A NOTE ON THE ORTHOGONALITY OF JACKSON'S q-BESSEL FUNCTIONS

BY
MIZAN RAHMAN

Abstract

A q-analogue of the orthogonality property of the Bessel functions on the zeros is obtained in terms of a q-integral.

1. Introduction. The main objective of this paper is to find a q-analogue of the formula

$$
\begin{equation*}
\int_{0}^{1} x J_{\nu}\left(\lambda_{r} x\right) J_{\nu}\left(\lambda_{s} x\right) d x=(1 / 2) J_{\nu+1}^{2}\left(\lambda_{r}\right) \delta_{r, s} \tag{1.1}
\end{equation*}
$$

where λ_{r}, λ_{s} are two positive zeros of the Bessel function $J_{\nu}(x), \nu>-1$, defined by

$$
\begin{equation*}
J_{\nu}(x)=\Gamma^{-1}(\nu+1) \sum_{n=0}^{\infty} \frac{(-1)^{n}(x / 2)^{\nu+2 n}}{n!(\nu+1)_{n}} \tag{1.2}
\end{equation*}
$$

For integer values of ν, Jackson [6] introduced the following q-analogues:

$$
\begin{align*}
& J_{\nu}^{(1)}(x ; q)=\Gamma_{q}^{-1}(\nu+1) \sum_{n=0}^{\infty} \frac{(-1)^{n}(x / 2)^{\nu+2 n}}{\left(q, q^{\nu+1} ; q\right)_{n}} \tag{1.3}\\
& J_{\nu}^{(2)}(x ; q)=\Gamma_{q}^{-1}(\nu+1) \sum_{n=0}^{\infty} \frac{(-1)^{n}(x / 2)^{\nu+2 n}}{\left(q, q^{\nu+1} ; q\right)_{n}} q^{n(\nu+n)} \tag{1.4}
\end{align*}
$$

where the q-shifted factorials are defined by

$$
\begin{array}{rlr}
(a ; q)_{n} & = \begin{cases}1, & n=0, \\
(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right), & n=1,2, \ldots, \\
\left(a_{1}, a_{2}, \ldots, a_{k} ; q\right)_{n} & =\left(a_{1} ; q\right)_{n}\left(a_{2} ; q\right)_{n} \ldots\left(a_{k} ; q\right)_{n},\end{cases} \tag{1.5}\\
(a ; q)_{\infty} & =\lim _{n \rightarrow \infty}(a ; q)_{n}, \quad|q|<1,
\end{array}
$$

and the q-gamma function by

$$
\begin{equation*}
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x}, \quad 0<q<1, \quad \lim _{q \rightarrow 1^{-}} \Gamma_{q}(x)=\Gamma(x) . \tag{1.8}
\end{equation*}
$$

Received by the editors March 8, 1988 and in revised form, July 29, 1988.
Subject classification: 33A65.
This work was partially supported by NSERC grant \#A6197.
© Canadian Mathematical Society 1988.

If $0<q<1$, which we shall assume to be true, then the infinite series for $J_{\nu}^{(2)}(x ; q)$ in (1.4) is absolutely convergent for all x while the radius of convergence of the series in (1.3) is 2 . However, Hahn [3] found that these q-analogues need not be restricted to integer values of ν and that, for $|x|<2$,

$$
\begin{equation*}
J_{\nu}^{(1)}(x ; q)=J^{(2)} \nu(x ; q) /\left(-x^{2} / 4 ; q\right)_{\infty} \tag{1.9}
\end{equation*}
$$

More recently, Ismail [4,5] found the recurrence relations for these analogues, derived the associated q-Lommel polynomials and proved that $J_{\nu}^{(2)}(x ; q)$ has infinitely many real positive zeroes for $\nu>-1$ (this was also stated in Hahn [3]) which are simple and that the zeros of $J_{\nu}^{(2)}(x ; q)$ and $J_{\nu+1}^{(2)}(x ; q)$ interlace. Because of the finite radius of convergence of the series in (1.3), Ismail [4] remarks that $J_{\nu}^{(1)}(x ; q)$ has only finitely many positive zeros. However, we shall use $J_{\nu}^{(1)}(x ; q)$ to mean an analytic continuation of the series in (1.3) and thus defined more properly by (1.9) for all real x. In [9] the author used this idea to compute some infinite integrals of products of $J_{\nu}^{(1)}(x ; q)$ and $J_{\nu}^{(2)}(x ; q)$. Also, we shall use the simpler notation

$$
\begin{align*}
J_{\nu}^{(2)}(x \mid q) & =J_{\nu}^{(2)}\left(2 x\left(1-q^{1 / 2}\right) ; q\right) \tag{1.10}\\
& =\Gamma_{\nu}^{-1}(\nu+1)\left(\frac{x}{1+q^{1 / 2}}\right)^{\nu} \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x\left(1-q^{1 / 2}\right)\right)^{2 n}}{\left(q, q^{\nu+1} ; q\right)_{n}} q^{n(\nu+n)},
\end{align*}
$$

$$
\begin{equation*}
J_{\nu}^{(1)}(x \mid q)=J_{\nu}^{(2)}(x \mid q) /\left(-\left(1-q^{1 / 2}\right)^{2} x^{2} ; q\right)_{\infty}, \tag{1.11}
\end{equation*}
$$

so that

$$
\begin{equation*}
\lim _{q \rightarrow 1^{-}} J_{\nu}^{(1)}(x \mid q)=\lim _{q \rightarrow 1^{-}} J_{\nu}^{(2)}(x \mid q)=J_{\nu}(x) . \tag{1.12}
\end{equation*}
$$

There is another q -analogue of the Bessel functions that was introduced recently by Exton [2] which can be written in the form

$$
\begin{equation*}
J_{\nu}(x ; q)=\Gamma_{q}^{-1}(\nu+1)\left(\frac{x}{1+q^{1 / 2}}\right)^{\nu} \sum_{n=0}^{\infty} \frac{(-1)^{n}\left(x\left(1-q^{1 / 2}\right)\right)^{2 n}}{\left(q, q^{\nu+1} ; q\right)_{n}} q^{(1 / 2) n(\nu+n-1)} \tag{1.13}
\end{equation*}
$$

This differs slightly from Exton's definition by a constant factor as well as in notation. Note that the defining series in (1.10) and (1.13) are very similar and yet they define two entirely unrelated q-analogues.

Defining the q-difference operator D_{q} by

$$
\begin{equation*}
D_{q} f(x)=\frac{f(x)-f(q x)}{(1-q) x} \tag{1.14}
\end{equation*}
$$

Exton was able to show that

$$
\begin{equation*}
D_{q^{1 / 2}}\left[x D_{q^{1 / 2}} J_{\nu}(\lambda x ; q)\right]+\left[\lambda^{2} x-q^{-\nu / 2}\left(\frac{1-q^{\nu / 2}}{1-q^{1 / 2}}\right)^{2} x^{-1}\right] J_{\nu}\left(\lambda x q^{1 / 2} ; q\right)=0 . \tag{1.15}
\end{equation*}
$$

Exton's approach was to prove a q-analogue of the general Sturm-Liouville theorem, namely, that if $r(x), \ell(x)$ and $w(x)$ satisfy certain suitable conditions and if $y(x)$ satisfies the q -difference equation

$$
\begin{equation*}
D_{q}\left[r(x) D_{q} y(x)\right]+[\ell(x)+\lambda w(x)] y(q x)=0 \tag{1.16}
\end{equation*}
$$

and the boundary conditions

$$
\begin{array}{ll}
h_{1} y(x)+h_{2} D_{q} y(x)=0 & \text { at } x=a, \tag{1.17}\\
k_{1} y(x)+k_{2} D_{q} y(x)=0 & \text { at } x=b,
\end{array}
$$

where $h_{1}, h_{2}, k_{1}, k_{2}$ are constants (not all zero), then the eigenfunctions $y_{m}(x)$ and $y_{n}(x)$ corresponding to the eigenvalues λ_{m}, λ_{n} are q-orthogonal, in the sense that

$$
\begin{equation*}
\int_{a}^{b} w(x) y_{m}(q x) y_{n}(q x) d_{q} x=0, \quad m \neq n \tag{1.18}
\end{equation*}
$$

where the q -integral above is defined by

$$
\begin{align*}
& \int_{0}^{c} f(x) d_{q} x=c(1-q) \sum_{k=0}^{\infty} f\left(c q^{k}\right) q^{k}, \tag{1.19}\\
& \int_{a}^{b} f(x) d_{q} x=\int_{0}^{b} f(x) d_{q} x-\int_{0}^{a} f(x) d_{q} x,
\end{align*}
$$

for any continuous function $f(x)$. In fact, Exton discovered (1.13) by taking

$$
r(x)=x, w(x)=x \text { and } \ell(x)=-\frac{q^{-\nu}}{x}\left(\frac{1-q^{\nu}}{1-q}\right)^{2}
$$

and solving the corresponding equation (1.16). So, for Exton's q-analogue (1.13), the orthogonailty relation

$$
\begin{equation*}
\int_{0}^{1} x J_{\nu}\left(\lambda_{r} x ; q\right) J_{\nu}\left(\lambda_{s} x ; q\right) d_{q^{1 / 2}} x=0, \quad r \neq s \tag{1.20}
\end{equation*}
$$

is automatically satisfied, where the λ 's are the positive zeros of $J_{\nu}(x ; q)$ i.e $J_{\nu}\left(\lambda_{r} ; q\right)=$ $0, r=1,2, \ldots$.

The same, however, is not true for Jackson's q-Bessel function given in (1.10) and (1.11). In section 2 we will first show that $J_{\nu}^{(k)}(\lambda x \mid q)$ satisfy the q-difference equations

$$
\begin{gather*}
D_{q^{1 / 2}}\left[x D_{q^{1 / 2}} J_{\nu}^{(k)}(\lambda x \mid q)\right]-q^{-\nu / 2}\left(\frac{1-q^{\nu / 2}}{1-q^{1 / 2}}\right)^{2} x^{-1} J_{\nu}^{(k)}\left(\lambda x q^{1 / 2} \mid q\right) \tag{1.21}\\
=-\lambda^{2}\left\{\begin{array}{l}
x J_{\nu}^{(1)}(\lambda x \mid q) \\
q x J_{\nu}^{(2)}(\lambda x q \mid q),
\end{array}\right.
\end{gather*}
$$

for $k=1,2$, respectively. These equations are essentially the same as (2.1) and (2.2) of [4], but written in this form, they are similar to (1.15) and are clearly q -analogues of the standard Sturm-Liouville type differential equation for the Bessel functions:

$$
\begin{equation*}
\left[x J_{\nu}^{\prime}(\lambda x)\right]^{\prime}-\nu^{2} x^{-1} J_{\nu}(\lambda x)=-\lambda^{2} x J_{\nu}(\lambda x) . \tag{1.22}
\end{equation*}
$$

Since equation (1.21) is not quite a Sturm-Liouville equation the orthogonality of $J_{\nu}^{(k)}(\lambda x \mid q)$ does not seem to follow from a general result, so we do some detailed calculations in sections 2 and 3 to show that

$$
\begin{equation*}
\int_{0}^{1} x J_{\nu}^{(1)}\left(\lambda_{r} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{s} x q^{1 / 2} \mid q\right) d_{q 1 / 2} x=0 \tag{1.23}
\end{equation*}
$$

where λ_{r} and λ_{s} are two distinct positive zeros of $J_{\nu}^{(2)}(\lambda \mid q), \nu>-1$. The $q \rightarrow 1^{-}$ limit of both (1.20) and (1.23) is the same well-known orthogonality relation for the Bessel functions, see for example [1],

$$
\begin{equation*}
\int_{0}^{1} x J_{\nu}\left(\lambda_{r} x\right) J_{\nu}\left(\lambda_{s} x\right) d x=0 \quad r \neq s \tag{1.24}
\end{equation*}
$$

where $J_{\nu}\left(\lambda_{r}\right)=0, r=1,2, \ldots$. Computation of the q-integral in (1.23) when $r=s$ is a bit problematic, but we shall obtain a formula in section 3 which, unfortunately, is not as readily usable as the one for the ordinary Bessel functions.
2. The \mathbf{q}-difference equation. We use (1.10) to find that
(2.1) $D_{q^{1 / 2}}\left[x^{-\nu} J_{\nu}^{(2)}(\lambda x \mid q)\right]$

$$
\begin{aligned}
& =\left[x\left(1+q^{1 / 2}\right)^{\nu} \Gamma_{q}(\nu+1)\right]^{-1} \lambda^{\nu} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(\nu+n)}}{\left(q, q^{\nu+1} ; q\right)_{n}}\left(\lambda x\left(1-q^{1 / 2}\right)\right)^{2 n} \frac{1-q^{n}}{1-q^{1 / 2}} \\
& =-\lambda x^{-\nu} q^{\frac{\nu+1}{2}} J_{\nu+1}^{(2)}\left(\lambda x q^{1 / 2} \mid q\right),
\end{aligned}
$$

$$
\begin{align*}
& D_{q^{1 / 2}}\left[x^{2 \nu+1} D_{q^{1 / 2}}\left\{x^{-\nu} J_{\nu}^{(2)}(\lambda x \mid q)\right\}\right] \tag{2.2}\\
& =\left[x\left(1-q^{1 / 2}\right)^{\nu} \Gamma_{q}(\nu+1)\right]^{-1}\left(\lambda x^{2}\right)^{\nu} \sum_{n=0}^{\infty} \frac{(-1)^{n} q^{n(\nu+n)}}{\left(q, q^{\nu+1} ; q\right)_{n}}\left(\lambda x\left(1-q^{1 / 2}\right)\right)^{2 n} \\
& \times \frac{\left(1-q^{n}\right)\left(1-q^{\nu+n}\right)}{\left(1-q^{1 / 2}\right)^{2}} \\
& =-\lambda^{2} q x^{\nu+1} J_{\nu}^{(2)}(\lambda x q \mid q) .
\end{align*}
$$

Similarly,

$$
\begin{equation*}
D_{q^{1 / 2}}\left[x^{-\nu} J_{\nu}^{(1)}(\lambda x \mid q)\right]=-\lambda x^{-\nu} J_{\nu}^{(1)}(\lambda x \mid q) \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
D_{q^{1 / 2}}\left[x^{2 \nu+1} D_{q^{1 / 2}}\left\{x^{-\nu} J_{\nu}^{(1)}(\lambda x \mid q)\right\}\right]=-\lambda^{2} x^{\nu+1} J_{\nu}^{(1)}(\lambda x \mid q) \tag{2.4}
\end{equation*}
$$

However,

$$
\begin{aligned}
& D_{q^{1 / 2}}\left[x^{-\nu} J_{\nu}^{(k)}(\lambda x \mid q)\right] \\
& =x^{-\nu-1} \frac{1-q^{-\nu / 2}}{1-q^{1 / 2}} J_{\nu}^{(k)}(\lambda x \mid q)+x^{-\nu} q^{-\nu / 2} D_{q^{1 / 2}} J_{\nu}^{(k)}(\lambda x \mid q)
\end{aligned}
$$

and hence

$$
\begin{align*}
& D_{q^{1 / 2}}\left[x^{2 \nu+1} D_{q^{1 / 2}}\left\{x^{-\nu} J_{\nu}^{(k)}(\lambda x \mid q)\right\}\right] \tag{2.5}\\
& =q^{1 / 2} x^{\nu+1} D_{q^{1 / 2}} J_{\nu}^{(k)}(\lambda x \mid q)+\frac{q^{\nu / 2}+q^{-\nu / 2}-1-q^{1 / 2}}{1-q^{1 / 2}} x^{\nu} D_{q^{1 / 2}} J_{\nu}^{(k)}(\lambda x \mid q) \\
& -q^{-\nu / 2}\left(\frac{1-q^{\nu / 2}}{1-q^{1 / 2}}\right)^{2} x^{\nu-1} J_{\nu}^{(k)}(\lambda x \mid q) .
\end{align*}
$$

Since

$$
\begin{align*}
& D_{q^{1 / 2}}\left[x D_{q^{1 / 2}} J_{\nu}^{(k)}(\lambda x \mid q)\right] \tag{2.6}\\
& =q^{1 / 2} x D_{q^{1 / 2}}^{k} J_{\nu}^{(k)}(\lambda x \mid q)+D_{q^{1 / 2}} J_{\nu}^{(k)}(\lambda x \mid q)
\end{align*}
$$

we obtain (1.21) by using (2.2), (2.4), (2.5) and (2.6).
For $\lambda_{1} \neq \lambda_{2}$ let us now rewrite (1.21) in the form

$$
\begin{align*}
D_{q^{1 / 2}}\left[x D_{q^{1 / 2}} J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right)\right] & -\left(\frac{1-q^{\nu / 2}}{1-q^{1 / 2}}\right)^{2}\left(x q^{\nu / 2}\right)^{-1} J_{\nu}^{(1)}\left(\lambda_{1} x q^{1 / 2} \mid q\right) \tag{2.7}\\
& =-\lambda_{1}^{2} x J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right)
\end{align*}
$$

and

$$
\begin{align*}
D_{q^{1 / 2}}\left[x D_{q^{1 / 2}} J_{\nu}^{(2)}\left(\lambda_{2} x q^{-1 / 2} \mid q\right)\right] & -\left(\frac{1-q^{\nu / 2}}{1-q^{1 / 2}}\right)^{2}\left(x q^{\nu / 2}\right)^{-1} J_{\nu}^{(2)}\left(\lambda_{2} x \mid q\right) \tag{2.8}\\
& =-\lambda_{2}^{2} x J_{\nu}^{(2)}\left(\lambda_{2} x q^{1 / 2} \mid q\right) .
\end{align*}
$$

We now multiply (2.7) by $J_{\nu}^{(2)}\left(\lambda_{2} x^{1 / 2} \mid q\right)$, (2.8) by $J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right)$ and subtract one from the other to get

$$
\begin{align*}
& \left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) x J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x q^{1 / 2} \mid q\right) \tag{2.9}\\
& -\frac{\left(q^{-\nu / 4}-q^{\nu / 4}\right)^{2}}{1-q^{1 / 2}} D_{q^{1 / 2}}\left[J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x \mid q\right)\right] \\
& =J_{\nu}^{(2)}\left(\lambda_{2} x q^{1 / 2} \mid q\right) D_{q^{1 / 2}}\left[x D_{q^{1 / 2}} J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right)\right] \\
& -J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) D_{q^{1 / 2}}\left[x D_{q^{1 / 2}} J_{\nu}^{(2)}\left(\lambda_{2} x q^{-1 / 2} \mid q\right)\right] .
\end{align*}
$$

By a somewhat lengthy but straightforward calculation it can be shown that the expression on the right side of (2.9) equals

$$
\begin{aligned}
& \left(1-q^{1 / 2}\right)^{-1} D_{q^{1 / 2}}\left\{2 J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x \mid q\right)-J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x q^{-1 / 2} \mid q\right)\right. \\
& \left.-J_{\nu}^{(1)}\left(\lambda_{1} x q^{1 / 2} \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x \mid q\right)\right\}
\end{aligned}
$$

and so we get

$$
\begin{equation*}
\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) x J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x q^{1 / 2} \mid q\right)=\left(1-q^{1 / 2}\right)^{-1} D_{q^{1 / 2}} g_{\nu}(x \mid q), \tag{2.10}
\end{equation*}
$$

where

$$
\begin{align*}
g_{\nu}(x \mid q) & =\left(q^{\nu / 2}+q^{-\nu / 2}\right) J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x \mid q\right) \tag{2.11}\\
& -J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x q^{-1 / 2} \mid q\right)-J_{\nu}^{(1)}\left(\lambda_{1} x q^{1 / 2} \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x \mid q\right) .
\end{align*}
$$

It follows that

$$
\begin{align*}
& \left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) \int_{0}^{1} x J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x q^{1 / 2} \mid q\right) d_{q^{1 / 2}} x \tag{2.12}\\
& =\sum_{r=0}^{\infty} q^{r / 2} D_{q^{1 / 2}} g_{\nu}\left(q^{r / 2}\right) \\
& =\left(1-q^{1 / 2}\right)^{-1}\left\{g_{\nu}(1)-\lim _{N \rightarrow \infty} g_{\nu}\left(q^{\frac{N+1}{2}}\right)\right\}
\end{align*}
$$

For $\nu>1$ it can be shown that

$$
\begin{equation*}
\lim _{N \rightarrow \infty} g_{\nu}\left(q^{\frac{N+1}{2}}\right)=0 \tag{2.13}
\end{equation*}
$$

and so we find that

$$
\begin{equation*}
\left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) \int_{0}^{1} x J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x q^{1 / 2} \mid q\right) d_{q^{1 / 2}} x=g_{\nu}(1) /\left(1-q^{1 / 2}\right) . \tag{2.14}
\end{equation*}
$$

Using the easily verified recurrence formulas, see also [4],

$$
\begin{equation*}
J_{\nu}^{(1)}\left(x q^{1 / 2} \mid q\right)-q^{\nu / 2} J_{\nu}^{(1)}(x \mid q)=x\left(1-q^{1 / 2}\right) q^{\nu / 2} \boldsymbol{J}_{\nu+1}^{(1)}(x \mid q), \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
J_{\nu}^{(2)}\left(x q^{1 / 2} \mid q\right)-q^{\nu / 2} J_{\nu}^{(2)}(x \mid q)=x\left(1-q^{1 / 2}\right) q^{\nu+1 / 2} J_{\nu+1}^{(2)}\left(x q^{1 / 2} \mid q\right), \tag{2.16}
\end{equation*}
$$

we finally obtain the results

$$
\begin{align*}
& \left(\lambda_{2}^{2}-\lambda_{1}^{2}\right) \int_{0}^{1} x J_{\nu}^{(1)}\left(\lambda_{1} x \mid q\right) J_{\nu}^{(2)}\left(\lambda_{2} x^{1 / 2} \mid q\right) d_{q^{1 / 2} x} \tag{2.17}\\
& =-q^{\nu / 2}\left|\begin{array}{cc}
J_{\nu}^{(2)}\left(\lambda_{2} \mid q\right) & J_{\nu}^{(1)}\left(\lambda_{1} \mid q\right) \\
\lambda_{2} J_{\nu+1}^{(2)}\left(\lambda_{2} \mid q\right) & \lambda_{1} J_{\nu+1}^{(1)}\left(\lambda_{1} \mid q\right)
\end{array}\right|
\end{align*}
$$

3. Orthogonality. It is now clear from (2.17) that if λ_{r} and λ_{s} are two distinct positive zeros of $J_{\nu}^{(2)}(x \mid q)$ then (1.23) follows. However, (1.23) is true even under the more general conditions that λ_{r}, λ_{s} are distinct roots of

$$
\begin{equation*}
J_{\nu}^{(k)}(\lambda \mid q)+a \lambda J_{\nu+1}^{(k)}(\lambda \mid q)=0, \tag{3.1}
\end{equation*}
$$

for a given real a.
To evaluate the q -integral in (1.23) when $r=s$ we divide (2.17) by $\lambda_{2}^{2}-\lambda_{1}^{2}$, set $\lambda_{1}=\lambda, \lambda_{2}=\lambda \sqrt{z}$, and then take the limit $z \rightarrow 1$. By L'Hôpital's rule we obtain

$$
\begin{align*}
& \int_{0}^{1} x J_{\nu}^{(1)}\left(\lambda_{r} x \mid q\right) J_{\nu}^{(2)}\left(x \lambda_{r} q^{1 / 2} q\right) d_{q^{\prime} / 2} x \tag{3.2}\\
& =--\frac{q^{\nu / 2}}{2}\left|\begin{array}{cc}
J_{\nu}^{(2)^{\prime}}\left(\lambda_{r} \mid q\right) & J_{\nu}^{(1)}\left(\lambda_{r} \mid q\right) \\
J_{\nu+1}^{(2)}\left(\lambda_{r} \mid q\right)+J_{\nu+1}^{(2)}\left(\lambda_{r} \mid q\right) & J_{\nu+1}^{(1)}\left(\lambda_{r} \mid q\right)
\end{array}\right|,
\end{align*}
$$

where a prime indicates differentiation with respect to λ_{r}. If λ_{r} is a positive zero of $J_{\nu}^{(2)}\left(\lambda_{r} \mid q\right)$, then (3.2) reduces further to

$$
\begin{equation*}
\int_{0}^{1} x J_{\nu}^{(1)}\left(x \lambda_{r} \mid q\right) J_{\nu}^{(2)}\left(x \lambda_{r} q^{1 / 2} \mid q\right) d_{q^{1 / 2}} x=-\frac{q^{\nu / 2}}{2} J_{\nu+1}^{(1)}\left(\lambda_{r} \mid q\right) J_{\nu}^{(2)^{\prime}}\left(\lambda_{r} \mid q\right) \tag{3.3}
\end{equation*}
$$

which, of course, goes to the limit

$$
\begin{equation*}
\int_{0}^{1} x J_{\nu}^{2}\left(\lambda_{r} x\right) d x=\frac{1}{2} J_{\nu+1}^{(2)}\left(\lambda_{r}\right) \tag{3.4}
\end{equation*}
$$

as $q \rightarrow 1^{-}$.
It must abe noted, however, that the presence of an ordinary derivative in a basic hypergeometric series is ominous and should be avoided whenever possible. Ideally, one would like to have the derivatives in (3.2) and (3.3) replaced by the q-derivatives defined by (1.14). Unfortunately, we were unable to find such expressions. The situation is not much better for Exton's q-analogue since the value of the integral in (1.20) for $r=s$ also contains a derivative, see section 5.4.5 in Exton [2].
4. Concluding remarks. It might appear from this work that Exton's q-analogue (1.13) is a bit nicer than Jackson's analogues (1.10) and (1.11), at least as far as the Sturm-Liouville theory is concerned. But it has already been found through the works of Hahn [3] and Ismail [4, 5] and more recently of the author [7, 8, 9] that Jackson's analogues have very nice properties that are analogous to those of the ordinary Bessel functions. It remains to be seen if Exton's $J_{\nu}(x ; q)$ has the same nice properties. My guess is that in problems like addition theorems and product formulas and Poissontype integral representations $J_{\nu}(x ; q)$ will not behave as well as $J_{\nu}^{(2)}(x \mid q)$. One reason
for this suspicion is that $J_{\nu}^{(2)}(x \mid q)$ can be obtained as the limit of a well-poised ${ }_{2} \phi_{1}$ series, namely,

$$
\begin{align*}
J_{\nu}^{(2)}(x \mid q) & =\Gamma_{q}^{-1}(\nu+1)\left(\frac{x}{1+q^{1 / 2}}\right)^{\nu} \tag{4.1}\\
& \times \lim _{a \rightarrow \infty}{ }_{2} \phi_{1}\left[\begin{array}{c}
a, a q^{-\nu} \\
\\
q^{\nu+1}
\end{array} \quad ; q,-\left(1-q^{1 / 2}\right)^{2} x^{2} \frac{q^{2 \nu+1}}{a^{2}}\right]
\end{align*}
$$

and so, via many different transformations for well-poised series, $J_{\nu}^{(2)}(x \mid q)$ can be expressed in many different basic hypergeometric forms. Such possibilities do not seem to exist for Exton's q-analogue. But more work needs to be done to come to a definite conclusion.

References

1. A. Erdélyi, ed., Higher Transcendental Functions, Vol. II, McGraw-Hill, New York, 1953.
2. H. Exton, q-Hypergeometric Functions and Applications, Ellis Horwood Ltd., Chichester, U.K., 1983.
3. W. Hahn, Beiträge zur theorie der Heineschen Reichen, Math. Nachr. 2 (1949), 340-379.
4. M. E. H. Ismail, The zeroes of basic Bessel functions, the function $J_{\nu+a x}$ and associated orthogonal polynomials, J. Math. Anal. Appl., 86 (1982), 1-19.
5. -_, The basic Bessel functions and polynomials, SIAM J. Math. Anal. 12 (1981), 454-468.
6. F. H. Jackson, On generalized functions of Legendre and Bessel, Trans. Roy. Soc. Edin. 41 (1903), 1-28.
7. Mizan Rahman, An integral representation and some transformation properties of q-Bessel functions, J. Math. Anal. Appl. 125 (1987), 58-71.
8. - An addition theorem and some product formulas for q-Bessel functions, Can. J. Math., 40 (1988), 1203-1221.
9. -_, Some infinite integrals of q-Bessel functions, to appear.

Dept. of Mathematics and Statistics, Carleton University, Ottawa, Ontario KIS 5B6
Canada

