× K variance-covariance matrix, Λt � σ2

uJt � σ2I, that
spans all locations, where Jt is a matrix of ones. Yang (2022) reviews the theoretical literature on
broken-stick regressions. While there have been proofs of consistency for many different
estimators, we are not aware of a formal proof of consistency of the Bayesian estimator for
this model.

2.2.2. Process layer
The process layer is the key part of the model. The process layer models spatial structure of the
site-specific estimates. The spatial structure is determined by the Kriging parameters (range θ and
sill ρ) and Euclidean distances (Dij) among locations,4 which are contained in the variance
matrices Σ.

The stochastic spatial process in the model (P) is defined in the process layer of the model. The
density is defined as the multivariate spatial stochastic processes such that

fΘ2
Θ2� jΘ3� �

1�������������������
2π� �K Σj j

p exp 	 1
2

P 	 P
� �0Σ	1 P 	 P

� �� �
(5)

where P � �P; . . . ; P�0 and Σ is a K×K spatial covariance matrix cov

Pi; Pj
� � � Σ � ρ

1 38; 38; e	D1K=θ

..

.
38; . .

.
38; ..

.

e	DK1=θ 38; 38; 1

2
64

3
75.

The plateau mean vector was P � 247:8 based on the mean of historical maximum yields
across all cells in the dataset (i.e., 247.8 bushels/acre). The site-specific plateau P has a hierarchical

4The longitude-latitude-based coordinates (central) for each site and the coordinates were standardized before calculating
Euclidean distances. The Euclidean distances for the model can be used both from the basic 2-dimensional (longitude-latitude)
or 3-dimensional physical spaces (longitude-latitude-altitude). It is also noteworthy that the distances can not only be the
distance from the physical space but also be from the soil type space, weather space, etc.
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form and the spatial covariance Σ. In the estimation, P was conditionally drawn from the hyper
priors of Θ3, which are sill (ρ) and range (θ).

2.2.3. Prior layer
The prior layer contains the priors for all parameters. The priors were assumed independent.
Therefore, a multiplication of all priors for the parameters forms the prior layer.

Weakly informative gamma priors were used for the random effects as well as the i.i.d error
based on the standard deviation of yields over five years: σv, σu, σ∼Gamma(1, 0.2). For the sill (ρ)
and range (θ) parameters in the set of hyper-parameters Θ3, which describe the magnitude and
length of spatial correlation among the location-specific plateau P, more informative priors must
be imposed. Bayesian statistics literature (Banerjee, Carlin, and Gelfand, 2004; Cooley, Nychka,
and Naveau, 2007) argues that improper priors induce improper posteriors. Therefore, the
informative gamma prior for the sill was ρ∼Gamma(2, 0.25), based on the standard deviation of
maximum yields of each cell. For the range parameter θ, the locational information (maximum
distance among locations) was used to impose a prior since the range parameter could neither fall
below zero nor exceed the maximum distance in the dataset. The uniform prior was θ∼U(0,
max(Dij)), where max (Dij) is the maximum distance among locations.

An informative normal prior was used for the target yield (bushels/acre) at μt∼N(259.59,
56.25) to allow variation of the target yield associated with the parameter uncertainty of the
intercept α and the response parameter β as well as year-to-year yield variation. The mean target
yield of 259.59 is calculated as 120% of the historical average yield of the dataset (214.8 bushels/
acre). The variance of the prior of 56.25 was calculated using the standard errors of the intercept
and nitrogen response parameters in Boyer et al. (2013).5 The estimated standard error of α was
3.56 and β was 0.04 and the variance of the target yield was calculated from the standard errors
and the mean values of α and β.6

The third layer in equation (2) was then a multiplication of the two sets of priors:

f1�Θ1� × f3�Θ3� � fρ ρ� �fθ θ� �fµ µt
� �

fv σ2
v

� �
fu σ2

u

� �
fσ σ2
� �

(6)

3. Data and estimation procedure
3.1. Yield-monitor data

Five years of yield-monitor data were obtained from a 224-acre corn production field between
2012 and 2016 from a collaborating farm located in the Mississippi Delta region (around 33°10’N,
90°16’W). The soil types of the field were predominantly Dubbs silt loam and Dundee silt loam,
with a small portion covered by Dundee silty clay loam. The land slopes range from 0 to 2%. The
field is relatively uniform and thus may not benefit from precision applications as much as a field
with more variation in soil type and slope.

Continuous corn was planted for the five years of the study (2012–2016). Corn was usually
planted between March 26 and April 4. Conventional tillage was used each year. A few different
varieties were planted but the yield differences were minor, and therefore no variety effects were
considered. In all years the field was managed with uniformly applied inputs at field level (or a
large part of the field), but the input rates changed across years based on soil tests. The nitrogen
fertilizers included 28–0–0–5, 300–0–2, and 32–0–0. Nitrogen was applied with a split pattern,

5The estimates used were those for the stochastic linear response plateau function from continuous corn. Estimates by
Villacis et al. (2020) were similar.

6For the mean slope parameter β, β = 1/1.3 based on the nitrogen recommendation for Mississippi corn (Oldham, 2012).
The mean value of the intercept parameter α is indirectly calculated from the target yield (μ= 259.59 bushels/acre), the slope
parameter β = 1/1.3, and uniform target nitrogen rate (Ñ = 216.28 lbs/acre), such that α = μ− βÑ = 93.21 bushels/acre,
and the variance of α + βÑ can be calculated.
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with starters usually applied at planting (March 26 to April 4), and side-dress applied in early May
(May 1 to May 5). Although it is well recognized that the timing of nitrogen fertilizer application
can impact corn yield, especially in a warm and wet region like Mississippi, the timing effect is
quite complex and is still an ongoing research subject without a consensus conclusion. This
analysis focused only on the effect of total nitrogen and the timing effect was left for future
research.

Corn yield data were collected by the John Deere GreenStar (Deere and Company, Moline, IL)
grain yield monitoring system. Harvest dates ranged from August 1 to 23, depending on the year.
Yield-monitor data require cleaning to remove anomalies. The yield points within 65.6 feet (20m) of
the field edge were discarded to remove abnormal yield values generated due to the turning and
changing speed of the harvester. Speed anomalies (<1.4 mile/hour and >6.8 mile/hour) were also
discarded. All yield values were adjusted to a moisture level of 15.5%. Finally, yield outliers (<50
bushels/acre and >300 bushels/acre) were removed. The cleaned yield-monitor data were then
aggregated into squares of 100m by 100m, or 2.5 acres (the number of cells was limited to reduce
computational time). After removing missing data, the balanced panel dataset had 112 yield cells
covering five years (2012–2016). The gridded yield maps for the five years are presented in Figure 1.

The annual average yield for the study field was relatively stable over time, ranging from 202.1
bushels/acre (in 2015) to 242.7 bushels/acre (in 2012) (see Fig 1). The spatial pattern of yield
variability was, however, more unstable over time. As revealed in Fig. 1, the high-yielding and
low-yielding cells changed over the years. Especially in the years 2013, 2014, and 2015 when the
field-average yields were similar, the spatial distributions of the yields vary substantially. But on
the other hand, it is worthwhile to notice that this field’s spatial yield variation was not large. The
standard deviation of cell-level yields was generally small each year, from 14.5 bushels/acre in 2016
to 23.9 bushels/acre in 2012.

3.2. Estimation

The estimation used the Hamiltonian Monte Carlo (HMC) algorithm supported by RStan (R Core
Team 2018; Ng’ombe and Lambert, 2021; Stan Development Team, 2018). The HMC algorithm is
a Markov Chain Monte Carlo method that uses Hamiltonian dynamics, and thus often needs
fewer iterations to approach convergence than the Metropolis-Hastings algorithm (Jiang and
Carter 2019). Therefore, it reduces computational time as well as failures to converge. HMC
chains were run for 20,000 iterations and burn-in for 10,000. The Markov chain convergence was
monitored using traceplots and Geweke (1992) convergence diagnostic, which are based on a test
for equality of the means of the first 10% and last 50% part of a Markov chain. The estimated
parameters satisfied the convergence criteria.

Table 2 presents the estimation results of the model. The model allows the plateau Pk varying
over space and being site-specific. The sill (ρ) and range (θ) parameters determine the spatial
structure of the plateau Pk. The sill represents the magnitude of the spatial dependence among the
plateau Pk over space, and the range parameter represents the maximum distance of the spatial
correlation among Pk. The standardized distance of 0.45 for the range (θ) translates to
approximately 820 feet (250 m), which means that the spatial dependence of the Pk reached 820
feet. Noticeable year-to-year variations are also shown in the plateau, intercept, and the
target yield.

The posterior means of the plateaus Pk were smaller than the uniform target yield at
μ = 259.59 bushels/acre, as expected. The plateaus show considerable spatial variations. As stated
in endnote 3, the model was also estimated under the different target yield priors of the lower
(110%), baseline (120%), and upper priors (130% of the historical average yield) to verify the
robustness of the plateau estimates. Regardless of the target yield prior selections, all the maps in
Figure 2 present similar plateau estimates. The upper-right side of the field in Figure 2 (for all the
lower, baseline, and upper target yield priors) shows lower plateaus and the lower-left side of the
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field shows higher-plateau estimates. The highest and the lowest plateaus were 278.26 bushels/acre
and 218.19 bushels/acre.

3.3. Optimal nitrogen level recommendation

Assuming all other inputs predetermined, the optimal level of inputNk can be determined for each
location k by maximizing the net return to nitrogen:

Figure 1. Mapping of cell-level (2.5-acre) corn yield by year.
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max
Nk

E πkjNk� � �
Z

RE y Nk;Ψ� �� � 	 rNk

� �
fΨ Ψ� �dΨ

subject to

E�y Nk;Ψ� �� � E�min α� βNk; Pk � vt� �� (7)

where Ψ � fα;β; Pk; σvg; fΨ�Ψ� is a set of posterior/probability distributions ofΨ , R is a corn price,
and r is a nitrogen price. Both Pk and σv have numerical posteriors that were generated from the
Bayesian estimation procedure. Hence, the proposed approach is akin to Ouedraogo and Brorsen
(2018). McFadden, Brorsen, and Raun (2018) did not use Bayesian estimation and calculated their
posteriors with an analytical approximation.

The Tembo et al. (2008) plug-in method to determine the optimal level of input is

N�
k � 1

β
Pk � σvΦ

	1 1 	 r
Rβ

	 

	 α

� �
(8)

where R is corn price, r is nitrogen price, and Φ is cumulative density function of the standard
normal distribution. For commercial applications, the Tembo et al. (2008) approach might be
accurate enough where average posterior means of Pk and σv were plugged into (8).

To obtain the optimal nitrogen recommendations N�
k , a grid search was used rather than the

plug-in method. The method used the posteriors of the estimated parameters Pk and σv.
Additionally, the uncertainty of intercept (α) and nitrogen response parameters (β) was
considered under a normality assumption. The optimal nitrogen level N�

k was obtained from the
following maximization problem:

argmax
Nk2S

E πkjNk� � �
Z

RE y Nk;Ψ� �� � 	 rNk

� �
fΨ Ψ� �dΨ

Table 2. Estimated production function for a Mississippi delta corn field

Coefficient Symbol
Average

(bushels/acre)
Max

(bushels/acre)
Min

(bushels/acre)

Target yield μt 256.20 (6.80) 265.62 (6.94) 248.51 (7.28)

Plateau (spatially varying) Pk 251.85 (6.56) 273.26 (7.35) 218.19 (6.78)

Sill ρ 86.26 (16.96) – –

Range θ 0.45 (0.11) – –

SD of plateau random effect σv 12.20 (6.41) – –

SD of intercept random effect σu 27.43 (6.30) – –

SD of i.i.d error σ 16.55 (0.59) – –

Optimal Nitrogen Recommendations (lbs/acre):

Uniform rate (Ñ) 216.28 – –

Variable rate (N*k ) 0.20 $/lb 243.13 197.00 273.00

0.45 $/lb
(baseline)

230.71 186.00 260.00

0.70 $/lb 222.97 179.00 251.00

Note: The estimates are posterior means with standard deviations of posteriors in parentheses.
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subject to

S � 0; 1; . . . ; 499; 500f g (9)

where fΨ�Ψ� is a set of probability (posterior) distributions of Ψ = {α, β, Pi, σv}.
The Monte Carlo integration requires generating samples of α and β. The priors based on

Boyer et al. (2013) were α∼N(93.21, 3.562) and β � N 1
1:3 ; 0:04

2
� �

.Using 10,000 samples for each
parameter, the net return values for each cell (Nk∈ S) were calculated. Since there were 10,000
posterior pairs (as well as samples of α and β) and the plateau year-random effect term (ut) for 5
years, there were 50,000 net return values for each cell. These net return values were averaged for
each cell. The grid-search method finds the Nk that maximizes the average net return, say N�

k . This
process was repeated for all 112 locations.

The optimal nitrogen recommendations were determined under three different input prices.
The baseline scenario used an average corn futures price (Chicago Mercantile Exchange) and an
average nitrogen price of 2016 (Schnitkey, 2016). Hence, R = 3.61 ($/bushel) and r = 0.45 ($/lb).
In the two other scenarios, input prices were changed (r = $0.2/lb and $0:7/lb) to see how input
price changes affect optimal nitrogen levels.

The expected net return calculation is based on the generation of posterior predictive
distributions of net return, fπ�π�

k jy�k ;Ψ ;Nk�, for different nitrogen recommendations (Ñ and N�
k )

Figure 2. Estimated plateau for each cell.
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and the three levels of nitrogen input costs. The net return distribution fπ�π�
k jy�k ;Ψ ;Nk� can be

estimated from the following equation:

fπ π�
k jy�k ;Ψ ;Nk

� � �
Z

RfY y�k jΨ ;Nk

� �
fΨ Ψjy� � 	 rNk 	 FC

� �
dΨ (10)

where y�k denotes the predicted yield, fY�y�k jΨ ;Nk� is the likelihood layer in equation (4) for the y�k
given Nk, fΨ(Ψ|y) is the posterior (probability) distributions of Ψ , and FC is a fixed cost that
includes all other costs, such as seeding, power, and overhead costs. The integration of the
fY�y�k jΨ ;Nk�fΨ�Ψjy� in the equation forms the posterior predictive yield distribution given Nk.
The value of FC was obtained from the Mississippi State University Budget Report (2016).7 Note
that the net return calculation here assumes that the stochastic plateau model is the “true”
production function. Although the assumption is somewhat strong, estimation results show
significant year-to-year variation in the plateau, which implies that the stochastic plateau model
dominates a deterministic plateau model.

4. Results and discussion
Figure 3 maps the estimated optimal nitrogen rates in the baseline scenario. The spatial structure of
the optimal input rates was almost identical to the plateau estimates in Figure 2. One noticeable
feature is that although a majority of the estimated plateaus (Pk) were smaller than the target yield at
μ = 259.59 bushels/acre, the optimal nitrogen recommendations were greater than the uniform
target nitrogen rate (Ñ = 216.28 lbs/acre) in most locations. The considerable uncertainty of the
plateau (i.e., plateau random effect) pushed the optimal nitrogen rates up greater than the uniform
target rates Ñ. Specifically, N�

k in the lower-left side of the field was considerably greater than the
uniform target nitrogen rate. The estimated nitrogen recommendations under the three different
nitrogen input price scenarios (r = $0.2/lb, $0:45/lb, and $0:7/lb) are presented in Table 2.

The spatial variation in recommended nitrogen is less than that found by Lambert and Cho
(2022) and by Poursina and Brorsen (2021). These two papers had a single year of data. Also, Cho
and Lambert did not use Bayesian methods, while Poursina and Brorsen used weakly informative
priors and a production function that was linear in the parameters. The informative priors and
multiple years of data used here led to a less noisy result.

The net return distributions under variable rates (N�
k ) were compared to those from uniform

rate (Ñ) applications. Figure 4 plots the predictive net return distributions of the uniform and
variable-rate recommendations for a location with a large difference between the two
recommendations. The nitrogen recommendation with variable rates was 260 lbs/acre and
216.28 lbs/acre from the uniform rate. The variable rate encourages applying more nitrogen for
locations with more production potential. As a result, variable rates generate higher net returns
than uniform rates. The finding of precision application using more nitrogen is in contrast to
Diacono et al. (2013), who concluded that precision nitrogen lowered input use, but is consistent
with economic studies like Biermacher et al. (2009). Since the technology increases yield, it would
make a small contribution to the yield increases that will be needed due to the expected yield losses
from climate change (Lee, Ji, and Moschini, 2022).

Figure 5 illustrates the mean of the net returns distribution for each location from the uniform
target rates (Ñ) and the variable rates (N�

k ). The figure highlights how the variable rates become
more profitable than the uniform rates. The predicted net returns of Ñ and N�

k in the lower-
plateau area (upper-right side) were almost identical. In contrast, the net returns generated from
the variable rates in the higher-plateau area (lower-left side) are clearly more profitable than the

7The 2017 enterprise budget information was for corn in the Delta area of Mississippi. Subtracting the nitrogen fertilizer
costs from the enterprise budget gives FC = $607.06/acre.
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uniform rates. The variable rates apply more nitrogen in areas with more production potential.
The average net return of the entire field from the variable rate (N�

k ) was $197.79/acre, and the
uniform target nitrogen rate (Ñ) was $188.63/acre. The $9.16/acre economic return is favorable
relative to the $1.81/acre found by Queiroz et al. (2023) using electrical conductivity and not
considering the cost of collecting the information.

The $9.16/acre comes from two sources: variable-rate application and more accurate modeling
of the production function. How much of the $9.16/acre could be obtained by just applying a
higher uniform rate? The optimal uniform rate, say Ñ�, is the rate that maximizes the entire field’s
average net return via the estimated site-specific stochastic plateau model. The grid-search
method was used to get Ñ� ∈ S, where S = {0, 1, : : : , 500}. The estimation procedure was similar
to the procedure for the optimal variable rate N�

k . The estimated Ñ� = 237 lbs/acre, and the entire
field’s average net return was $194.10/acre. So, the variable rate N�

k gives $3.69/acre additional net
returns, and thus $5.47/acre of the benefits from using this approach could be obtained even
without applying a variable rate.

Sellars et al. (2020) find that producers apply more nitrogen than the maximum return to
nitrogen (Sawyer et al., 2006) recommended by Extension. Bullock et al. (2020) find that the return
from on-farm experiments comes from more accurate uniform rates than from site-specific
technology (SST), which agrees with the findings here. So even though variable rates used more
nitrogen than uniform rates, the variable rate may be less than what producers now typically apply.
Therefore, the precision agriculture technology proposed here could contribute to the goal of lower
applied levels of nitrogen considered by Späti et al. (2022). Bullock et al. (p. 1028) say that “unless
more information can be produced about yield response, the profitability of SST will remain
limited.” The method here can provide some of the needed information and do so at low cost.

Figure 3. Estimated optimal nitrogen rate.
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5. Future extensions of the approach
The information provided by the method developed here is not expected to be enough by itself to
justify variable-rate nitrogen application. This information is intended to complement rather than
replace alternative sources of information. Since it may not be obvious to readers, we discuss how
this information could be combined with other information to possibly produce profitable
variable-rate nitrogen systems.

Figure 4. Posterior predictive net return densities from the uniform and variables input recommendations.

Figure 5. Posterior predictive net return for each cell.
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The priors used here could be improved. Soil type and elevation (Hegedus and Maxwell, 2022)
could potentially be used to specify priors that varied spatially. Future research can provide priors
for the intercept and slope that are specific to the location of the field rather than using estimates
from Tennessee for a field in Mississippi as was done here. We do not use the yield goal approach
that has been criticized by Rodriguez et al. (2019) among others. However, the prior for the
plateau was based on Mississippi Extension recommendations which do use the yield goal
approach. The databases from on-farm experiments could potentially be used to estimate more
precise production functions to use as priors.

The slope and intercept parameters were not included in the likelihood function due to limited
data. It is possible to include them and to rely less on the priors if the level of nitrogen applied
varied by year as with on-farm experiments (Hegedus and Maxwell, 2022). The amount of
nitrogen applied was expected to be greater than the agronomic optimum for most plots (Oglesby
et al., 2023) so the plateau would be the only parameter that could be observed for most plots.

The priors would then be used along with the methods described here to provide a posterior
distribution. Going forward, nitrogen would no longer be applied at a constant rate across the
field. Experimentation could be used. The vision is that the approach used here would be used
prior to doing on-farm experimentation.

This posterior distribution could be used to design an optimal on-farm experiment (Poursina
et al., 2023). While they did not have spatially varying parameters, Ng’ombe and Brorsen (2022)
argued for using a few small plots to reduce the cost of using nonoptimal levels of nitrogen. Li et al.
(2023) find that a randomized design may not be the best choice, but do not explore what levels of
input to use.

After the first year of on-farm experiments, a new posterior distribution could be obtained.
This distribution would then be used to select nitrogen levels in the second year.

This process would eventually converge and at some point, on-farm experimentation might no
longer be needed. Due to possible structural change, however, a producer might continue doing
experimentation. Corn yields have gone up over time. An increasing trend in corn yields could be
modeled by letting the plateau or other parameters change with time as in Patterson (2023). The
trend parameters might be estimated using information from studies such as that used for
maximum return to nitrogen (Nafziger et al., 2022).

The beauty of the Bayesian approach is that it can readily combine information from a variety
of sources. For example, the plateau could be made a function of rainfall or information from
satellite imagery (Sartore et al., 2022).

6. Conclusions
Previous literature evaluating variable-rate nitrogen response relied on whole-field experiment
datasets with variable-rate nitrogen application. Most historical yield datasets from farmers,
however, are from fields where a uniform rate was applied to the entire field. The method
proposed here provides a way to use the yield information from uniform rate applications to make
precision nitrogen recommendations.

A spatially varying linear response stochastic plateau model was estimated by a Bayesian
Kriging approach, which allows for estimating a spatially varying plateau. The other parameters of
the production function were based on prior information. The approach succeeded in providing
site-specific nitrogen recommendations. The net return calculation shows that the variable rate
adds approximately $9/acre. Bayesian Kriging works even when the number of observations of
each cell was only five years.

Is $9/acre enough to spur adoption? The technology to apply variable-rate bulk fertilizer is
already available. The yield-monitor data are already being collected so the data collection costs
could be low. One drawback of the approach is that it is currently computationally expensive.
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While the computational burden is greatly reduced by using the HMC algorithm, it is possible to
develop a commercial approach that is much faster. The key computational burden is in
estimating the spatial parameters. As knowledge is gained, commercial applications may be able to
assume values for these parameters or use a two-step estimator. Future research should consider
basis functions (Cressie et al., 2022) as a way to speed up the calculations to make the approach
commercially feasible.

There are inviting ways to increase the profitability of using variable rates. One straightforward
way is to use a finer grid than 100 m by 100 m. Reducing the computational burden would make
this feasible. More years of data will increase the accuracy and the value of our method. The
Mississippi Delta field studied is relatively uniform and less uniform fields would provide more
benefit from a variable rate.

While a $9/acre in-sample return may not be enough to spur adoption, the Bayesian approach
provides a ready way to combine yield-monitor data with other types of information. As others
build a database from whole-field experiments, such data can be used to create informative priors
based on slope, soil type, and other measures. For in-season applications, the yield-monitor data
could provide priors to be combined with plant sensing data from satellites or in-field experiments
such as a nitrogen-rich strip. Whole-field predictions based on weather data can be readily
combined with yield-monitor data using Bayesian methods. Combining with these other sources
of information provides an opportunity to overcome the economic hurdle and deliver the
promises of digital agriculture to nitrogen application. One major point is that we need to be
saving yield-monitor data even when a uniform rate was applied because such data can be useful
in making precision nitrogen recommendations.
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