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Abstract. The 'Far InfraRed and Submillimetre Telescope' (FIRST) is
the fourth cornerstone mission in the European Space Agency (ESA) sci-
ence programme. It will perform imaging photometry and spectroscopy
in the far infrared and submillimetre part of the spectrum, covering ap-
proximately the 60-670 p,m range.

The key science objectives emphasize current questions connected to
the formation of galaxies and stars, however, having unique capabilities
in several ways.

FIRST, a facility available to the entire astronomical community, will
carry a 3.5 metre diameter passively cooled telescope. The science pay-
load complement - two cameras/medium resolution spectrometers (PACS
and SPIRE), and a very high resolution heterodyne spectrometer (HIFI)
- will be housed in a superfluid helium cryostat.

In early 2007, FIRST will be placed in a transfer trajectory to-
wards its operational orbit around the Earth-Sun L2 point by an Ari-
ane 5 (shared with the ESA cosmic background mapping mission, Planck).
Once operational, FIRST will offer a minimum of 3 years of routine obser-
vations; roughly 2/3 of the available observing time is open to the general
astronomical community through a standard competitive proposal proce-
dure.

1. Introduction

The 'Far InfraRed and Submillimetre Telescope' (FIRST, cf. Fig. 1) is a multi-
user 'observatory type' mission that targets approximately the 60-670 J.Lm wave-
length range in the far infrared and submillimetre part of the electromagnetic
spectrum, providing observing opportunities for the entire astronomical com-
munity. FIRST is the fourth of the 'cornerstone' missions in the ESA science
'Horizon 2000' plan.

FIRST is the only space facility dedicated to the submillimetre and far
infrared part of the spectrum. Its vantage point in space provides several decisive
advantages. The telescope will be passively cooled, which together with a low
emissivity and the total absence of (even residual) atmospheric emission offers a
very low and stable background that enables sensitive photometric observations.
Furthermore, the absence of atmospheric absorption gives full access to the entire
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Figure 1. The FIRST satellite in orbit. The passively cooled tele-
scope behind its protective sunshade, the superfluid helium cryostat
containing the science instruments, and the service module are all
clearly visible. (Courtesy Alcatel Space Systems.)

range of this elusive part of the spectrum, which offers the capability to perform
completely uninterrupted spectral surveys.

2. Science Objectives

The FIRST science objectives (cf. Rowan-Robinson et al. 1997; Pilbratt 2000)
target the 'cold' universe: Black-bodies with temperatures between 5 K and 50 K
peak in the FIRST wavelength range, and gases with temperatures between 10 K
and a few hundred K emit their brightest molecular and atomic emission lines
here. Broadband thermal radiation from small dust grains is the most common
continuum emission process in this band. These conditions are widespread ev-
erywhere, from parts of our own Solar System to the most distant reaches of the
Universe!

FIRST - being a unique facility in many ways - has the potential of dis-
covering the earliest epoch proto-galaxies, revealing the cosmologically evolving

https://doi.org/10.1017/S0074180900226442 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900226442


The FIRST ESA Cornerstone Mission 483

AGN-starburst symbiosis, and unraveling the mechanisms involved in the forma-
tion of stars and planetary system bodies. The key science objectives emphasise
specifically the formation of stars and galaxies, and the interrelation between
the two. Example observing programmes with FIRST will include:

• Deep extragalactic broadband photometric surveys in the 100-600 J-Lm
FIRST 'prime' wavelength band and related research. The main goals
will be a detailed investigation of the formation and evolution of galaxy
bulges and elliptical galaxies in the first few Gyr in the development of the
Universe.

• Follow-up spectroscopy of especially interesting objects discovered in the
survey. The far infrared/submillimetre band contains the brightest cool-
ing lines of interstellar gas, which provide important information on the
physical processes and energy production mechanisms (e.g., AGN vs. star
formation) in galaxies.

• Detailed studies of the physics and chemistry of the interstellar medium
in galaxies, both locally in our own Galaxy and in external galaxies, by
means of photometric and spectroscopic surveys and detailed observations.
This includes implicitly the important question of how stars form out of
molecular clouds in various environments.

• Observational astrochemistry (of gas and dust) as a quantitative tool for
understanding the stellar/interstellar lifecycle and investigating the phys-
ical and chemical processes involved in star formation and early stellar
evolution in our own Galaxy. FIRST will provide unique information on
most phases of this lifecycle.

• Detailed high resolution spectroscopy of a number of comets and the at-
mospheres of the cool outer planets and their satellites.

All astronomy missions and observatories - ground, air, and space based - to
varying degrees rely on and complement each other. A major strength of FIRST
is its photometric mapping capability for performing unbiased surveys related
to galaxy and star formation. Redshifted ultraluminous IRAS galaxies (with
SEDs that 'peak' in the 50-100 J-Lm range in their rest frames) as well as class 0
protostars and prestellar objects peak in the FIRST 'prime' band; cf. Fig.2.
FIRST is also well equipped to perform spectroscopic follow-up observations to
further characterise particularly interesting individual objects.

From past experience, it is also clear that the 'discovery potential' is signifi-
cant when a new capability is being implemented for the first time. Observations
have never been performed in space in the 'prime band' of FIRST. The total
absence of atmospheric effects - enabling both a much lower background for pho-
tometry and full wavelength coverage for spectroscopy - and a cool low emissivity
telescope open up a new part of the phase-space of observations. Thus, a space
facility is essential in this wavelength range and FIRST will be breaking new
ground!
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Figure 2. The FIRST wavelength coverage is ideally suited to ob-
serving redshifted luminous IRAS galaxies (left) and class 0 protostars
(right). Observations with PACS and SPIRE will enable large-scale
unbiased searches for such sources, and determine their bolometric lu-
minosities.

3. Telescope and Science Payload

In order to fully exploit the favourable conditions offered in space FIRST will
need a precise, stable, very low background telescope, and a complement of very
sensitive scientific instruments. The FIRST telescope will be passively cooled
- to maximise size; the instruments will be housed inside a superfluid helium
cryostat.

3.1. Telescope Development

The FIRST telescope must have very low emissivity and a total wavefront error
(WFE) of less than 10 pm (with a goal of 6 uu: - corresponding to 'diffraction-
limited' operation at 150 tun, goal of 90 /-Lm). Being protected by a fixed sun-
shade, it will radiatively cool to an operational temperature of around 80 K in
orbit. The present planning assumes that this telescope will be provided by
NASA.

The baseline is a Ritchey-Chretien design with a 3._5 m diameter primary
and an 'undersized' secondary. The telescope has a segmented primary mirror
made of carbon fibre reinforced plastic (CFRP) structure, with a zerodur sec-
ondary precisely machined to correct for low spatial frequency imperfections in
the primary. An aggressive development programme is underway (cf. Connell
et al. 2000) to optimise the design -- including optical, mechanical, thermal,
and straylight properties - perfect manufacturing and testing procedures, and
control potential detrimental environmental impacts.
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3.2. Scientific Instruments

The FIRST science payload complement has been conceived and optimised with
the prime science goals in mind, but in addition it offers a wide range of capabil-
ities for the 'general' observer. It was selected by the ESA Science Programme
Committee in May 1998 and approved in February 1999, based on the response
to an Announcement of Opportunity (AO) issued in October 1997.

It consists of the following three instruments which will be provided by
consortia led by Principal Investigators (PIs):

• The Photoconductor Array Camera and Spectrometer (PACS) instrument
will be built by a consortium led by A. Poglitsch, MPE, Garching, Ger-
many.

• The Spectral and Photometric Imaging REceiver (SPIRE) instrument will
be built by a consortium led by M. Griffin, QMW, London, UK.

• The Heterodyne Instrument for FIRST (HIFI) instrument will be built by
a consortium led by Th. de Graauw, SRON, Groningen, The Netherlands.

The PI consortia provide the instruments to ESA under their own funding,
in return for guaranteed observing time.

3.2.1. PACS - a Camera and Spectrometer

PACS (cf. Poglitsch et al. 2000) is a camera .and low to medium resolution
spectrometer for wavelengths up to rv 210 ius». It has recently been redesigned
to employ in total four detector arrays, two 'new' bolometer arrays in addition
to the two 'existing' photoconductor arrays. The bolometer arrays are dedicated
for photometry, and the Ge:Ga detector arrays are to be employed exclusively
for spectroscopy (cf. Figs. 3 & 4). PACS can be operated either as an imaging
photometer, or as an integral field line spectrometer.

PACS has three photometric bands with R rv 2. The short wavelength 'blue'
array covers the 60-90 and 90-130 j.jm bands, while the 'red' array covers the
130-210 /-lm band. In photometric mode, one of the 'blue' bands and the 'red'
band are observed simultaneously. The two bolometer arrays both fully sample
the same 1~75x3~5 field of view on the sky, and provide a predicted point source
detection limit of rv3 mJy (5a, 1 hour) in all three bands. An internal 3He
sorption cooler will provide the 300 mK environment needed by the bolometers.

For spectroscopy, PACS covers 57-210 j.jm in three contiguous bands, pro-
viding a velocity resolution in the range 150-200 kmsec"! and an instantaneous
coverage of f"V 1500 km sec-I. The two Ge:Ga arrays are appropriately stressed
and operated at slightly different temperatures -- cooled by being 'strapped' to
the liquid helium - in order to optimise sensitivity for their respective wave-
length coverage. The predicted point source detection limit is rv3x10- I8Wm-2

(5a, 1 hour) over most of the band, rising to rv8x 10-18Wm-2 for the shortest
wavelengths.

3.2.2. SPIRE - a Camera and Spectrometer

SPIRE (cf. Griffin et al. 2000) is a camera and low to medium resolution spec-
trometer for wavelengths above rv 200 iuu. It comprises an imaging photometer
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Figure 3. Left: A computer rendering of the PACS focal plane unit
optics. The bolometer arrays are visible towards the extreme left, the
photoconductor arrays are the two large 'cubes' respectively. Right:
The PACS focal plane footprint.

Figure 4. Left: The PACS 'blue' bolometer array. The 8 16x 16
bolometer subarrays are visible. Right: A computer rendering of a
PACS stressed Ge:Ga array consisting of 25 individual linear arrays
with 16 pixels each, compared to the 5x5 FIFI array used on KAO.

and a Fourier Transform Spectrometer (FTS), both of which use bolometer de-
tector arrays. There are a total of five arrays, three dedicated for photometry
and two for spectroscopy (cf. Figs. 5 & 6). All employ 'spider-web' bolometers
with NTD Ge temperature sensors, each pixel being fed by a single-mode 2F A
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feedhorn, and JFET readout electronics. The bolometers are cooled to 300 mK
by an internal 3He sorption cooler.

Figure 5. Right: The SPIRE photometer; its three bolometer arrays
are towards the right. Left: The spectrometer, in the middle of the
mirror mechanism box, and on the left its two bolometer arrays. All
five detector arrays are situated close to the internal 3He sorption cooler
which provides the 300 mK operating temperature.

Figure 6. Left: Close-up of the two 2 K enclosures housing the
bolometer arrays. Right: One of the bolometer arrays.

SPIRE has been designed to maximise mapping speed. In its broadband
(R rv 3) photometry mode it simultaneously images a 4' x 8' field on the sky in
three colours centred on 250, 350, and 500 iuu. Since the telescope beam is not
instantaneously fully sampled, it will be required either to scan along a preferred
angle, or to 'fill in' by 'jiggling' with the internal beam steering mirror. The
SPIRE point source sensitivity is predicted to be in the range 5-7 mJy (5a,
1 hour). Since the confusion limit for extragalactic surveys is estimated to lie in
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the range 10-20 mJy, SPIRE will be able to map roughly 1 square degree on
the sky per day to its confusion limit.

The SPIRE spectrometer is based on a Mach-Zender configuration with
novel broad-band beam dividers. Both input ports are used at all times, the
signal port accepts the beam from the telescope while the second port accepts a
signal from a calibration source, the level of which is chosen to balance the power
from the telescope in the signal beam. The two output ports have detector arrays
dedicated for 200-300 and 300-600 pm respectively. The maximum resolution
will be in the range 100-1000 at a wavelength of 250 usn, and the field of view
'"'-J2.6'.

3.2.3. HIFI - a Very High Resolution Heterodyne Spectrometer

HIFI is a very high resolution heterodyne spectrometer. It offers velocity res-
olution in the range 0.3-300 km sec-I, combined with low noise detection us-
ing superconductor-insulator-superconductor (SIS) and hot electron bolometer
(HEB) mixers. HIFI is not an imaging instrument: it probes a single pixel on
the sky.

Figure 7. The HIFI focal plane unit. Left: The signal from the
telescope is fed into the common optics unit by the M3 mirror. It is
then combined with the local oscillator signal and fed to the mixers.
Right: An exploded view of the optics.

The focal plane unit (FPU, cf. Fig. 7), houses seven mixer assemblies,
each equipped with two orthogonally polarised mixers. Bands 1-5 utilise SIS
mixers that together cover approximately 500-1250 GHz without any gaps in
the frequency coverage. Bands 6 and 7 utilise HEB mixers, and target the
1410-1910 GHz band. The FPU also houses the optics that feed the mixers
the signal from the telescope, and combines it with the appropriate local oscil-
lator (LO) signal. It also provides a chopper and the capability to view internal
calibration loads.

The LO signal is generated by a source unit located in the spacecraft ser-
vice module (SVM, cf. Section 4). By means of waveguides, it is fed to the LO
unit, located on the outside of the cryostat vessel, where it is amplified, multi-
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plied and subsequently quasioptically fed to the FPU. The SVM also houses the
complement of backend spectrometers.

4. Spacecraft and Orbit

The FIRST configuration shown in Fig. 1 (cf. Passvogel & Felici 2000) envisages
a payload module based on the now well proven ISO cryostat technology. This
configuration has been used to establish payload interfaces and study mission
design. It is modular, consisting of a payload module (PLM, cf. Collaudin et al.
2000), and a service module (SYM). The payload comprises the superfluid helium
cryostat - housing the optical bench with the instrument FPUs, cf. Fig. 8 - which
supports the telescope, star trackers, and some payload associated equipment.
The service module (SVM), which provides the 'infrastructure' and houses the
'warm' payload electronics.

Figure 8. Exploded view of the upper part of the FIRST payload
module, showing the three instrument focal plane units on the optical
bench on top of the superfluid helium tank inside the cryostat vacuum
vessel. (Courtesy Astrium.)

This FIRST concept measures approximately 9 ill in height, 4.5 m in width,
and has an approximate launch mass of 3200 kg. The 3.5 m diameter FIRST
telescope is protected by the sunshade, and will cool passively to around 80 K.
The FIRST science payload focal plane units are housed inside the cryostat,
which contains superfluid helium at 1.65 K. Fixed solar panels on the sunshade
deliver 1 kW power. Three startrackers in a skewed configuration and the local
oscillator unit for the heterodyne instrument are visible on the outside of the
cryostat vacuum vessel. The mating adaptor remains attached to FIRST after
separation.

An Ariane 5 launcher (Fig. 9), shared by FIRST and the ESA CMB mapping
mission, Planck, will inject both satellites into a transfer trajectory towards
the second Lagrangian point (L2) in the Sun-Earth system. They will then
separate from the launcher, and subsequently operate independently from orbits
of different amplitude around L2.

The L2 point is situated 1.5 million km away from the Earth in the anti-
Sun direction (cf. Fig. 9). It offers a stable thermal environment with good
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Figure 9. Left: A single Ariane 5 launcher will place both FIRST
and Planck in transfer trajectories towards L2. Right: L2 is situated
0.01 AU from the Earth in the anti-Sun direction, providing a thermally
stable, favourable vantage point for carrying out observations.

sky visibility. Since FIRST will be in a large orbit around L2, which has the
advantage of not costing any 'orbit injection' ~v, its distance to the Earth will
vary between 1.2 and 1.8 million km. The transfer to the operational orbit will
last approximately 4 months. After cooldown and outgassing have taken place,
it is planned to use this time for commissioning and performance verifications.
Once these crucial mission phases have been successfully accomplished, FIRST
will go into the routine science operations phase for a minimum duration of
3 years.

5. Science Operations

FIRST will be a multi-user observatory open to the general astronomical com-
munity. The observing time will be shared between guaranteed and open time.
The guaranteed time (approximately one third of the total time) is 'owned' by
contributors to the FIRST mission (mainly by the PI instrument consortia),
whereas the open time will be allocated to the general community (including
the guaranteed time holders) on the basis of calls for observing time. A small
amount of the open time (discretionary time) will be reserved for targets that
could not have been foreseen at the time of a proposal deadline.
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The scientific operations of FIRST will be conducted in a novel 'decen-
tralised'manner. The proposed ground segment concept (cf. also Bauer et al.
1998) comprises five elements:

• a FIRST Science Centre (FSC), provided by ESA,

• three dedicated Instrument Control Centres (ICCs), one for each instru-
ment, provided by their PIs,

• a Mission Operations Centre (MOC), provided by ESA.

In addition it is foreseen that the NASA FIRST Science Center at the
Infrared Processing and Analysis Center (IPAC) will become the sixth element.

The FSC acts as the single-point interface to the science community and
outside world in general. The FSC provides information and user support re-
lated to the entire life-cycle of an observation, from calls for observing time, the
proposing procedure, proposal tracking, data access and data processing, as well
as general and specific information about 'using' FIRST and its instruments.

All scientific data will be archived and made available to the data owners.
After the proprietary time has expired for a given data set, these data will be
available to the entire community in the same manner they were previously
available only to the original owner.

6. Status and Schedule

FIRST is presently in a pre-phase B development phase. Industrial studies have
been carried out to define payload and telescope interfaces, and to refine the
cryostat design. The instrument consortia are in the process of finalising the
instrument designs in order to start building the first test models. The first
formal review cycle, the instrument science verification review (ISVR), has been
successfully conducted.

The Invitation to Tender (ITT) to industry for phases B/C/D/E was issued
on schedule on 1 September 2000 with a deadline for proposals of 1 December
2000. The detailed design phase - phase B - will start on 1 June 2001, after a
prime contractor has been selected. The current planning (cf. Passvogel & Felici
2000) envisages a series of milestones, including instrument and telescope flight
model deliveries in 2004, to be followed by spacecraft integration and extensive
system level ground testing, leading to a launch nominally on 15 February 2007.

Additional information - including online versions of some of the references
listed below - can be found on the ESA Astrophysics FIRST World Wide Web
site at the following URL: http: / / astro . esa. int/FIRST/.
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