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Abstract

An existence variety of regular semigroups is a class of regular semigroups which is closed under the
operations of forming all homomorphic images, all regular subsemigroups and all direct products. In
this paper we generalize results on varieties of inverse semigroups to existence varieties of orthodox
semigroups.

1991 Mathematics subject classification (Amer. Math. Soc): 20M07, 20M17.

1. Introduction

An existence variety (or e-variety) of regular semigroups is a class of regular semi-
groups which is closed under the operations of forming of all homomorphic images,
all regular subsemigroups and all direct products. This concept, which generalizes that
of varieties of inverse semigroups, was introduced by T. E. Hall [7] and independently
for orthodox semigroups by J. Kad'ourek and M. B. Szendrei [10] who called them
bivarieties. In this paper we study e-varieties of orthodox semigroups.

In Section 2 we begin with preliminary results dealing mainly with congruences
on regular or orthodox semigroups and with certain basic results on e-varieties of
orthodox semigroups.

Let <$ denote the variety of groups, 6 the e-variety of orthodox semigroups and
^£e{&) the lattice of e-varieties of orthodox semigroups. In Section 3 we show that
the mapping </»: <? !-• <f v Sf (<f e JZ'eit?) is a complete lattice homomorphism
and the vx = <j> o (j>~x-classes are complete modular sublattices of ££e(6}. Also the
mapping \fr : S H> S' D ̂  (S e S?e{0)) is shown to be a lattice homomorphism and
for each v2 = \(r o \jr~x-class the join of all its members is 6.

In Section 4 several characterizations are given of completely semisimple (cryptic)
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e-varities of orthodox semigroups. Letting v3 = vi n v2, in Section 5 we show that
the v3-classes of cryptic e-varieties have maximum members and we identify the
maximum member using a Mal'cev product.

In Section 6 we establish some properties of the Mal'cev product. In particular we
show that the Mal'cev product respects the lattice operations in j£?e(Sf), we prove an
associativity result and we determine bi-identities for the Mal'cev product of a group
variety and an e-variety of orthodox semigroups.

The results of this paper generalize analogous results on varieties of inverse semi-
groups by Kleiman [11], Reilly [19, 20] and Bales [1] (see also [18, Chapter XII]).

For undefined notation and terminology see [8].

2. Preliminary Results

Let 5 be a regular semigroup. The set of idempotents is denoted by Es = E and
for a e 5 denote by V (a) the set of inverses of a in S. We let os = a denote the least
group congruence, ys = y the least inverse semigroup congruence and fj.s = M m e

greatest idempotent separating (i.s.) congruence on 5.
When 5 is orthodox a, y and /x are characterized by

o — {(a, b) e S x 5 | eae = ebe for some e e E]

y = {(a,b)eSxS\V(a) = V(b)}

H = {(a, b) e S x S \ there are inverses a' e V(a), b' e V(b) such

that a'ea = b'eb and aea' — beb' for all e e E]

([13, Theorems 4.4 and 5.1] and [14, Theorem 3.1]).
Let ^ ( 5 ) denote the lattice of congruences on S. For any p e ^(S) the kernel and

trace of p are defined by

Kerp = {a e S \ a p e for some e e E],

trp = p n (£ x E).

For p e ^ ( S ) , pmin and pmax denote the least, respectively greatest, congruence on S
such that trpmin = trp = trpmax.

THEOREM 2.1. [2, 4, Theorem 4.1] A congruence on a regular semigroup is
uniquely determined by its kernel and trace.

LEMMA 2.2. [15, Lemma 2.5] Let S be a regular semigroup and & be a nonempty
family of congruences on S. Then
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(a)

We call S E-unitary ifaeS,e and ea e E implies that a e E.

LEMMA 2.3. ([9, Lemma 2.6] or [23, Lemma 2.7]) Lef Sbea regular semigroup.
Then S is E-unitary if and only if E is a o-class.

LEMMA 2.4. Let Sbea regular semigroup and p, § e ^ ( S ) . / /> n a = f D a then
tip = tr£. The converse holds ifS is E-unitary.

PROOF. The argument of [18, Theorem XII.2.1] applies to yield this result using
Theorem 2.1 and Lemmas 2.2 and 2.3 at the appropriate places.

COROLLARY 2.5. Let S be a regular semigroup and p e ^ ( 5 ) . If S is E-unitary
then pmin = p n a.

PROOF. AS tip = trpmin, p D a = pmin D a c pmin by Lemma 2.4. Since we always
have pmin c p n cr we have equality.

LEMMA 2.6. [16, page 196] Let S be a regular semigroup and p e ^(S). Then
apmmb if and only if(ap)fis/t>(bp).

LEMMA 2.7. Let S and T be regular semigroups and x '• S —> T be an i.s.

homomorphism of S onto T. Thenforalla,b € S,a (MS bif and only if (ax) fir

PROOF. Let p = x ° X~l• Then p is an i.s. congruence on 5. Therefore p c fis

and so pmax = fis- The result now follows easily from Lemma 2.6

THEOREM 2.8. [22, Theorem 3.4]; [24, Theorem 2.2] Let Sbea regular semigroup
and9 be the convergenceon^(S) inducedby themappingti : p i-> trp (p e
Then for any p e ^ ( 5 ) , pO is a complete modular sublattice o

THEOREM 2.9. [12, Theorem 11] Let S be an orthodox semigroup. Then the
mapping defined by x/r : p \-+ p v a ( p e ^ ( 5 ) ) is a homomorphism of€(S) onto
the lattice of group congruences on S.

A regular subsemigroup K of S is called full if E c K and self-conjugate if for all
a e S, a' e V(a), a'Ka c K. Let

Jf = {K c 5 : | K is a full self-conjugate regular subsemigroup of 5 and

K c Ker^}

https://doi.org/10.1017/S1446788700038131 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038131


[4] On existence varieties of orthodox semigroups 103

and for K e X let

9K = {(a, b)eS x S\ there are inverses a' e V(a), V e V(b)

such that aa' = bb', a'a = b'b and ab', a'b e K).

THEOREM 2.10. [3, Theorem 3.3] Let S be an orthodox semigroup. Then the map
K (->• 9fc is a one-to-one order preserving map ofj(f onto the set of i. s. congruences
on S with inverse map 9 i-> Ker#.

LEMMA 2.11. Let S and T be orthodox semigroups and x '• S —> T be a homo-

morphism ofS onto T. If 9 is ani.s. congruence on S then 9 induces an i.s. congruence

0 say on T with kernel (Ker#)x- Furthermore the following hold:

(a) for a,b € 5, if a 9 b then (ax) </> (bx);
(b) T/<f> is a homomorphic image ofS/9.

Note in particular that as y" : 5 —>• S/y is a homomorphism of S onto S/y an i.s.
congruence 9 on S induces an i.s. congruence 4> on S/y with kernel (Ker9)y.

PROOF. Let K = Ker#. Then by Theorem 2.10, K is a full self-conjugate regular
subsemigroup of S and K c Ker/i.s. It is easily shown that Kx is a full regular
subsemigroup of T and Kx ^ Ker/n,r. Furthermore Kx is self-conjugate, for if JC
and x' are mutual inverses of T then there are mutual inverses a and a' of S such that
x = ax and x' = a'x by [5, Lemma 1] hence x'{Kx)x = (a'Ka)x Q Kx as K is
self-conjugate. By Theorem 2.10, Kx is the kernel of an i.s. congruence <f> say on T.

Now (a) follows easily from the characterization of 9 and <\>. To prove (b) define
<I> : S/9 —> T/(p by <J> : a9 i->- (ax)4>. Then <J> is well-defined by (a) and clearly <t>
is a homomorphism of S/9 onto T/<f>.

THEOREM 2.12. Let S be an orthodox semigroup. Then there exists a group G, a
subdirect product T c S//xs x G and an i.s. homomorphism xofT onto S.

PROOF. Since every orthodox semigroup has an £-unitary cover [25, Theorem 5],
the argument of [18, Theorem VII.4.8] applies to yield this result using Theorem 2.1
and Lemmas 2.3, 2.7 at the appropriate places.

We call S completely semisimple if every principle factor of 5 is completely 0-
simple or completely simple.

LEMMA 2.13. Let S be an orthodox semigroup. Then S is completely semisimple if
and only if S/y is completely semisimple.
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PROOF. Suppose S/y is completely semisimple and let e, f G £ be such that e < f
and e S> f. Then ey < fy and ey 2> fy. As S/y is completely semisimple, [6,
Result 6] yields that ey = fy. By the characterization of y, V(e) = V(f) and hence
/ = fef = e as e < f. By [6, Result 6], 5 is completely semisimple.

Conversely, suppose S is completely semisimple and let e, f G £ be such
that ey < fy and ey 2> fy. Then ey & ay Jif fy for some a e 5. Let
a' G V(a); then ey 2% aa'y and it follows that ey = aa'y. By the characteriza-
tion of y, V(e) = V(aa') and it is easily shown that this implies that e Q ad\ dually,
/ Si a'a. Furthermore, as ey < fy, (fef)y — ey and so fef 2 e. Therefore
fef 2 e 2i aa' 2> a'a @ f so that fef 9 / ; also it is clear that fef < f. As S is
completely semisimple, [6, Result 6] yields that fef = f. Nov/ey — (fef)y = fy
and by [6, Result 6] S/y is completely semisimple.

We call S cryptic if the Jf?-relation is a congruence on 5. Recall that a cryptic
completely regular semigroup is a band of groups. Let G = U{He\ e G E) be the
union of the maximal subgroups of S.

LEMMA 2.14. Let S be an orthodox semigroup. Then S is cryptic if and only if G
is a band of groups.

PROOF. Suppose 5 is cryptic and let a, b e G. Then a Jt? e and b Jff f for some
e, f G E. Since Jf? is a congruence on 5 we have ab Jff ef and therefore ab e G
as ef € E since 5 is orthodox. Thus G is a subsemigroup of S. As G is a union of
groups, G is completely regular. By [17, Lemma IV.4.1] Jf?\G is the Jff-relation on
G. Since Jf is a congruence on S it follows that Jif\G is a congruence on G. Thus
G is a band of groups.

Conversely, suppose G is a band of groups. Let a, b G S,a Jt? b and c G 5. Let
a' G V(a) and ft' G V(b); then aa' & a & b & bb' and so, as aa' and bb' are left
identities of their ^-class we have

(1) a = bb'a and ft = aa'b.

Also, d&a'a££aS£b%! b'b and a'a, ft'ft are right identities of their 5£ -class, we
have
(2) a = ab'b and ft = fta'a.

By (1) and (2), a'b • a'a = a'b and a'ab'a • a'b = a'ab'b = a'a so that a'a & a'b.
Also a S% ft implies a'a ^ a'b; thus a'a J f a'ft and a'b e G. Let c' G V(c); then
as ^ is a congruence on G we have that a'ace' Jf a'bec'. Since 5 is orthodox,
a'ace' G E and so a'acc' is the identity of Ha.bcd: therefore a'acc'a'bcc' = a'bec'.
Now ac • c'a'bc = aa!ace'a!bedc — aa'bcc'c = aa'bc = be by (1). By symmetry
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be • c'b'ac = ac and so ac S% be. Since a _£? ft implies ac .£? be we have that
ac J? be.

By (1) and (2), aa! • ba! = bo! and ba! • ab'aa' = bb'aa! = aa' so that aa! 3% ba'.
Also a ££ ft implies aa! .£? ba'; thus aa' Jif ba' and ba' e G. As Jtf is a congruence
onG,c'caa' Jif e'eba' and as above we have c'cba'c'caa' = e'eba'. Now cba'c'-ca =
cc'cba'c'caa'a = cc'cba'a = cfta'a = eft by (2). By symmetry caft'c' • cb = ca
and so ca .£? cb. Since a ^ ft implies ca 2% cb we have that ca Jt? cb. Thus Jt? is a
congruence on 5, that is, 5 is cryptic.

We shall need some results and definitions from [10].

PROPOSITION 2.15. [10, Proposition 1.8] Let *& be a nonempty class of orthodox
semigroups. Then the e-variety generated by <€ consists of homomorphic images of
regular subsemigroups of direct products of semigroups in *€.

The following is an easy consequence of the previous proposition.

COROLLARY 2.16. Let & and & be e-varieties of orthodox semigroups. Then the
join S' v & of $ and & consists of semigroups S for which there exists U e S,
V e &, a regular subdirect product T c U x V and a homomorphism <p : T —>• S
ofT onto S.

Let X be a nonempty set, * be a bijection onto some set X* = [x* | x e X]
disjoint from X and let F*(X) be the free semigroup in the alphabet X U X* equipped
with the involution * extending this bijection. Namely, for any word u = yxy2 . . . yn

(j, e X U X*) we have u* = y*... y$y*x with (x*)* = xforxeX.
A mapping x '• X U X* -> 5 into an orthodox semigroup S such that xx, x*x are

mutual inverses in S for all x e X will be called a matched mapping, as in [10].
By a bi-identity we mean any pair « = v of words u, v € F*(X). An orthodox

semigroup 5 satisfies the bi-identity u = v if for any matched mapping x '• X U X* —>
S we have u<t> = u<l> where <t> : F*(X) -*• 5 is the unique homomorphism extending
X- We say that a bi-identity is satisfied in a class £ of orthodox semigroups if it is
satsified by each member of S'. Let ua = va, a e A be a set of bi-identities. Then the
class of all orthodox semigroups satisfying each bi-identity ua = va, a e A will be
denoted by [ua = va]aeA.

We have the following Birkhoff type theorem for e-varieties of orthodox semi-
groups.

THEOREM 2.17. [10, Theorem 1.10] A class £ of orthodox semigroups is an e-
variety if and only if there exists a set ua = va, a e A of bi-identities such that
<f = [ua = v a ] a e A .
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For any <f e S?e(0) let p(g, X) be the relation defined on F*(X) by w p(g, X) u
if and only if u = v is satisfied in <?. It is clear that p(S", X) is a congruence on
F*(X). By the proof of [10, Lemma 1.6] we have that F0(X) = F*(X)/p(0, X) is
orthodox. Furthermore by Remark 2 following [10, Lemma 1.6], F@{X) is the free
orthodox *-semigroup on the set X.

A congruence p on a semigroup S is calledfully invariant if for every endomorphism
a of S and every a, b e 5 such that a p b then (aa) p (ba). Let ^ / ( S ) denote the
set of all fully invariant congruences on 5.

LEMMA 2.18. LetS e &t(&). Then the congruence p(g, X)/p(0, X) on F0(X)
is fully invariant.

PROOF. This follows from [10, Proposition 1.7] and the remark preceding [10,
Proposition 1.7].

For each ge Jfe(ff)letp(^) = p{S, X)/p(0, X) and for each
let S{p) = [u = v | (up(0, X)) p {vp{&, X))].

THEOREM 2.19. Let X be a countably infinite set and define two mappings p and
Sby

p :Sfe(ff) -> &f(F0(X)) : g (-• p(g)

: p \-+ g(p).

Then p and Sare mutually inverse order anti-isomorphisms o

PROOF. By [10, Corollary 1.12 and Remark] these two mappings determine a one-
to-one correspondence between JSfc(^) and ^J{FG{X)). It is not difficult to show
that both maps invert the inclusion relation.

PROPOSITION 2.20. Let S G ££e(@) and Xbea countably infinite set. Then p{§)
is the least fully invariant congruence p on Ft7(X)for which FG{X)I p e S'.

PROOF. Let p e ^J{F&{X)). We show firstly that

(1) u = v is satisfied by F0{X)/p if and only if (up(0, X)) p {vp(0, X)).

Suppose u = v is satisfied by F0(X)/p. Define x • X U T - > F0(X)/p
by X '• y •->• (yp(@> X))p (v e X U X*); then x is a matched mapping. Let
<J> : F*(X) -> F£?(X)/p be the unique homomorphism extending x- Since u = v
is satisfied by F£?(X)/p, we have that H4> = u<I>. Clearly w<!> = (up(6, X))p and
i;4> = {yp(0, X))p, and it follows that (up(0, X)) p {vp{&, X)).
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Conversely, suppose (up(0, X)) p (yp(0> X)). Let \ • X U X* -+ F0{X)/p be
any matched mapping and 0 : F*(X) -> FG{X)I p be the unique homomorphism
extending x- To show that u — v is satisfied by F€?{X)/p we need to show that M4> =
v<t>. Let <I> : F£?(X) -»• F6(X)I p be the homomorphism induced by 0. Since
(jcp(<7, X))<1>, (jt'p(tf, X))<I> are mutual inverses in F0(X)/p, by [5, Lemma 1]
there are mutual inverses (Dp(&, X), a)p(&, X) of F&(X) such that {xp{&, X))<1> =
(a>p(0, X))p,and(x*p(0, X))<l> = (a>p(0, X))p (wherep : F<?(X) - • F0(X)/p
is the natural homomorphism). Define i/r : X U X* -> F&{X) by xfr : x h>

, X), ** (->• a>p{&, X); then ^ is a matched mapping. Let * : F*(X) ->
be the unique homomorphism extending \[r and * : F^(X) -^ F£"(X) be

the homomorphism induced by ^ . It is easily seen that <J> = * p .
Since * is an endomorphism of F0(X), p e &J?(F0{X)) and («p(^, X)) p

, X)) we obtain ((up(ff, X))*) p ((wp(^, X))*). Therefore

as required and (1) is proved.
By (1) Fff(X)/p satisfies all bi-identities u = v such that (up(6, X)) p (up(^, X)),

so by the definition of <?(p) we have

(2) * W ) / p e £{p).

Now let ^ 6 J£f,(<?). Then p(<f) e ^ / ( F ^ ( X ) ) by Lemma 2.18. There-
fore by (2), F0{X)/p{£) € <fp(^) and since <?p is the identity map on ££e(G)
(Theorem 2.19), we have that F^(X)/p(S>) e S.

To show that p(g) is minimal, let p € ^ / ( F ^ ( X ) ) be such that F0(X)/p e S
and let (up(0, X)) p(^) (vp(^, X)). Then u p{£, X) v so that u = v is satisfied
in <?. As F0(X)/p G <̂ , M = i> is satisfied by F0(X)/p. Therefore, by (I),
(up(G, X)) p (vp{C', X)). Thus p(<?) c p which proves the minimality of p{i$).

PROPOSITION 2.21. Let Xbea countably infinite set and p € &J{Fff(X)}. Then
Pmax

PROOF. The arguments of [16, Lemma 2.3] and [16, Theorem 4.2] with slight
modifications apply to yield this result.

An orthodox semigroup is combinatorial if Jf? is the identity congruence on 5 or
equivalently if all subgroups of 5 are trivial.

PROPOSITION 2.22. The semigroup F^(X) is combinatorial and E-unitary.

https://doi.org/10.1017/S1446788700038131 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038131


108 J. Doyle [9]

PROOF. Since F@{X) is the free orthodox *-semigroup, by [26, Theorem 2.2],
is combinatorial. A similar argument establishes that F@(X) is £-unitary.

3. Joins and meets with groups

hi this section we show that the mappings <p : g i->- gv^ an&ir : & (->• SOfS {S e
S^e{&)) are lattice homomorphisms, the former being complete, thus generalizing
results of Kleiman [11]. These two homomorphisms induce two congruences v,
and v2 respectively on %?e(6). We show that the vx classes are complete modular
sublattices of Sfe(ff) and that for each v2 class the join of its members is 6.

PROPOSITION 3.1. For any S, & e S£t(G) we have

g v «? = & V <S if and only iftrp(g) = trp(^).

PROOF. Let a = oF@(xr Then using the characterization of a for orthodox
semigroups it is easily seen that a is fully invariant. By Proposition 2.20, p(W) is the
least fully invariant congruence p on F0(X) for which Ft?(X)/p e <£ and hence it
follows that a = p(^) . Now using the anti-isomorphism p of Theorem 2.19 we have

only if p(g) n p(&) = p(&) n p(<0)

if and only if p(g) n a = p(3?) n a

if and only if trp(^) = trp(J?)

by Lemma 2.4 as F(?(X) is £-unitary (Proposition 2.22).

A semigroup S is called fundamental if /x is the identity congruence on S. Let
denote the class of fundamental orthodox semigroups.

THEOREM 3.2. For any S, & e J£fe(^) we have

g v <S c J? v ^ if and only if g n ^"<^ c ^ n ^"^".

PROOF. The argument of [18, Theorem XII.2.4] applies to yield this result using
Lemma 2.7, Theorem 2.12 and Corollary 2.16 at the appropriate places.

COROLLARY 3.3. For any g, & e ££e(0) we have

g v <S = & v <S if and only if g D &6 = & D
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COROLLARY 3.4. For any £ e S£e{&) we have

£v& = {S e 0

PROOF. The argument of [18, Corollary XII.2.6] applies to yield this result using
Theorem 2.12 and Corollary 3.3 at the appropriate places.

For any non-empty class ̂  of orthodox semigroups, we let C )̂ denote the e-variety
generated by <#. For any £, & e 5?e(0) with £ c & we let [£, &\ denote the
interval sublattice of S£e{ff) with least element £ and maximum element &.

THEOREM 3.5. The mapping <p : &<(&) -* [Sf, G\ defined by <p : £ H> £ V <S
(£ e Jfe(0)) is a complete lattice homomorphism. Furthermore, let V\ be the
congruence on 3fe({?) induced by (p. Then for each £ e £^e{&), Sv\ = \{S D

gvtf} is a complete modular sublattice of

PROOF. From Corollary 3.4 it is easily shown that <p is a complete lattice ho-
momorphism. The theorem can be completed as in [18, Theorem XII.2.8] using
Theorems 2.8, 2.19, Proposition 3.1 and Corollary 3.3 at the appropriate places.

PROPOSITION 3.6. Let S e &e(6) and p = p(£). Then S(pmin) = S v <g and
S'(Pmix) = {& H &6). That is, pmin corresponds to the greatest and pmax to the least
element of

PROOF. By Lemma 2.18, p e &f(F0(X)). By Proposition 2.22, F0(X) is E-
unitary and so pmin = pC\a by Corollary 2.5 (hence pmin e J?L?(F€?(X))). Therefore,
using the anti-isomorphism £ of Theorem 2.19, ^(pmin) = £{pf\o) = £(p)\/£(a) =
£v&.

By Proposition 2.21, pmm e &J(F6(X)). Since {£ n &G) v& = £v&,
trp({£ n &€)) = trp(£) by Proposition 3.1. Therefore p((£ D &&)) c pmax

and so £(pmax) c £p{(£ n &0)) = (£ n &0). Conversely, as trp(<^) = trpmax,
£ v <g = <?(pmax) v Sf by Proposition 3.1, that is, £(pm!a) e £vx. Therefore, as
(£ n &6) is the minimum element of £vu {£ n ^"^> c <?(pmax) we have equality.

LEMMA 3.7. The e-variety of orthodox semigroups is generated by its finite com-
binatorial members.

PROOF. By [26, Proposition 2.1], FJ(X) — F0(X)/y is the free inverse semi-
grouponX. Consider the mapping x • F&(X)/ J -* FJ(X)IJ of the ^-classes
of F6(X) onto the ^/-classes of FJ(X) defined by x • Jup(G x) ^ J

up^,x)Y- I I

is not difficult to show that (up(G, X)) J (vp{0, X)) if and only if (up{6, X))y
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J? (vp(@, X))y. It follows that x is well-defined and one-to-one. Clearly x and its
inverse preserve the natural ordering of ^-classes.

Forup(&, X) e F0(X) let

and

By the first part of the proof of [ 18, Lemma XII. 1.7] this latter set is finite. Since x is an
order preserving bijection of the ^-classes ofF£?(X) onto the ^-classes of F^(X)
it follows that the number of ^/-classes Jvp(tf X) such that JUf>i@ X) Q KP(G xy ^s n m t e -
By [26, Theorems 2.2,4.4 and Proposition 4.7] each c7/^-class of F£7(X) is finite and
hence FM ,@ X) is finite. Now the remaining part of the proof of [ 18, Lemma XII. 1.7]
yields the following result: if £ e ££e(G) contains all finite combinatorial orthodox
semigroups then F 6{X) e £. It follows that £ contains all orthodox semigroups.

For any positive integer we let ^ n = [xn = xn+1].

PROPOSITION 3.8. We have that \/™=l tfn = 6.

PROOF. The argument of [18, Proposition XII.1.8] applies to yield this result using
Lemma 3.7.

THEOREM 3.9. The mapping f : &e(0) -> -S?(#) defined by \/r : S i-> S n ^
(<§ e Ji?e(&)) is a lattice homomorphism. Furthermore, let v2 be the congruence on
3fe(0) induced by f. Then for each S e %e(6), SO& is the least element ofS'vj,
and & is the join of all members of Sv2. Hence only (Sv2 has a greatest element.

PROOF. The argument of [18, Theorem XII.3.2] applies to yield this result using
Theorems 2.9, 2.19 and Proposition 3.8 at the appropriate places.

4. Completely semisimple and cryptic e-varieties

An e-variety of orthodox semigroups is completely semisimple (cryptic) if all its
members are completely semisimple (cryptic). In this section we characterize such
e-varieties in several ways. We let J^ denote the variety of inverse semigroups.

PROPOSITION 4.1. Let S be a cryptic e-variety of orthodox semigroups. Then S is
completely semisimple.
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PROOF. Since £ is a cryptic e-variety of orthodox semigroups, £ D J1 is a cryptic
variety of inverse semigroups. By [21, Corollary 5.13] # n / is completely
semisimple. Let S e £. Then S/y e ^ f l / , and so S/y is completely semisimple.
By Lemma 2.13, 5 is completely semisimple. Hence £ is completely semisimple.

LEMMA 4.2. LetSbe an orthodox semigroup. ThenS e ^nif and only if S/y € '&„.

PROOF. Suppose S/y e ^ and let a e 5. Then, as S/y satisfies the identity
x" = .x""1"1, we have that a" y = (ayf = (ay)n+1 = an+xy, and so V(a") = V(a"+l).
Let a1 G V(a). Then (a')" e V(a") = V(an+1). Therefore a" = an(a')"an =
an{a')nan+\a')na" = a"{a')na" • a{a')na" = a"a(a')na" = aa"(a')na" = aa" = an+l.
Thus 5 satisfies the identity x" — xn+x and so 5 € ^ n . The converse implication is
obvious.

An e-variety of orthodox semigroups is combinatorial if all its members are com-
binatorial.

We have the following characterization of combinatorial e-varieties of orthodox
semigroups.

LEMMA 4.3. Let£ e J£e{&). Then the following conditions are equivalent:

(a) £ is combinatorial;
(b) £ fl Jf is combinatorial;
(c) £ c <gn for some positive integer n ;
(d) £ n Sf = &— the variety of all trivial groups.

PROOF. Clearly (a) implies (b).
(b) implies (c). Suppose £ n J is combinatorial. By [18, Lemma XII. 1.10]

£ n J^ c ^n for some positive integer n. Now it follows easily from Lemma 4.2

(c) implies (d). Suppose £ c <^n. Then £ n& c #„ n ^ = & since any group
which satisfies the identiy x" = xn+l must be trivial.

(d) implies (a). Suppose £ n *$ = S and let S € £. Then all subgroups of S are
trivial, that is, S is combinatorial. Hence £ is combinatorial.

LEMMA 4.4. Ler^ e i

<f c [x-x" = x^x*2"] if and only if£DJ? £ \xnx~n = x-nxn].

PROOF. Supposed c [xnx*n = x^x*2"]; let5 e ^n j^ . anda e S. Thena"a-n =
an(a~"an)a-n = a"(a-2naln)an = (a" a~") (a"" a") (an a~") = (a~"a")(a"a-")(a"a~") =
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(a-nan)(ancrn) = Urna")(crnan)(ana~n) = {a-"a"){ana-n)(a-nan) = a^ia^a'2") •
a" = d~"a"a~"an = d~"a". That is, S satisfies the inverse semigroup identity x"x~" =
x-"x" and hence ^ n / c [xnx~n = x~nxn\.

Conversely, suppose ^ f l / c [x"x~" = x~"xn] and let S € £, a e 5 and
a' e V(a). SinceS/y e £ D J1, S/y satisfies the inverse semigroup identity x" x~" =
x-"xn. Therefore (a"(a')n)y = (ay)"(a'y)n = {ay)n(ayYn = (ay)-"(ay)n =
((a')na")y and so V(a"(a')n) = V((a')"a"). Then, as a"(a')" e V(a"(a')n) =
V{(a')"an),

an(a')n = an(a')nan(a')n = an(a')na"an • (a')n(a')nan(a')n

= a"a"(a')n(a'y =a2n(a')2n.

That is, 5 satisfies the bi-identity x"x*n = x2nx*2n and hence § c [x"x*n = x^x*2"].

For any g e S£e{ff) we let T(S) = [S e S \ (S) is combinatorial}. It is easily
seen that T(£)r\Jr = T(£r\Jr)

We denote the bicyclic semigroup by *€.
We can now give characterizations of completely semisimple e-varieties of ortho-

dox semigroups.

THEOREM 4.5. Let S € JSf«(^). Then the following conditions are equival-
ent:

(a) ¥*&;
(b) £ is completely semisimple;
(c) $ n J? is completely semisimple;
(d) £ c [x

nx*" = x2nx*2n ] for some positive integer n;
(e) T (£) c ^ n /or some positive integer n ;
(f) T(£) is an e-variety.

Moreover, the least positive integer satisfying (d) coincides with the least positive
integer satisfying (e).

PROOF. The equivalence of (a) and (b) follows easily from [20, Theorem 3.4] and
Lemma 2.13. Clearly (b) implies (c).

(c) implies (d). Suppose £ n / is completely semisimple. By [20, Theorem 3.4],
i f n / c [x"x~n = x~"x"] for some positive integer n. Therefore £ c [x"x*n =
x2nx*2n] by Lemma 4.4

(d) implies (e). Suppose £ c [*"**" = x2"**2"] and let S € T(£). Then 5 e £
and (5) is combinatorial. Clearly then S/y 6 £ D J^ and (S/y) is combinatorial
so that S/y e T(£ n J^). By Lemma 4.4, ^ f l / c [x"x-n = x-"xn] and hence
T{£ n / ) c ^ , by [20, Theorem 3.4]. Therefore S/y € ^ and also S € #„ by
Lemma 4.2. Thus 7(<f) c £„.
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(e) implies (f). Suppose T{£) c <ga and let S e £ D c€n. Then (5) e tfn and so
(5) is combinatorial by Lemma4.3. Therefore 5 e T(£) whence < f n ? n c T{£).
The opposite inclusion is obvious: thus T(£) = £ D ̂ n is an e-variety.

(f) implies (a). Suppose T{£) is an e-variety. Then T{£ D JO = T(<?) n J*" is a
variety of inverse semigroups. By [20, Theorem 3.4], "€ $ £ n «/ and hence •£" £ <?.

Now let « be the least positive integer such that £ c [jr"**" = AT2"**2"] and m
be the least positive integer such that T(£) c <^m. Since <̂  c [x"x*n = x^x*2"]
if and only if £ D ̂  c [x"x"n = JC~"JC"], « is the least positive integer such that
^ f l / c [X"x-n = x-"xn] and since T{S) c <jfm if and only if T ( ^ f l / ) c <ifm, m
is the least positive integer such that T{S fl J} c <^m. By [20, Theorem 3.4], TTJ = n.

Before characterizing cryptic e-varieties of orthodox semigroups we prove

LEMMA 4.6. We have tfnv& = [xn yy*x*n = xn+1yy*x*n+x].

PROOF, let 5 € [x"yy*x*n = xn+lyy*x*"+i], a € S,a' e V(a) and e 6 £. Then
a"e(a')" = aB+1e(a')"+1 and {a')"ean = (a')n+lea"+1. By the characterization of fi
this gives a" fi an+l and it follows that S/fi € *^n. By Corollary 3.4, 5 6 tfn v & and
so [JC"vv*x*" = x"+1yy*^*"+1] c ^ , v ^ . The opposite inclusion is straightforward
and we have equality.

THEOREM 4.7. Le? <? e S£e{6}. The following conditions are equivalent:

(a) <̂  « cryptic;

(b) £ f\ J and £ fl "^^ are cryptic, where ̂ 8% is the variety of completely regular

semigroups;

(c) £ c.<£n\j (S for some positive integer n;

(d) <? c [x"yy*x*n = xn+lyy*x*n+l]for some positive integer n;

(e) £ D <^? c ^ n /or some positive integer n ;

(f) T(£) = £Dg;&;

(g) (? PI ̂ ^ is a combinatorial e-variety.

PROOF. Clearly (a) implies (b).
(b) implies (a). Suppose £ D S and £ D tf& are cryptic and let S e £. We show

first that if ay Jf? ey, where a € S and e e <f, then a e G, the union of the maximal
subgroups of 5. Let a' G V(a) then a'y = (ay)"1 and so aa'y = a'ay = ey.
Therefore, by the characterization of y, V(aa') = V(a'a) = V(e). Also, as aey =
eay = ay, V(ae) = V(ea) = V(a). Since

aa'ea'a • ea = aa'ea (since e e V(e) — V(a'a))
= a (since a'e e V(ea) = V{a))
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and
ae • aa'ea'a = aea'a (since e e V(e) = V(aa'))

= a (since ea' e V(ae) = V(a))

it follows that a J4? aa'ea'a and so a e G.
Let a, b e G then a 3%* e and b Jtf f for some e, f e E. Then ay Jff ey and

by Jff fy. Since S/y 6 ^ ( 1 / which is cryptic, Jif is a congruence on S/y and so
(ab)y Jff (ef)y. By the previous paragraph ab e G and so G is a subsemigroup of
S. As G is a union of groups, G is a completely regular subsemigroup of 5, therefore
G e £ n ^ . Since <? n ^ is cryptic we have that G is a band of groups. By
Lemma 2.14, 5 is cryptic and hence £ is cryptic.

(a) implies (c). Suppose £ is a cryptic e-variety. Then, by Lemma 4.1, £ is also
completely semisimple. By Theorem 4.5 £ c [x"x*n = JC2"**2"] for some positive
integer /j. Let S € £, a e S and a' € V(a). Then a" = a"(a')"a" = a^(a')lnan =
an+i . a"-i(a*)2«a« ^ d a"+i — a" . a which implies that a" & an+\ Analagously
a" J£ an+1 and so a" Jf an+l. Since S is cryptic, ^ is a congruence on S so that
JT = /x. Therefore a" fi an+l and it follows that S/n e tfn. By Corollary 3.4
S e <*?„ v Sf and hence <f c ^ n v <§

The equivalence of (c) and (d) follows from Lemma 4.6.
(c)implies(e). Supposed c tfBv$7. Then^Tl^^ c <tfnv9)C\&0 = tfnn&&

by Corollary 3.3 as (#„ vSf) v^f — ^ny^. Since ̂  is combinatorial and in particular
fundamental, <«?„ n ^ ^ = #„, whence «f n ^"^ c -^n.

The arguments of [20, Theorem 3.9] applies to show that (e) implies (f) and (f)
implies (g).

(g) implies (a). Suppose £ D &6 is a combinatorial e-variety and let S e £. Then
S/fi € £ n &6. As £ fl ^"^ is a combinatorial e-variety, S//i has no nontrivial
subgroups. Therefore /x = J f is a congruence. That is, 5 is cryptic, and hence £ is
cryptic.

REMARK 1. Note that the conditions £ is cryptic and £ n £ is cryptic are not
equivalent. For let &S be the variety of orthodox completely regular semigroups.
Then &£ is not cryptic. However, CS C\ <& — &*£; the variety of semilattices of
groups is cryptic.

Let ^ y and c€y<tf> denote respectively the classes of completely semisimple and
cryptic orthodox semigroups. Neither of these classes is an e-variety. Denote by
JSfe(«^) and J ^ C ^ J T ) the set of all e-varieties contained in «5? and
respectively.

COROLLARY 4.8. Both 3?e(tfy) and &,(&&#?) are ideals q
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PROOF. Let g, & e &t(&y). By Theorem 4.5, g c [x"x*n = x^x*2"] and
& c [xmx*m = x^x*2"1] for some positive integers m and n. Since g satisfies
x"x*n = x^x*2", it is easily seen that S satisfies x"x*n = x

knx*kn for any positive
integer k, and it follows that g satisfies x

mnx*mn = x
2m"x*2mn (= xmx*m). It follows

that g v & c \x
mnx*mn = x

2mnx*2mn^ and hence by Theorem 4.5, that ^ v & e

If <f € -S fU^) and ^ € - S f ^ ) then it follows easily from Theorem 4.5 that
g n & e SftC#y). Consequently j£?c(<^) is an ideal of S£e(6). The second
assertion of the corollary is easily proved from Theorem 4.7

For any % e &{&) we let Q(W) = {£ z &e(0)\g V\<S = <%}. It is easily
shown, from Theorem 3.9, that QCW) is a sublattice of See{G) for each <% e

COROLLARY4.9. L^ ^ e J£?(#) and*? e Q(&). Then S v <2f 6

PROOF. Since ̂  is combinatorial, S'Q^n for some positive integer « by Lemma4.3.
Therefore <? v ^ c <#n v ^ and hence <? v ^ e <jf^^f by Theorem 4.7.

LEMMA 4.10. Let <% e ^f(^) . T/ze« ?^ mapping x • Q(&) -+ Q(W) : S H>
v ^ w an isomorphism of Q{S) onto

PROOF. Let^1 € Q ( ^ ) . By Theorem 3.9,
so that x maps Q(&) into e ( ^ ) . Define <D : e ( ^ ) x -^ 2 ( ^ ) by <1> : g *+
S n ^ ^ {S e S ( ^ ) x ) - Note that as <? e Q ( ^ ) x . <̂  e ^ ^ J T by Corollary 4.9 and
hence & n ^<? is a combinatorial e-variety by Theorem 4.7. It is easily shown, from
Corollary 3.3, that x® and 4>x are identity maps on their domains. Since both x, *
are obviously order preserving it follows that both x, ^ are lattice isomorphisms.

COROLLARY 4.11. The mapping x • & •-> S v <S (g € Q(^)) is an isomorphism
of Q(ST) onto Q(&) n 5?e(tfyj?>) with inverse x"1 : ^ t - > ^

PROOF. The argument of [20, Corollary 3.14] applies to yield this result using
Corollary 3.4, Theorems 4.5, 4.7 and Lemma 4.10 at the appropriate places.

COROLLARY 4.12. The mapping <I> : 3?e(tfyjf?) -+ Q(&) : g i-̂  g n &6 is a
homomorphism of 5?e(

cgJ#'y) onto

PROOF. The argument of [20, Corollary 3.15] applies to yield this result using
Corollary 3.4 and Theorems 3.5, 4.5 and 4.11 at the appropriate places.
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5. The maximum element in a v3-class

Recall that the mappings <j> : g \-+ g v & and ir : g \-> gn& (g e •&e(.&))
induce congruences vx and v2 respectively on J?e(£?). Thus for S, & e &?(£?)

g vx& if and only if <f V <S = & v # ; and

<? v2 ^ if and only if g n # = ^ D # .

By Corollary 3.3 we have an alternate description of V] namely

g v, & if and only if g D ^ = ^ D ^ 7 .

Let v3 = Vi fl v2- Then it is not difficult to show that each v3-class has a minimum
member. In this section we show that each v3 -class of a cryptic e-variety also has a
maximum member. (This result is not true in general: see for example [19, Section
5].)

PROPOSITION 5.1. Let V be a v3-class andg € V. Then {g n &) v (g n J ^ ) w
rte minimum member ofV.

PROOF. The argument of [19, Proposition 3.1] applies to yield this result.

To identify the maximum member of a v3-class of a cryptic e-variety we will need
the concept of a Mal'cev product for e-varieties.

Let g and & be any classes of orthodox semigroups. The class of all orthodox
semigroups 5 for which there exists a congruence 6 on S such that S/0 e & and
e6 e g for each e e g is called the Mal'cev product of g and & denoted g o &.

Note that if g and ^ are classes of inverse semigroups, then g o j£" is a class of
inverse semigroups. For let S G <f o &, 6 be a congruence as in the definition of the
Mal'cev product and e, f e E. Then, as S/0 is an inverse semigroup, (ef)0 = (fe)O
and therefore, as each idempotent #-class is an inverse semigroup, effe = feef, that
is, efe = fef. Hence ef = efef = feff = ffef = fefe = fe and so S is an
inverse semigroup.

The Mal'cev product of e-varieties is not in general an e-variety (see for example [ 1,
Example 1.2]). However it does have the following property.

LEMMA 5.2. Let g, & e &e(6). The g o & is closed under direct products and
regular subsemigroups.

PROOF. The argument of [18, Lemma XII.8.2] applies to yield this result.

https://doi.org/10.1017/S1446788700038131 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700038131


[18] On existence varieties of orthodox semigroups 117

PROPOSITION 5.3. Let W e &(<£) and S e S£t(.G). Then <% o S is an e-variety
of orthodox semigroups.

PROOF. By Lemma 5.2, it remains to show that W o S is closed under homomorphic
images. Let 5 e *ft o $ and x '• S —*• T be a homomorphism of S onto an orthodox
semigroup T. Let 9 be a congruence on S such that S/9 e <f and efl e ^ for each
e e E. Since e# e ^ a group variety, e9 contains a unique idempotent for each
e e E. Thus 0 is an i.s. congruence. By Lemma 2.11, 9 induces an i.s. congruence,
4> say, on T. Furthermore, T/<f) is a homomorphic image of S/9. Thus T/<p e <̂  as
S/9 e <?.

As ^ = Ker# = Ue€£ e ^ ' s a band of groups in fy, ^r/y* is a semilattice of
groups in %. By the proof of [8, Theorem IV.2.1], K/yK is a strong semilattice of
groups in <% and hence K/yK € ^ v ^ by [8, Theorem IV.5.12], where 5? is the
variety of semilattices. It is easily shown that the mapping <J>: K —> K/yK x E,
defined by <I> : ai-> (ayK, e) where a e K and a ^ e, is an embedding. It follows
that K G <2C v SB and hence ^ x e ^ v ^ , where ^ is the variety of bands.
Since K\ — Ker# and <p is i.s., all idempotent </>-classes are in ( ^ v £$) n Sf. By
Theorem 3.9 (<2r v ^ ) n Sf = (^C n Sf) v ( ^ n «f) = "2C. Thus e</> e ^ for each
e e ET. We have that 0 is a congruence on T such that r/^> € £ and e</> e ^ for
each e € ET. Thus T ^fy o $, whence ^ o ^ is an e-variety.

THEOREM 5.4. Let S e ^(tfyj?). Then (STi^)o(^n &0) is the maximum
member of Sv->,.

PROOF. L e t ^ = <£TWand^" = <?n&0 (which is an e-variety by Theorem 4.7).
The first part of the proof of [19, Theorem 3.5] applies to show that % o & contains

We need to show that ^ o & € gv3.
Let G G {% o &) n <g. Then there is a congruence 6» on G such that G/9 e &

and W e t . Since G/9 is a group in & c ^'^>, ^ must be the universal congruence.
Then G = 10 = ^ , and so (<2C o &) n Sf c <2r = <f n ^ . The opposite inclusion is
easily proved and we have equality. Hence % o & e ^v2-

The theorem may now be completed as in [19, Theorem 3.5].

COROLLARY 5.5. Let S e - i f U ^ J f ) . Then <f v3 = [(<? n Sf) v (<f n &0), (S n
) o (<f n ^ ^ ) ] « a complete modular lattice.

PROOF. This follows easily from Proposition 5.1, Theorem 5.4 and Theorem 3.5,
as v3-classes are sublattices of vx-classes.
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COROLLARY 5.6. Let <% G ££<&) and g e Q{3T) then [<% v g, <% o g] is a
v-j-class.

PROOF. Let & = <% v g. Then & e &e(
<gyj0') by Corollary 4.9. By Corollary

5.5 the v3 -class containing^" is [ ( ^ T W ) v ( ^ t\&ff), (& n&) o (& n &{?)]. Since
^ v <S = <? v ^ , Corollary 3.3 yields that ̂  n ^ ^ = ^ n ^"^ = g, while Theorem
3.9 yields that & n ^ = ^ . Therefore the v3-class containing ̂  is [^ v <f, % o <f ].

6. Further results on the Mal'cev product

In this section we show that the Mal'cev product respects the lattice operations
in &(&), we establish an associativity result and we determine bi-identities for the
Mal'cev product of a group variety and an e-variety of orthodox semigroups.

LEMMA 6.1. Let W e ££<&') andg e &e(0). Then

(a) W og= ((W o ^ ) f l / ) V g;
(b) (^o^)n/ = fo(^n/).

PROOF, (a) Let S e <% o g. Then S/y e ( ^ o g) n J. Let 9 be a congruence
on 5 such that S/6 e g and eO e tft for each e e E. Then 6 is an i.s. congruence
on 5. Therefore 6 c ^ and so S//x = (S/6)/(n/9) e g. By [8, p. 191], y n fi = i:
therefore S is a subdirect product of S/y and 5 /^ . Hence 5 e ( ( ^ o g) V\ J) v g,
and so ̂  o <̂  c ((<̂ r o ̂ ) n ^/) n <?. The converse inclusion is obvious.

(b) Since the Mal'cev product of classes of inverse semigroups is a class of inverse
semigroups it is clear that fy o {g n •/") c ( ^ o g) D J^. The converse inclusion is
trivial.

LEMMA 6.2. Lcf {^a| a e A] be a family of varieties of groups and g G
Then

( V <2ro o o ̂ ) and

PROOF. By Lemma 6.1 and [19, Lemma 4.1] we have

og)n J)\ v
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= \J(Wa O g).

The argument of the corresponding assertion of [19, Lemma 4.1] applies to establish
that (f) &a) o g = flC^B o g).

THEOREM 6.3. ifS e ££e{@) is such that <& c g then the mapping <% (-• ^ o g
is a complete lattice isomorphism ofJ2?(&) into [g, & v g].

PROOF. The argument of [19, Theorem 4.3] applies to yield this result.

THEOREM 6.4. Let <%, V e j£?(#) and g e &,(&)• Then (<% o Y) o g =

<% o ( r o ^ ) .

PROOF. By Lemma 6.1 and [1, Theorem 4.4] we have

r> o tf) n / ) v <f

= car o ( r o (^ n ^ ) » v <r
g

where the second last equality follows since "¥ c <ft o y and hence Y o g c.
C2r o r ) o g.

We now determine bi-identities for the Mal'cev product <$ o g where <f €
Let X be a countably infinite set. We will use the notation x to denote a string

of elements xlt x*, ... , xn, x* of X U X*. Note that any bi-identity u(x) = v(x)
is equivalent to the the three bi-identities u(x)v*(x) = v(x)v*(x), v*(x)u(x) =
v*(x)v(x) and u(x)v*(x)u(x)u*(x)u*(x) = u(x)u*(x). For suppose 5 is an orthodox
semigroup which satisfies the latter set of bi-identities and let s = S\, s[, ... , sn,
s'n be a string of elements of 5 where s'{ e V(SJ). Then u(s) = u(s)u*(s)u(s) =
u(s)v*(s)u(s)u*(s)u(s) = u(s)v*(s)u(s) = u(s)v*(s)v(s) = v(s)v*(s)v(s) = v(s),
that is, S satisfies the bi-identity u(x) = v(x). The converse is clear. Thus for any
g € Sfeit?) there is a basis of bi-identities of the form u(Jc) = i(x) where i(x)p(£?, X)
is an idempotent of F£7(X). If we write

Idem(<f) = {(v(x), i(x)) e F*(X) x f *(X) | g satisfies the bi-identity

v(x) = i(x) and i(x)p(£?, X) is an idempotent of
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then Idem(<f) provides a basis of bi-identities for £.

THEOREM 6.5. Let S € •£?<,(<?). Then the following are equivalent:

(a) S e <S o g;
(b) S/ix e S;

(c) 5 satisfies all bi-identities of the following forms

v{x)v*(x)i(x) = i(x) = i(x)v*(x)v(x),

where (v(x), i(x)) e Idem(<?).

PROOF. The equivalence of (a) and (b) is not difficult to prove and is left to the
reader.

(b) implies (c). Suppose S/fi e S and let (v(x), i(x)) e Idem((?) and s = su

s[, ... , sn, s'n be a string of elements of 5 where s,' € V(s,-). As stfi e S/fi,
sifx e V(sifi), S/fi e £ and S satisfies the bi-identity D(JC) = i(x), we have that
v(sin, s[(M,..., snfx, s'nfj,) = i(si/x, s[ix,..., snfi, s'n/x), so that v(s)fi = i(s)(i or

v(s) fi i(s). Since /x c jff, in particular v(s) and i(s) are J^-related elements of 5.
As i(s) is an idempotent of S, the Jf-class HaS) is a group. Let v(s)~l be the inverse
of v(s) in///(i). Thenu(s)v*(J)/(J) = tiCs^CsMsMs)"1 = v(J)v(5)~' =/(j),and
similarly /(s) = J'(J)V*(S)D(5). Thus 5 satisfies all bi-identities of the forms given in
(c).

(c) implies (b). Suppose 5 satisfies all bi-identities of the forms given in (c).
Since Idem(<?) provides a basis of bi-identities for S', we need to show that 5//x
satisfies v(x) = i(x), where (v(x),i(x)) e Idem(^). Now, if a e S/fi and a1 e
V(a), then by [5, Lemma 1] there are s e 5 and s' e V(s) such that a = sfi and
a' = s'ti. Therefore we need to show that v(sfj.) = i(six), or equivalently, that
v(s) ix i(s), where s = su s[,... , sn, s'n is a string of elements of S with s^ e V(s,).
We first prove the following result: if (u(x), /(*)) € Idem(<f), then v(s) Jt? i(s).
Since (v(x), i(x)) e Idem(<?), by assumption, we have that v(s)v*(s)i(s) = i(s) =
i(s)v*(s)v(s). Also, it is clear that (v*(x)i(x), v*(x)v(x)) e Idem(<f) and again, by
assumption, we have that

v*(s)i(s)i*(s)v(s)v*(s)v(s) = \f(s)v(s) = v*(s)v(s)i*(sMs)v*(s)i(s).

Therefore i(s)i*(s)v(s) = v(s)v*(s)i(s)i*(s)v(s)v*(s)v(s) = v(s)v*(s)v(s) = v(s)
and v(s)i*(s)i(s) = v(s)v*(s)v(s)i*(s)v(s)v*(s)i(s) = v(s)v*(s)v(s) = v(s). Now
v(s)v*(s)i(s) = i(s) and i(s)i*(s)v(s) = v(s) show that v(s) & i(s), and i(s)if(s)
v(s) = i(s) and v(s)i*(s)i(s) = v(s) show that v(s) i f i(s). Thus v(s) Jf? i(s).

To show that v(s) fx i(s), we use the characterization of \x. First note that
as (i>(jc), i(x)) 6 Idem(<^) we have that (v*(x), j*(x)) e Idem(<r) where j*(x) =
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v*(x)v(x)i*(x)v(x)v*(x). Furthermore, it is easily seen that j*(s) e V(i(s)). Now let
y be an element of X not appearing in x and let e € E. (In any bi-identity involving
y, both y and y* will be replaced by e.) Clearly (v(x)yy*v*(x), i(x)yy*j*(x)) e
Idem(<?) and so, by the above result, it follows that v(s)ev*(s) Jif i(s)ej*(s). Since
both v(s)ev*(s) and i(s)ej*(s) are idempotents, we have in fact that v(s)ev*(s) =
i(s)ej*(s). Similarly v*(s)ev(s) = j*(s)ei(s). By the characterization of fx, we have
that v(s) \x i(s) as required.

We now determine bi-identities for the Mal'cev product ^ o S, where fy e
and £ e J ^ ( ^ ) . To do this we will need the concept of a verbal subsemigroup.

Let S G &t(G), V = Idem(<?) and 5 € <?. The verfo/ subsemigroup of 5 is
defined by

V(S) = {v(x)a | a € Hom(F*(Z), S) and (w(jc), i(jc)) e V}.

That V(5) is in fact a subsemigroup of 5 is shown in the following lemma.

LEMMA 6.6. Let S e 3?e(&), V = Idem(<f) and S e G. Then V(S) is a full
self-conjugate regular subsemigroup of S.

PROOF. Let a, b e V(S). Then there are homomorphisms a, fi e Hom(F*(X), 5)
and (v(x), /(*)), (w(y), j(y)) e V where x = xu x*, ... , xn, x* and y = xn+u

x*n+v . . . , xn+m, x*+m such that a = v(x)a and b = w(y)fi. It is clear that
(v(x)w(y), i(x)j(y)) € V. Define a matched mapping x '• X U X* ->• 5 by

,x*a i = l n

, J C , p J = / J + l , . . . , / J - r ' W

cfot otherwise

andlet<I>:F*(X) -*• S be the unique homomorphism extending x- Then(u(Jc)w(}'))<t>
= (u(i)4>)(u)()')4>) = (v(x)a)(w(y)fi) = ab is an element of V(5). Thus V(S) is
closed under multiplication and hence is a subsemigroup of 5.

As (v(x),i(x)) e V it is easily seen that (v*(x), v*(x)v(x)i*(x)v(x)v*(x)) 6
V. Hence v*(x)a € V(S) is an inverse of a = v(x)a. Thus V(S) is a regular
subsemigroup of S.

To show that V(S) is self-conjugate let s € 5, s' e V(s). As (V(JC), /(it)) e V
it is clear that (x*+lv(x)xn+u x*+ii(x)xn+i) e V. Define a matched mapping x '•
X U X* -+ S by

s, j ' J = « + 1

;tia, A:fa otherwise
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and let <& : F*(X) -> S be the unique homomorphism extending x- Then (x*+lv(x)
xn+r)<t> = (x*+l<P)(v(x)®)(xn+i<&) — s'as is an element of V(S). It follows that
s'V(S)s c V(5) and so V(S) is self-conjugate.

For any e e £ , let a : F*(X) ->• 5 be defined by a : v(x) i-> e (u(jc) € F*(X)).
Then, as (xx*, XX*) € V, we see that e = (xx*)a e V(S) and V(S) is full.

THEOREM 6.7. Le? <^ e S£ (<£) and S e JS?e(tf). 77ien 5 e ^ o S if and only ifS
satisfies all bi-identities of the following forms:

(a) v{x)v*{x)i{x) = i(x) = i(x)xf(x)v(x), where (v(x), i(x)) e Idem(^);
(b) M(i>i(ii), v*(xi), ..., vn{xn), v*(xn)) = u(ii(xi), j*(xi), ..., in(xn), j*(xn)),

whereu(xltxi\ ..., xn,x;') e I d (^ ) , (wt(Jct), ik(xk)) e Idem(<?) and j*(xk) =

PROOF. Let 5 € % o S. Then 5 6 <£ o <f and so 5 satisfies all bi-identities of the
forms given in (a) by Theorem 6.5.

Let 9 be a congruence on S such that S/9 € <£" and e6 e ^ for each e e
£. Let M(JC,, jcf1,..., JC, JC"1) e I d ( ^ ) , (wt(jct), i*(jct)) e Idem(<?) and j*(xk) =
v*k(xk)vk(xk)i;(xk)vk(xk)v;(xk). Note that as (vk(xk), ik(xk)) e Idem(^), we have
that {v*k{xk), j*(xk)) € Idem(<T). Let sk = s^ (stf, ..., sk

ik\ (sk
(k))' be a string of

elements of 5, where (si)' € V(^). As (vk(xk), ik(xk)), (v^(xk), jk(xk)) e Idem(<f)
and S/9 e S, we have that vk(sk)0 = ik(sk)0 and v*k(sk)9 = jk*(sk)O. Hence

Sn), v*n(sn))9 =

, . . •, in(sn)9, j*n(sn)9)

Let ^ = M(/ I (J I ) , j*(si),..., in(sn), j*(sn)). Then, as ik(sk), jk*(sk) are idempotents
of 5, e is an idempotent of 5.

As Ker# is a band of groups, Ker0/y is a semilattice of groups. By [8, Theorem
IV.2.1] the idempotents of a semilattice of groups are central. Therefore, as vk(sk),
vk(sk) € Ker0 and u(vi(si), v*(si), • • •, vn(sn), v*(sn)) e e9 which is a group with
identity e we have that

u(vdsi), v*(si),.... vn(sn), v*(sn)) =e • u(vi(sx), v*(si),..., vn(sn), v*(sH))

Y u(evi(si)e, ev\(sx)e,..., evn(sn)e, ev*(sn)e)

We show that evk(sk)e, evl(sk)e e e9.
By the first paragraph, 5 satisfies all bi-identities of the forms given in (a). There-

fore,

j*(sk) = v*k(sk)vk(sk)i*(sk)vk(sk)v*k(sk)
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Y v*k(sk)vk(sk)ik(sk)vk(sk)v*k(sk)

Y vk(Sk)v*k(sk)ik(.Sk)v*k(sk)vk(sk) = ik(sk).

Furthermore, it is easily seen that e y #i(Ji) • • • in(sn). It follows that eik(sk)e Y e and
ejk(sk)e Y e- By the characterization of y, V(eik(sk)e) = V{e), and so eik(sk)e —
e • eik(sk)e • e = e, and similarly ejk(sk)e = e. Therefore evk(sk)e 9 eik(sk)e = e and
ev*k(sk)e 9 ej^(sk)e = e.

We now have that evk(sk)e e eO and evk(sk)e is the inverse of evk(sk)e in the
group eO. Since eO e <% and u{xx,xx~\ ... ,xn,x~l) € Id(^) , we have that
uiev^s^e, ev\(sx)e,..., evn(sn)e, ev*(sn)e) - e. Therefore M(UI(5I), uj(si),.. •,
Vn(sn), vt(sn)) Y e and hence aCui^), u*(Ji),..., vn(sn), v*(sn)) is an idempotent of
S, since y is idempotent pure. Finally, as a(ui(ii), u*(si),..., f«(sn), v*(sn)) e e^,
which is a group with identity e, we have that

5n), jfB*(iB)).

Thus 5 satisfies all bi-identities of the forms given in (b).
For the converse, let S be an orthodox semigroup satisfying all bi-identities of the

forms given in the statement of the theorem and let V = Idem(<^). Let a e V(S).
Then there is (u(i), i(x)) e V and a string of elements s = si, s[, ... , sn, s'n of 5,
where s- e V(st), such that a = v(s). Since 5 satisfies the bi-identities of the forms
given in (a), S//x e £ by Theorem 6.5 and therefore S//x satisfies the bi-identity
v(jc) = / (jc). Now a\i — v(s)fi = i(s)fi, that is, a is /n-related to the idempotent i(s).
Hence a e Ker/t and so V(S) c Ker/Lt. By Lemma 6.6, V(S) is a full self-conjugate
regular subsemigroup of 5 and therefore V(S) is the kernel of an i.s. congruence, 0
say, on S, by Theorem 2.10. We show that S/0 e S and e9 e % for each e e E.

To show that S/9 e ^ it suffices to show that v(s) 9 i(s), where (v(x), i(x)) e
Idem(<?) and s = su s[,..., sn, s'n is a string of elements of 5 with s,' e V(Si). Since S
satisfies the bi-identities of the forms given in (a), we have that v(s) v*(s)i (s) = / (s) =
i(s)v*(s)v(s), and also i(s)i*(s)v(s) = v(s) = v(s)i*(s)i(s) (since (v*(x)i(x), v*(x)
v(x)) 6 Idem(^) as in the proof of Theorem 6.5). Now

v(s)v*(s) = i(s)i\s)v(s)v*(s)

= i(s)v*(sMs)i*(s)v(s)v\s) = i

and

v*(s)v(s) = v*(s)v(s)i*(s)i(s)
= v*(sMs)i*(sMs)v*(,s)i(s) = j*

Furthermore it is easily seen that v(s)j*(s), v*(s)i(s) e V(S) and that j*(s) e
V(i(s)). Therefore, by the characterization of 9 (Theorem 2.10) we have v(s) 9 i(s)
as required.
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Finally let e e E, u(xux^1,..., xn, x~x) e \&{W) and gu . . . , gn e eO. Since
gk e Kerf? = V(S) each gk has the form vk(xk)ak where ak e Hom(F*(X), S) and
(vk(xk), ik(xk)) G V. Without loss of generality we can assume that the distinct
strings xk have no element in common. Define a e Hom(F*(Z), S) as an extension
of the map x determines as follows: for each y in the &-th string xk let yx = yock

(X is well-defined since the distinct strings xk have no element in common). Then
vk{xk)a = vk(xk)ak = gk and v*k{xk)a is an inverse g'k say of gk. Let gk

x be the inverse
of gk in the group eQ. Then gk

ly — (gky)'1 — g'ky = vk(xk)ay. Hence

u{gug-\ ...,gn, g~l)y = u(giy, g^y,..., gny, g~xy)

, v\(X\)ay, ..., vn(xn)uy, v*(xn)ay)

) , . . . , vn(xn), v*(xn))ay

) , . . . , /„(*„), i*(xn))ay

since by assumption 5 satisfies bi-identities of the form given in (b). Thus u(gug^\...,
gn, g^l)y is an idempotent of S/y and hence u(gugi\ •••,gn, &T1) is an idem-
potent of S and in fact of e6. Since eO is a group with identity e this yields that
u(gi, g j " 1 , . . . , gn, g~x) = e. We have shown that ed salsifies all the identities of
I d ( ^ ) , thus eO 6 ^ for all e e E. Hence 0 is a congruence on 5 such that S/6 G S
and e6> e ^ for all e e £", and so 5 € ^ o S.
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