The Veronesean of quadrics and associated loci

By J. W. HEAD, Canford School, Wimborne, Dorset.

(Received 31st October, 1935; received in revised form 1st January, 1936. Read 1st November, 1935.)

In this paper we consider the correspondence between tangential quadrics of [3] and points of [9]. Godeaux¹ has considered this geometrically, with the object of obtaining a representation for a twisted cubic of three dimensions. We have considered it from a standpoint more algebraic than that of Godeaux, with particular reference to the types of pencils of quadrics that correspond to special lines of [9], and to the interpretation in [9] of the fact that the condition for a net of quadrics to be part of the polar system of a cubic surface is poristic.

§1. We denote a general point of [3] by P_x , its coordinates being (x_0, x_1, x_2, x_3) and its equation $P_x = 0$.

We denote a general plane of [3] by Π_X , its coordinates being (X_0, X_1, X_2, X_3) and its equation $\Pi_X = 0$.

The equation of a locus quadric q is $\sum a_{ij} x_i x_j = 0$. The equation of a tangential quadric Q is $\sum A_{ij} X_i X_j = 0$, and q is therefore apolar to Q if $\sum a_{ij} A_{ij} = 0$.

The suffixes i, j are always interchangeable and have the values 0, 1, 2, 3.

We denote by Q_y a general point of [9] whose coordinates are $(y_{00}, y_{11}, y_{22}, y_{33}; y_{12}, y_{20}, y_{01}; y_{03}, y_{13}, y_{23})$. The point Q_A or $(A_{00}, A_{11}, A_{22}, A_{33}; A_{12}, A_{20}, A_{01}; A_{03}, A_{13}, A_{23})$ represents the quadric Q, while the prime ϖ_a or $\sum a_{ij}y_{ij} = 0$ represents the quadric q. Hence if ϖ_a contains Q_A , q and Q are apolar and conversely.

¹ "La géométrie de la cubique gauche," Bulletin de la Soc. Roy. des Sciences de Liége (3) 14 (1927).

Consider the locus

$$|y_{ij}|_{r}=0,$$

where the suffix r indicates that the determinant $|y_{ij}|$ is of rank r.

If r = 3, Q_y represents a conic. The locus of such points is a variety V_8^4 of dimension 8 and order 4. If r = 2, Q_y represents a point pair. The locus of such points is a variety V_6^{10} of order 10 and dimension 6. If r = 1, Q_y represents a repeated point. The locus of such points is a variety V_8^3 of order 8 and dimension 3 whose parametric equations may be written

$$y_{ij} = x_i x_j. \tag{1}$$

 V_3^8 is therefore triple on V_8^4 and quadruple on V_6^{10} , while V_6^{10} is double on V_8^4 . We shall denote (1, 0, 0, 0) by P_0 , (0, 1, 0, 0) by P_1 , (0, 0, 1, 0) by P_2 and (0, 0, 0, 1) by P_3 . We shall denote by Q_{xy} the point representing the point pair $P_x P_y = 0$, whether x = y or not.

§2. Representation of V_3^8 on a solid. The representation of V_3^8 on the solid is analogous to that of the Veronese surface on the plane, and we give a brief summary of corresponding elements and properties:—

On Solid	On \mathcal{V}_3^8
A point P_x	A point Q_{xx}
A curve of degree n	A curve of degree $2n$
A surface of degree n	A surface of degree $4n$
A plane	A Veronese surface
A quadric	An octic del Pezzo surface ¹ .
Two quadrics have in general a unique common self-polar tetrad.	There is a unique solid through a general line of [9] meeting V_3^s in 4 points. Such a solid we call four-secant.
A quadric $\lambda P_x^2 + \mu P_y^2 = 0$ is a point pair.	Chords of V_3^8 lie on V_6^{10} .
A quadric $\lambda P_z^2 + \mu P_y^2 + \nu P_z^2 = 0$ is a tangential conic.	Trisecant planes of V_3^8 lie on V_5^4 .

Godeaux (loc. cit. § 4) obtains these results geometrically.

¹ Represented by quartics with two fixed double points.

https://doi.org/10.1017/S001309150000821X Published online by Cambridge University Press

§3. Flat spaces on V_8^4 and V_6^{10} . Tangent spaces. Flat spaces on V_8^4 are of two kinds:—

- (i) [5]'s σ_5 representing conics of a plane;
- (ii) [4]'s σ_4 representing conics touching a line at a point.

There is one σ_5 through a general point of V_8^4 , ∞^1 through a point of V_6^{10} and ∞^2 through a point of V_3^8 . The equations of a typical σ_5 are

•
$$\sum_{i=0}^{3} X_i y_{ij} = 0,$$
 $(j = 0, 1, 2, 3)$

Two spaces σ_5 representing conics in planes a, β meet in the *plane* of the conic representing the line $(a\beta)$. The typical space σ_4 represents the system of conics

$$\begin{aligned} (z_0X_0+z_1X_1+z_2X_2+z_3X_3)\,(\lambda X_0+\mu X_1+\nu X_2+\rho X_3)\\ &+\sigma(x_0X_0+x_1X_1+x_2X_2+x_3X_3)^2=0, \end{aligned}$$

and at any point of it the six expressions

$$(2z_i z_j y_{ij} - z_i^2 y_{jj} - z_j^2 y_{ii})/(x_i z_j - x_j z_i)^2$$

must be equal. There are ∞^5 spaces σ_4 altogether, ∞^1 through a general point of V_8^4 [Godeaux, *loc. cit.*, §7].

Flat spaces on V_6^{10} are of two kinds:---

- (i) Tangent solids σ_3 to V_{33}^8
- (ii) Planes σ_2 of conics on V_3^8 [Godeaux, loc. cit., §9].

Through a point Q_{xy} on V_6^{10} there is one plane σ_2 , namely that of the conic on V_3^8 through Q_{xx} and Q_{yy} . The ∞^1 spaces σ_4 through Q_{xy} are obtained by joining it to the tangent solids σ_3 to V_3^8 at points of this conic.

The tangent prime at any point of V_8^4 meets V_3^8 in two Veronese surfaces, since it contains the space σ_5 through the point.

Consider next tangent [6]'s σ_6 to V_6^{10} . A space σ_6 represents tangential quadrics with a common generator g, and touches V_6^{10} at all points of the plane γ containing the conic of V_3^8 representing g. It meets V_8^4 in a repeated quadric plane cone of vertex γ . One system of generating [4]'s of this cone are spaces σ_4 , while the other system

https://doi.org/10.1017/S001309150000821X Published online by Cambridge University Press

16

consists of [4]'s each lying in a space σ_5 . The equations of the tangent [6] at Q_{xy} , which joins the tangent solids to V_3^8 at Q_{xx} and Q_{yy} are:—

$$2y_{02}B_{03}B_{32} + 2y_{23}B_{20}B_{03} + 2y_{30}B_{32}B_{20} + y_{00}B_{23}^2 + y_{22}B_{30}^2 + y_{33}B_{02}^2 = 0,$$

$$2y_{01}B_{03}B_{31} + 2y_{13}B_{10}B_{03} + 2y_{30}B_{31}B_{10} + y_{00}B_{13}^2 + y_{11}B_{30}^2 + y_{33}B_{01}^2 = 0,$$

$$2y_{01}B_{02}B_{21} + 2y_{12}B_{10}B_{02} + 2y_{20}B_{21}B_{10} + y_{00}B_{12}^2 + y_{11}B_{20}^2 + y_{22}B_{01}^2 = 0,$$

where $B_{ij} = x_i \xi_j - x_j \xi_i$ and therefore

$$B_{01} B_{23} + B_{02} B_{31} + B_{03} B_{12} = 0.$$

There are ∞^1 spaces σ_6 through a general point of S_9 , and ∞^2 through a point of V_6^{10} .

A space σ_6 meets V_6^{10} in a rational quartic plane cone, for the point pairs of an ∞^6 system of tangential quadrics with a common generator g consist of a point of the generator and an arbitrary point, are therefore ∞^4 , and can be put in (1, 1) correspondence with the points of a [4]. Any net of quadrics with a common generator has four point pairs, and hence follows the fact that the locus is quartic. The vertex of the cone is γ . It is possible by a process of elimination to prove that the only solids meeting V_6^{10} in space curves are those which lie in spaces σ_6 . In any space σ_6 there will be ∞^4 exceptional solids which are the intersection of two spaces σ_6 and meet V_6^{10} in a quadric surface (cf. Godeaux, loc. cit. § 21).

§4. Lines of [9].

Consider the various possible positions of a line in [9] with regard to V_8^4 . A general line meets V_8^4 in 4 distinct points, but lines in special positions may meet V_6^{10} or V_8^8 or touch or osculate V_8^4 . We give below a table shewing the types of (tangential) quadrics corresponding to the various types of special position possible for a line of [9]. We thus obtain by varying the position of a line in [9] all the standard tangential quadrics dual to those given by Bromwich.¹

17

¹ Bromwich, Quadratic Forms and their classification by means of Invariant Factors, Cambridge Tract No. 3.

No.	Segre characteristic and position of line in [9].	Base envelope of corresponding pencil in [3].
1.	[1111]; a general line.	A general quartic developable of genus 1.
2.	[(11)11]; a line meeting \mathcal{V}_{0}^{10} .	Two quadric cones with two common tangent planes each touching all quadrics of the pencil at a fixed point.
3.	[(11)(11)]; a chord of \mathcal{V}_{5}^{10} not on \mathcal{V}_{5}^{4} .	Four pencils of planes whose axes form a skew quadrilateral.
4.	$[(111)1];$ a line meeting V_{3}^{s} .	A quadric cone twice; the quadrics of the pencil have ring-contact.
5.	[211]; a line touching V_{g}^{4} , not meeting V_{g}^{10} .	A quartic developable with a double tangent plane, on which all quadrics of the pencil have a common point.
6.	[(21)1]; a line touching V_3^4 at a point of V_6^{10} (three-point contact).	Two quadric cones with a common generator and a common tangent plane along it.
7.	[2(11)]; a tangent to V_{S}^{4} which meets V_{6}^{10} .	A quadric cone and two pencils of planes whose axes meet and touch the cone.
8.	[(211)]; a tangent to V_8^4 at a point of V_3^8 (<i>i.e.</i> having four-point contact).	Two pencils of planes through intersecting axes, each counted twice. Quadrics of the system have a common point on each axis.
9.	[22]; a bitangent to V_{3}^{4} .	A pencil of planes through a line l and a cubic developable, two of whose generating planes contain l .
10.	[(22)]; a tangent to V_6^{10} .	Three pencils of planes through skew lines l_1 , l_2 and a transversal l_3 , the last pencil being counted twice.
11.	[4]; a line having four-point contact with $V_{\* .	A cubic developable and a pencil of planes through a generator of it.
12.	[31]; a line which osculates V_8^4 .	A quartic developable with a stationary generating plane.
13.	[(31)]; a line through a point of V_6^{10} having four-point con- tact with V_8^{4} .	Two pencils of planes and a quadric cone through the intersection of their axes, touching the joining plane of those axes.
14.	A line on V_g^4 in a space σ_4 [No Segre Characteristic].	A pencil of planes counted twice and a quadric cone.
15.	[111]; a line on V_5^4 in a space σ_5 .	Four pencils of planes through four con- current lines.

§5. Planes of [9].

The general plane meets V_8^4 in a non-singular quartic. Hesse in his paper on the bitangents of a non-singular plane quartic¹ considered the condition for the general member of a net of (locus) quadrics to be a cone. If the net be $\lambda_0 Q_0 + \lambda_1 Q_1 + \lambda_2 Q_2 = 0$, this condition is quartic in the λ 's. In the dual case we could take the λ -plane to be the plane representing the net and the quartic its intersection with V_{\circ}^{4} .

Any special relation of quadrics of a net must be reflected in a corresponding speciality of the quartic in which the representative plane meets V_8^4 . This curve may be degenerate in various ways, including the extreme case of a line repeated four times, which occurs when the plane touches V_6^{10} along a line or has 4-point contact The latter occurs for the net with V_{2}^{4} along a line.

$$2a (X_1 X_2 - X_0 X_3) + bX_2^2 + 2cX_1 X_3 + 2dX_2 X_3 + eX_3^2 = 0,$$

(where a, b, c, d are connected by two linear relations).

Solids of [9]. §6.

In general a solid meets V_8^4 in a symmetroid. The most interesting special case is when this becomes a Kummer Surface. The Kummer Surface whose equation is in the standard form

where

$$\begin{split} & (\delta_0 \,\lambda_0 \,r_0)^{1/2} + (\delta_1 \,\lambda_1 \,r_1)^{1/2} + (\delta_2 \,\lambda_2 \,r_2)^{1/2} = \mathbf{0}, \\ & \delta_0 + \delta_1 + \delta_2 = 0, \quad r_0 \equiv a_2 \,\lambda_1 - a_1 \,\lambda_2 - b_0 \,\lambda_3, \\ & r_1 \equiv -a_2 \,\lambda_0 + a_0 \,\lambda_2 - b_1 \,\lambda_3, \quad r_2 \equiv a_1 \,\lambda_0 - a_0 \,\lambda_1 - b_2 \,\lambda_3, \end{split}$$

1/9

can be regarded as the condition for a quadric of the web

110

(1)
$$\begin{array}{c} 2\lambda_0(\delta_0X_1X_2 - a_2X_1X_3 + a_1X_2X_3) + 2\lambda_1(\delta_1X_0X_2 + a_2X_0X_3 - a_0X_2X_3) \\ + 2\lambda_2(\delta_2X_0X_1 - a_1X_0X_3 + a_0X_1X_3) + 2\lambda_3(b_0X_0 + b_1X_1 + b_2X_2)X_3 = 0 \end{array}$$

to be a conic. The quadrics of this web have six common tangent planes. Of the 16 nodes, 10 lie on V_6^{10} and 6 are due to contact with V_8^4 by the solid representing the web. Actually these last six nodes all lie on the trope $\lambda_3 = 0$, and all the other tropes contain 4 nodes on V_{s}^{10} and two contact nodes. The quadrics for which $\lambda_{3} = 0$ are

¹O. Hesse, Werke, p. 376 = Journal für Math., 49 (1855), p. 279.

https://doi.org/10.1017/S001309150000821X Published online by Cambridge University Press

inscribed in the cubic developable determined by the six common tangent planes. Conversely it can be shewn that *any* web with six common tangent planes may be regarded as of the form (1).

Godeaux (loc. cit., § 19) starts with a web of quadrics through six points, and proves geometrically that the representative solid of the web meets V_8^4 in a Kummer Surface. He uses the trope which does not meet V_{6}^{10} to represent the twisted cubic through the six points.

§7. The Polar Porism.

(i) Consider the tangential pencil

 $(\lambda A_{00} + \mu B_{00})X_0^2 + (\lambda A_{11} + \mu B_{11})X_1^2 + (\lambda A_{22} + \mu B_{22})X_2^2 + (\lambda A_{33} + \mu B_{33})X_3^2 = 0$ which we call Ω , and let the line representing it be *l*. Any quadric which forms with Ω a polar net (*i.e.* part of the polar system of a class cubic surface) is represented by a point Q_c of a plane through *l* lying on a certain quadric solid cone. The plane $Q_c l$ may be regarded as a perfectly general plane representing a polar net and will be denoted by *a*. The 4-secant solid through *l* we denote by Σ .

For if a represent a polar net, we may suppose that there is a class cubic surface with respect to which

 Π_1 is the plane whose polar quadric, A, is $A_{00} X_0^2 + \ldots = 0$,

 Π_2 is the plane whose polar quadric, B, is $B_{00} X_0^2 + \ldots = 0$,

and Π_3 is the plane whose polar quadric, C, is represented by Q_c .

If we write down the conditions for the pole of Π_1 with respect to B to be the same as that of Π_2 with respect to A, and two similar sets, and eliminate the ratios of the coordinates of Π_1 , Π_2 , Π_3 , then we find that the coordinates of Q_c satisfy a twelfth-order skew-symmetrical determinantal equation reducible¹ to

$$(\lambda y_{01} y_{23} + \mu y_{02} y_{31} + \nu y_{03} y_{12})^2 = 0, \qquad (1)$$
where $\lambda \equiv (A_{00} B_{11} - A_{11} B_{00}) (A_{22} B_{33} - A_{33} B_{22}) \equiv [01] [23],$
 $\mu \equiv [02] [31], \quad \nu \equiv [03] [12]$
and therefore $\lambda + \mu + \nu \equiv 0.$

$$(2)$$

The quadric (1) is a solid cone V_l , vertex Σ . Any point of V_3^8 is on it because of (2). There are ∞^1 such quadrics with a given vertex, forming a linear pencil whose base is the quartic cone joining Σ to V_3^8 .

¹ See Salmon; Geometry of Three Dimensions (4th ed. 1882), p. 209.

(ii) There are two systems of [6]'s on V_l . Those of the first system (3) meet V_3^8 in rational normal sextics through Q_{00} , Q_{11} , Q_{22} , Q_{33} , while those of the second, (4), meet V_3^8 in conics and the four isolated points Q_{00} , Q_{11} , Q_{22} , Q_{33} . The equations are

$$by_{03} - cy_{02} + d\lambda y_{23} = 0, cy_{01} - ay_{03} + d\mu y_{31} = 0, ay_{02} - by_{01} + d\nu y_{12} = 0, \end{cases}$$
(3)

and

$$b'\nu y_{12} - c'\mu y_{13} + d'y_{01} = 0, c'\lambda y_{23} - a'\nu y_{12} + d'y_{02} = 0, a'\mu y_{31} - b'\lambda y_{32} + d'y_{03} = 0.$$
(4)

There are four exceptional members of the second system (those for which three of a', b', c', d', are zero) which meet V_3^8 in a Veronese surface. If we project from Σ on to a [5], both systems of [6]'s project into planes meeting the projection of V_3^8 in conics.

If a point pair $P_x P_y = 0$ be represented by Q_c , and p join the points P_x , P_y , then p is the locus of poles of some plane Π_3 with respect to the quadrics of Ω , since the poles of Π_1 and Π_2 with respect to C are in this case on p.

If p is the locus of poles of a plane with respect to quadrics of Ω , the same is true when p is regarded as the join of any other point pair $P'_x P'_y$ of p, so if V_l contains Q_{xy} it also contains the whole σ_2 plane through Q_{xy} and therefore the [6] joining it to Σ . This [6] is clearly of the second system (4) above.

The lines p form a tetrahedral complex with fundamental tetrahedron $P_0 P_1 P_2 P_3$; their Plücker coordinates $(l_1, m_1, n_1, \lambda_1, \mu_1, \nu_1)$ with respect to this tetrahedron satisfy :---

$$\frac{l_1 \lambda_1}{\lambda} = \frac{m_1 \,\mu_1}{\mu} = \frac{n_1 \,\nu_1}{\nu} \,. \tag{5}$$

But the Plücker coordinates of l with respect to the tetrahedron $Q_{00} Q_{11} Q_{22} Q_{33}$ also satisfy (5) and so any line l' of the tetrahedral complex in Σ thus defined by (5) gives the same quadric (4) as l does. Hence:—

(a) If a quadric represented by Q_c forms a polar net with a pencil Ω represented by l, through which the four-secant solid Σ passes, then the quadric represented by Q_c also forms a polar net with the pencil represented by any other line l' which cuts on the faces of $Q_{00} Q_{11} Q_{22} Q_{33}$ a related range.

(b) The range in which l cuts the faces of $Q_{00} Q_{11} Q_{22} Q_{33}$ is related to that in which the locus of poles of a plane with respect to quadrics of Ω cuts the faces of $P_0 P_1 P_2 P_3$.

(iii) Any solid lying in a 5-secant [4] of V_3^8 represents the polar system of a class cubic surface. For if the [4] meets V_3^8 in $Q_{00} Q_{11}$ $Q_{22} Q_{33}$ and a point Q_{44} , representing the repeated point pair $X_4^2 = 0$, and if we arrange that the relation between X_0 , X_1 , X_2 , X_3 and X_4 is

$$X_0 + X_1 + X_2 + X_3 + X_4 \equiv 0,$$

then any solid of the [4] represents a web capable of the form

$$a_0 X_0^2 + a_1 X_1^2 + a_2 X_2^2 + a_3 X_3^2 + a_4 X_4^2 = 0,$$

where there is a single linear relation between the a's, namely

 $p_0 a_0 + p_1 a_1 + p_2 a_2 + p_3 a_3 + p_4 a_4 = 0.$

Put $p_k a_k = \lambda_k$ (k = 0, 1, 2, 3, 4) and the equation of the web can be written

$$(A) \qquad \lambda_0\left(\frac{X_0^2}{a_0}\right) + \lambda_1\left(\frac{X_1^2}{a_1}\right) + \lambda_2\left(\frac{X_2^2}{a_2}\right) + \lambda_3\left(\frac{X_3^2}{a_3}\right) + \lambda_4\left(\frac{X_4^2}{a_4}\right) = 0,$$

where $\lambda_0 + \lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 = 0$.

The web (A) is the polar system of the class cubic surface

$$\frac{X_0^3}{a_0} + \frac{X_1^3}{a_1} + \frac{X_2^3}{a_2} + \frac{X_3^3}{a_3} + \frac{X_4^3}{a_4} = 0.$$

Any plane in a 5-secant [4] of V_3^8 lies in ∞^1 such solids of that 5-secant [4], and therefore represents part of the polar system of a class cubic surface. It follows that all 5-secant [4]'s of V_3^8 through l lie on V_l . For suppose one did not. Then we should be able to find in it a plane through l representing part of the polar system of a class cubic surface, which did not lie on V_l , contrary to what was proved above.

(iv) It remains to consider the question of whether a plane through l known to lie on V_l necessarily represents a polar net. To that end we shall shew that in any [6], S_6 , of V_l meeting V_3^8 in a sextic [*i.e.* of system (3)], there is just one 5-secant [4] of V_3^8 through l and an arbitrary point. The sextic Γ_6 in which the [6] with equations (3) meets V_3^8 represents the twisted cubic common to the quadrics

$$bx_0 x_3 - cx_0 x_2 + d\lambda x_2 x_3 = 0, \\ cx_0 x_1 - ax_0 x_3 + d\mu x_3 x_1 = 0.$$

The parametric equations of the sextic are found to be

$$\begin{split} y_{00} &= \theta^2 \left(c\theta - d\lambda\right)^2 \left(c\theta + d\mu\right)^2; \ y_{11} &= a^2 \theta^2 \left(c\theta - d\lambda\right)^2; \ y_{22} &= b^2 \theta^2 \left(c\theta + d\mu\right)^2; \\ y_{33} &= \left(c\theta - d\lambda\right)^2 \left(c\theta + d\mu\right)^2; \quad y_{01} &= a \theta^2 \left(c\theta - d\lambda\right)^2 \left(c\theta + d\mu\right); \\ y_{02} &= b \theta^2 \left(c\theta - d\lambda\right) \left(c\theta + d\mu\right)^2; \ y_{03} &= \theta \left(c\theta - d\lambda\right)^2 \left(c\theta + d\mu\right)^2, \end{split}$$

where $\theta = x_0/x_3$, and we assume that $d \neq 0$, which we can do without loss of generality, so that y_{00} , y_{11} , y_{22} , y_{33} , y_{01} , y_{02} , y_{03} are independent coordinates for S_6 .

No 5-secant [4] through l can meet Σ in a plane unless it contains Σ entirely. For otherwise, let Σ_1 be the [5] joining the [4] in question to Σ . There will be a system of ∞ ³ locus quadrics apolar to all those represented by points of Σ_1 , and this system will have nine non-coplanar common points, which is impossible.

Suppose the 5-secant [4] U through l to be given as the intersection of the [5]'s UQ_{00} and UQ_{33} , primes of S_6 . Then the equations of U may be written

 $[23] y_{11} + [31] y_{22} + [12] y_{33} + P_{01} y_{01} + P_{02} y_{02} + P_{03} y_{03} = 0,$ [12] $y_{00} + [20] y_{11} + [01] y_{22} + P'_{01} y_{01} + P'_{02} y_{02} + P'_{03} y_{03} = 0,$

seeing that UQ_{00} meets Σ in the plane lQ_{00} whose equations in S_6 are

$$[23] y_{11} + [31] y_{22} + [12] y_{33} = y_{01} = y_{02} = y_{03} = 0.$$

The parameter of Q_{00} is ∞ and that of Q_{33} is 0. If we substitute the parameters into the equations of UQ_{00} and UQ_{33} and then divide the latter by θ , we get two quintic polynomials in θ which both give the parameters of the intersections of U and V_{3}^{8} , and are therefore proportional. We therefore have the identity

$$\begin{aligned} a^{2} [23] \theta^{2} (c\theta - d\lambda)^{2} + b^{2} [31] \theta^{2} (c\theta + d\mu)^{2} + [12] (c\theta - d\lambda)^{2} (c\theta + d\mu)^{2} \\ &+ \theta (c\theta - d\lambda) (c\theta + d\mu) [aP_{01}\theta (c\theta - d\lambda) + bP_{02}\theta (c\theta + d\mu) + P_{03} (c\theta - d\lambda) (c\theta + d\mu)] \\ &\equiv K \{ [12] \theta (c\theta + d\lambda)^{2} (c\theta - d\mu)^{2} + a^{2} [20] (c\theta - d\lambda)^{2} + b^{2} [01] \theta (c\theta + d\mu)^{2} \\ &+ (c\theta - d\lambda) (c\theta + d\mu) [aP_{01}^{\prime}\theta (c\theta - d\lambda) + bP_{02}^{\prime}\theta (c\theta + d\mu) + P_{03}^{\prime} (c\theta - d\lambda) (c\theta + d\mu)] \} \end{aligned}$$

Putting $\theta = 0$ in both sides gives

$$KP'_{03} \equiv [12].$$
 (1)

Putting $c\theta = d[01][23]$ or $c\theta = -d[02][31]$ gives

$$K = d [23] [31]/c.$$

If we now divide the identity by $\theta (c\theta - d\lambda) (c\theta + d\mu)$ we reduce it to $aP_{01} \theta (c\theta - d\lambda) + bP_{02} \theta (c\theta + d\mu) + P_{03} (c\theta - d\lambda) (c\theta + d\mu)$ $- (d/c) [23] [31] \{(c\theta - d\lambda) (c\theta + d\mu) + aP'_{01} (c\theta - d\lambda) + bP'_{02} (c\theta + d\mu)\}$

+ $(1/c) \{a^2[23] (c\theta - d\lambda) + b^2[31] (c\theta + d\mu)\} \equiv 0.$

As this is quadratic in θ , it will be sufficient to express the fact that it has three roots 0, $\frac{d\lambda}{c}$, $-\frac{d\mu}{c}$. Hence we obtain by putting $\theta = 0$,

$$- P_{03} d [01] [02] + (d^2/c) [01] [02] [03] [31] + (ad/c) [01] [23] P'_{01} - (bd/c) [02] [31] P'_{02} - (a^2/c) [01] [23]^2 + (b^2/c) [02] [31]^2 = 0.$$
(2)

By putting $c\theta = d\lambda$ we obtain

$$d[01][23] P_{02} - d[23][31] P'_{02} + b[31] = 0,$$
(3)

and by putting $c\theta = -d\mu$ we obtain

$$d[02][31] P_{01} + d[23][31] P'_{01} - a[23] = 0.$$
⁽⁴⁾

(1) (2) (3) (4) are 4 linear equations between the non-homogeneous coefficients P_{01} , P_{02} , P_{03} , P'_{01} , P'_{02} , P'_{03} . The conditions for the [4] U to go through an arbitrary point of S_6 not on l would give 2 further linear relations, and therefore there is in general a unique solution, *i.e.* through a plane a containing a line l and on V_l there is one 5-secant [4] of V_3^8 in each space S_6 containing a.

Since there are ∞^1 spaces S_6 on V_l through a, there are therefore ∞^1 5-secant [4]'s of V_3^8 through a [N.B. 2 spaces S_6 do not intersect in a 5-secant [4] of V_3^8].

We have now proved:

(1) A necessary condition for a plane a to represent a polar net is that it lie on the quadric V_l defined as above for any line l in a. Hence the general plane of [9] does not represent a polar net.

(2) If a plane a lies on V_i and l is in a, then in each space S_6 on V_i through a there is one 5-secant [4] of V_3^8 through a. Hence there are ∞^1 5-secant [4]'s of V_3^8 through a altogether. In each of the 5-secant [4]'s there are ∞^1 solids through a, and therefore [§7(iii)] we can find ∞^2 cubic surfaces to whose polar systems the net represented by a belongs. We have thus found a geometrical reason in [9] for the fact that the condition for a net to be polar is poristic.

(v) It is possible also to shew in this way that self-conjugate pentagrams, for a net of quadrics which is polar, form a g_5^1 on a twisted

25

cubic.¹ For we can prove that the [6], T, which joins two 5-secant [4]'s through a contains them all, and that it cannot degenerate into a [5]. T meets V_3^8 in a curve which must be a sextic, also T lies in the prime P which touches V_l all along a. All spaces S_6 through a lie in P and any two meet in [Sa], which is not a 5-secant [4] of V_3^8 . Hence the sextics in which these spaces S_6 meet V_3^8 represent twisted cubics of the same system on the locus quadric Q representing P. It can be shewn that T, which lies in P, meets V_3^8 in a sextic representing a twisted cubic of the opposite system on Q, which therefore meets every one of the cubics represented by intersections of spaces S_6 with V_3^8 in The [4]'s joining such sets of 5 points generate the quadric 5 points. plane cone in which T meets V_i . The fact that sets of points representing self-conjugate pentagrams lie on [4]'s which generate a quadric plane cone proves that they form a g_5^1 on the twisted cubic represented by the intersection of T and V_3^8 .

Conversely, if we consider the g_5^1 on the twisted cubic which is the locus of $(\theta^3, \theta^2, \theta, 1)$ given by

$$(a_0 + \lambda a'_0)\theta^5 + (a_1 + \lambda a'_1)\theta^4 + (a_2 + \lambda a'_2)\theta^3 + (a_3 + \lambda a'_3)\theta^2 + (a_4 + \lambda a'_4)\theta + (a_5 + \lambda a'_5) = 0,$$

we find that the net of quadrics having the sets of this g_5^1 for selfconjugate pentagrams is represented by the plane

 $\begin{array}{l} a_{0}y_{0} + a_{1}y_{1} + a_{2}y_{2} + a_{3}y_{3} + a_{4}y_{4} + a_{5}y_{5} = 0, \\ a_{0}y_{1} + a_{1}y_{2} + a_{2}y_{3} + a_{3}y_{4} + a_{4}y_{5} + a_{5}y_{6} = 0, \\ a'_{0}y_{0} + a'_{1}y_{1} + a'_{2}y_{2} + a'_{3}y_{3} + a'_{4}y_{4} + a'_{5}y_{5} = 0, \\ a'_{0}y_{1} + a'_{1}y_{2} + a'_{2}y_{3} + a'_{3}y_{4} + a'_{4}y_{5} + a'_{5}y_{6} = 0, \end{array}$

where y_0, \ldots, y_6 are coordinates in the space of the sextic representing the locus of $(\theta^3, \theta^2, \theta, 1)$ so chosen that the parametric equations to this sextic are

$$y_0: y_1: y_2: y_3: y_4: y_5: y_6 = \theta^6: \theta^5: \theta^4: \theta^3: \theta^2: \theta: 1.$$

¹ See Edge "A special net of quadrics," Proc. Edin. Math. Soc. (2) 4 (1936) 185.

https://doi.org/10.1017/S001309150000821X Published online by Cambridge University Press