Canad. Math. Bull. Vol. 22 (2), 1979

SOME EXTENSIONS OF HARDY'S INEQUALITY

BY LING-YAU CHAN

This note is concerned with some new integral inequalities which are extensions of the results in [2]. The method by which these results are obtained is due to D . C. Benson [1]. Throughout the present note we shall assume $1<p<\infty$ and $f(x)$ a non-negative measurable function. In [2], D. T. Shum proved that:

Theorem A. Let $r \neq 1$, and $f(x) \in L(0, b)$ or $f(x) \in L(a, \infty)$ according as $r>1$ or $r<1$, where $a>0, b>0$. If $F(x)$ is defined by

$$
F(x)= \begin{cases}\int_{0}^{x} f(t) d t & (r>1) \\ \int_{x}^{\infty} f(t) d t & (r<1)\end{cases}
$$

and if $\int_{0}^{b} x^{-r}(x f)^{p} d x<\infty$ in (i) and $\int_{a}^{\infty} x^{-r}(x f)^{p} d x<\infty$ in (ii), then
(i) $\int_{0}^{b} x^{-r} F^{p} d x+\frac{p}{r-1} b^{1-r} F^{p}(b) \leq\left(\frac{p}{r-1}\right)^{p} \int_{0}^{b} x^{-r}(x f)^{p} d x$ for $r>1$,
(ii) $\int_{a}^{\infty} x^{-r} F^{p} d x+\frac{p}{1-r} a^{1-r} F^{p}(a) \leq\left(\frac{p}{1-r}\right)^{p} \int_{a}^{\infty} x^{-r}(x f)^{p} d x$ for $r<1$,
with equality in (i) or (ii) only for $f \equiv 0$, where the constant $[p /(r-1)]^{p}$ or $[p /(1-r)]^{p}$ is the best possible when the left side of (i) or (ii) is unchanged respectively.

The case when $r=1$ was not discussed in [2]. In the present note we shall discuss this case in detail. In fact, Theorem A fails when $r=1$: since $\int_{0}^{1} x^{-1} d x=$ ∞ and $\int_{1}^{\infty} x^{-1} d x=\infty$, the integrals on the left sides of (i) and (ii) tend to infinity as $a \rightarrow 0+$ and $b \rightarrow \infty$, unless $f(x)=0$ a.e. However, if we decompose $[0, \infty)$, the interval of integration, into $[0,1]$ and $[1, \infty)$, we then have the following variants:

Theorem 1. Let $f(t) \in L(x, \infty)$ for every $x \in(1, \infty)$, and $F(x)=\int_{x}^{\infty} f(t) d t$. Then we have

$$
\begin{equation*}
\int_{1}^{\infty} x^{-1} F^{p}(x) d x \leq p^{p} \int_{1}^{\infty} x^{-1}(x \log x f(x))^{p} d x \tag{1a}
\end{equation*}
$$

Received by the editors November 16, 1977 and, in revised form, April 5, 1978.

More precisely, the following inequality holds for $1 \leq a<b \leq \infty$:

$$
\begin{equation*}
\int_{a}^{b} x^{-1} F^{p}(x) d x \leq p^{p} \int_{a}^{b} x^{-1}(x \log x f(x))^{p} d x+p\left[F^{p}(b) \log b-F^{p}(a) \log a\right] \tag{1b}
\end{equation*}
$$

where $F^{p}(a) \log a$ at $a=1$ and $F^{p}(b) \log b$ at $b=\infty$ are interpreted as $\lim _{a \rightarrow 1^{+}} F^{p}(a) \log a$ and $\lim _{b \rightarrow \infty} F^{p}(b) \log b$ respectively; and we have $\lim _{a \rightarrow 1+} F^{p}(a) \log a=0$ if either $\int_{1}^{c} x^{-1} F^{p}(x) d x<\infty$ or $\int_{1}^{c} x^{-1}(x \log x f(x))^{p} d x<$ $\infty \quad(1<c<\infty)$, and $\lim _{b \rightarrow \infty} F^{p}(b) \log b=0$ if either $\int_{c}^{\infty} x^{-1} F^{p}(x) d x<\infty$ or $\int_{c}^{\infty} x^{-1}(x \log x f(x))^{p} d x<\infty(1<c<\infty)$. Moreover, the constant factor p^{p} is the best possible in $(1 a)$, and it is also the best possible in ($1 b$) when the term $p\left[F^{p}(b) \log b-F^{p}(a) \log a\right]$ remains unchanged. Equal sign in $(1 a)$ or $(1 b)$ holds if and only if $F(x)=K \log ^{-1 / p} x(K \geq 0)$ in $[1, \infty)$ or in $[a, b)$ respectively.

Remark. When $F(x)=K \log ^{-1 / p} x, K>0$, and $a=1$ or $b=\infty$, all integrals occurring in (1a) and (1b) are infinite. Hence equality in (1a), or in (1b) in the case when $a=1$ or $b=\infty$, holds if and only if both sides of the equality are either infinite (if $K>0$) or zero (if $K=0$). The same situation arises in the following Theorems 2-4.

Theorem 2. Let $f(t) \in L(0, x)$ for every $x \in(0,1)$, and $F(x)=\int_{0}^{x} f(t) d t$. Then we have

$$
\begin{equation*}
\int_{0}^{1} x^{-1} F^{p}(x) d x \leq p^{p} \int_{0}^{1} x^{-1}(x|\log x| f(x))^{p} d x \tag{2a}
\end{equation*}
$$

More precisely, the following inequality holds for $0 \leq a<b \leq 1$:

$$
\begin{equation*}
\int_{a}^{b} x^{-1} F^{p}(x) d x \leq p^{p} \int_{a}^{b} x^{-1}(x|\log x| f(x))^{p} d x+p\left[F^{p}(b) \log b-F^{p}(a) \log a\right] \tag{2b}
\end{equation*}
$$

where $F^{p}(a) \log a$ at $a=0$ and $F^{p}(b) \log b$ at $b=1$ are interpreted as $\lim _{a \rightarrow 0+} F^{p}(a) \log a$ and $\lim _{b \rightarrow 1-} F^{p}(b) \log b$ respectively; and we have $\lim _{a \rightarrow 0+} F^{p}(a) \log a=0$ if either $\int_{0}^{c} x^{-1} F^{p}(x) d x<\infty$ or $\int_{0}^{c} x^{-1}(x|\log x| f(x))^{p} d x<$ $\infty \quad(0<c<1)$, and $\lim _{b \rightarrow 1-} F^{p}(b) \log b=0$ if either $\int_{c}^{1} x^{-1} F^{p}(x) d x<\infty$ or $\int_{c}^{1} x^{-1}(x|\log x| f(x))^{p} d x<\infty(0<c<1)$. Moreover, the constant factor p^{p} is the best possible in (2a), and it is also the best possible in (2b) when the term $p\left[F^{p}(b) \log b-F^{p}(a) \log a\right]$ remains unchanged. Equal sign in (2a) or (2b) holds if and only if $F(x)=K|\log x|^{-1 / p}(K \geq 0)$ in $[0,1]$ or in $[a, b]$ respectively.

Theorem 3. Let $f(t) \in L(1, x)$ for every $x \in(1, \infty)$, and $F(x)=\int_{1}^{x} f(t) d t$. Then we have

$$
\begin{equation*}
\int_{1}^{\infty} x^{-1}(F(x) / \log x)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{1}^{\infty} x^{-1}(x f(x))^{p} d x \tag{3a}
\end{equation*}
$$

More precisely, the following inequality holds for $1 \leq a<b \leq \infty$:
(3b)

$$
\begin{aligned}
& \int_{a}^{b} x^{-1}(F(x) / \log x)^{p} d x \\
& \qquad\left(\frac{p}{p-1}\right)^{p} \int_{a}^{b} x^{-1}(x f(x))^{p} d x-\frac{p}{p-1}\left[\frac{F^{p}(b)}{\log ^{p-1} b}-\frac{F^{p}(a)}{\log ^{p-1} a}\right]
\end{aligned}
$$

where $F^{p}(a) / \log ^{p-1} a$ at $a=1$ and $F^{p}(b) / \log ^{p-1} b$ at $b=\infty$ are interpreted as $\lim _{a \rightarrow 1+} F^{p}(a) / \log ^{p-1} a$ and $\lim _{b \rightarrow \infty} F^{p}(b) / \log ^{p-1} b$ respectively; and we have $\lim _{a \rightarrow 1+} F^{p}(a) / \log ^{p-1} a=0 \quad$ if either $\quad \int_{1}^{c} x^{-1}(F(x) / \log x)^{p} d x<\infty \quad$ or $\int_{1}^{c} x^{-1}(x f(x))^{p} d x<\infty(1<c<\infty)$, and $\quad \lim _{b \rightarrow \infty} F^{p}(b) / \log ^{p-1} b=0$ if either $\int_{c}^{\infty} x^{-1}(F(x) / \log x)^{p} d x<\infty$ or $\int_{c}^{\infty} x^{-1}(x f(x))^{p} d x<\infty(1<c<\infty)$. Moreover, the constant factor $[p /(p-1)]^{p}$ is the best possible in (3a), and it is also the best possible in (3b) when the term $(p / p-1)\left[F^{p}(b) / \log ^{p-1} b-F^{p}(a) / \log ^{p-1} a\right]$ remains unchanged. Equal sign in (3a) or (3b) holds if and only if $F(x)=$ $K \log ^{1-1 / p} x(K \geq 0)$ in $[1, \infty)$ or in $[a, b)$ respectively

Theorem 4. Let $f(t) \in L(x, 1)$ for every $x \in(0,1)$, and $F(x)=\int_{x}^{1} f(t) d t$. Then we have

$$
\begin{equation*}
\int_{0}^{1} x^{-1}(F(x) /|\log x|)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{1} x^{-1}(x f(x))^{p} d x \tag{4a}
\end{equation*}
$$

More precisely, the following inequality holds for $0 \leq a<b \leq 1$:

$$
\begin{align*}
\int_{a}^{b} x^{-1}(F(x) /|\log x|)^{p} d x & \leq\left(\frac{p}{p-1}\right)^{p} \int_{a}^{b} x^{-1}(x f(x))^{p} d x \tag{4b}\\
& +\frac{p}{p-1}\left[\frac{F^{p}(b)}{\left.\log b\right|^{p-1}}-\frac{F^{p}(a)}{|\log a|^{p-1}}\right]
\end{align*}
$$

where $F^{p}(a) /|\log a|^{p-1}$ at $a=0$ and $F^{p}(b) /|\log b|^{p-1}$ at $b=1$ are interpreted as $\lim _{a \rightarrow 0+} F^{p}(a) /|\log a|^{p-1}$ and $\lim _{b \rightarrow 1_{-}} F^{p}(b) /|\log b|^{p-1}$ respectively; and we have $\lim _{a \rightarrow 0+} F^{p}(a) / /\left.\log a\right|^{p-1}=0 \quad$ if either $\quad \int_{0}^{c} x^{-1}(F(x) /|\log x|)^{p} d x<\infty \quad$ or $\int_{0}^{c} x^{-1}(x f(x))^{p} d x<\infty \quad(0<c<1)$, and $\lim _{b \rightarrow 1-} F^{p}(b) / /\left.\log b\right|^{p-1}=0$ if either $\int_{c}^{1} x^{-1}(F(x) /|\log x|)^{p} d x<\infty$ or $\int_{c}^{1} x^{-1}(x f(x))^{p} d x<\infty(0<c<1)$. Moreover, the constant factor $[p /(p-1)]^{p}$ is the best possible in (4a), and it is also the best possible in (4b) when the term $(p / p-1)\left[F^{p}(b) /|\log b|^{p-1}-F^{p}(a) /|\log a|^{p-1}\right] r e$ mains unchanged. Equal sign in (4a) or (4b) holds if and only if $F(x)=$ $K|\log x|^{1-1 / p}(K \geq 0)$ in $[0,1]$ or in $[a, b]$ respectively.

The proofs of Theorems 1-4 are similar to that of Theorem 2 in [2], so I only give the proof of Theorem 1 in a very condensed form. The proof depends upon the following lemma, which is essentially due to Benson [1, p. 300]:

Lemma 1 [2, Lemma 1]. Let $u(x)$ be absolutely continuous on [a, b] with $u^{\prime}(x) \geq 0$ a.e. in $[a, b]$. Also, suppose that $Q(x)$ is positive and continuous on
(a, b), and $G(u, x)$ is continuously differentiable for x in $[a, b]$ and u in the range of the function $u(x)$, with $G_{u}(u, x)>0$. Then, if the integral exists,

$$
\begin{aligned}
\int_{a}^{b}\left\{Q u^{\prime p}+(\gamma / p)^{p /(p-1)}(p-1) G_{u}^{p /(p-1)} Q^{-1 /(p-1)}\right. & \left.+\gamma G_{x}\right\} d x \\
& \geq \gamma\{G(u(b), b)-G(u(a), a)\}
\end{aligned}
$$

where γ is any positive number, $p>1$ and $G_{u}=(\partial / \partial u) G(u, x), \quad G_{x}=$ $(\partial / \partial x) G(u, x)$. Equality holds if and only if the differential equation

$$
u^{\prime}=\left(\frac{\gamma}{p}\right)^{1 /(p-1)}\left(\frac{G_{u}}{Q}\right)^{1 /(p-1)}
$$

is satisfied for almost all x in $[a, b]$.
Proof of Theorem 1. We first prove (1b) for $1<a<b<\infty$. Let $1<a \leq x \leq$ $b<\infty$. Applying Lemma 1 with $u(x)=-F(x)=-\int_{x}^{\infty} f(t) d t, Q(x)=x^{p-1} \log ^{p} x$, $G(u, x)=-(-u)^{p} \log x$, we get

$$
\begin{aligned}
& \int_{a}^{b}\left\{x^{-1}(x \log x f(x))^{p}+\left[(p-1) \gamma^{p /(p-1)}-\gamma\right] x^{-1}(-u)^{p}\right\} d x \\
& \geq \gamma\left[-F^{p}(b) \log b+F^{p}(a) \log a\right]
\end{aligned}
$$

for every $\gamma \geq 0$. Since $\left[(p-1) \gamma^{p /(p-1)}-\gamma\right]$ attains its minimum value $-1 / p^{p}$ at $\gamma=1 / p^{p-1}$, (1b) follows immediately.

Next, consider the case when $a=1$ or $b=\infty$. From what we have just proved we see that if $\int_{1}^{c} x^{-1}(x \log x f(x))^{p} d x<\infty$, then $\int_{a}^{c} x^{-1} F^{p}(x) d x \leq$ $\int_{a}^{c} x^{-1} F^{p}(x) d x+p F^{p}(a) \log a \leq p^{p} \int_{a}^{c} x^{-1}(x \log x f(x))^{p} d x+p F^{p}(c) \log c \leq p^{p} \int_{1}^{c} x^{-1}$ $(x \log x f(x))^{p} d x+p F^{p}(c) \log c<\infty \quad$ for every $a \in(1, c)$, and it follows that $\int_{1}^{c} x^{-1} F^{p}(x) d x<\infty$. But $\quad \int_{1}^{c} x^{-1} F^{p}(x) d x<\infty \quad$ implies $\quad F^{p}(a) \log a=$ $F^{p}(a) \int_{1}^{a} x^{-1} d x \leq \int_{1}^{a} x^{-1} F^{p}(x) d x \rightarrow 0$ as $a \rightarrow 1+$ (in fact Lemma 3 in [2] can also be proved by this simple argument). Thus either $\int_{1}^{c} x^{-1} F^{p}(x) d x<\infty$ or $\int_{1}^{c} x^{-1}(x \log x f(x))^{p} d x<\infty$ implies $\lim _{a \rightarrow 1+} F^{p}(a) \log a=0$. On the other hand, if $\int_{c}^{\infty} x^{-1} F^{p}(x) d x<\infty$, we have $F^{p}(b) \log b=2 F^{p}(b) \int_{V_{b}}^{b} x^{-1} d x \leq 2 \int_{\sqrt{b} b}^{b} x^{-1} F^{p}(x) d x \rightarrow$ 0 as $b \rightarrow \infty$. If $\int_{c}^{\infty} x^{-1}(x \log x f(x))^{p} d x<\infty$, by a standard application of Hölder's inequality (as in [3, pp. 20-21], for example) we have

$$
\begin{aligned}
F(b)= & \int_{b}^{\infty} f(x) x^{(p-1) / p} \log x\left(x^{(p-1) / p} \log x\right)^{-1} d x \\
& \leq\left\{\int_{b}^{\infty} x^{-1}(x \log x f(x))^{p} d x\right\}^{1 / p}\left\{\int_{b}^{\infty}\left(x \log ^{p /(p-1)} x\right)^{-1} d x\right\}^{(p-1) / p} \\
& =\left\{\int_{b}^{\infty} x^{-1}(x \log x f(x))^{p} d x\right\}^{1 / p}\left\{(p-1)^{(p-1) / p}(\log b)^{-1 / p}\right\}
\end{aligned}
$$

and again we obtain $\lim _{b \rightarrow \infty} F^{p}(b) \log b=0$. So, we have proved (1b) for $a=1$ or $b=\infty$. (1a) is the special case of (1b) in which $a=1$ and $b=\infty$.

We now investigate the condition under which equality in (1b) or (1a) occurs. When $1<a<b<\infty$, Lemma 1 shows that equality in (1b) holds if and only if the differential equation $u^{\prime}=(\gamma / p)^{1 /(p-1)}\left(G_{u} / Q\right)^{1 /(p-1)}$ is satisfied for almost all x in $[a, b]$, where $\gamma=1 / p^{p-1}$. Calculation shows that this is equivalent to $F(x)=$ $K \log ^{-1 / p} x$ in $[a, b]$, where K is a non-negative constant.

Write $I(\alpha, \beta)$

$$
\begin{aligned}
= & \int_{\alpha}^{\beta}\left\{x^{-1}(x \log x f(x))^{p} d x-p^{-p} x^{-1} F^{p}(x)\right\} d x \\
& +p^{-p+1}\left[F^{p}(\beta) \log \beta-F^{p}(\alpha) \log \alpha\right] \\
= & \int_{\alpha}^{\beta}\left\{x^{-1}(x \log x f(x))^{p}-p^{-p} x^{-1} F^{p}(x)+p^{-p+1} \frac{d}{d x}\left[F^{p}(x) \log x\right]\right\} d x .
\end{aligned}
$$

We have $I(\alpha, \beta) \geq 0$ for $1<\alpha<\beta<\infty$, and $I(\alpha, \beta)=0$ if and only if $F(x)=$ $K \log ^{-1 / \mathrm{p}} x$ in $[\alpha, \beta]$. Therefore equality in (1a) or in (1b) holds if and only if $F(x)=K \log ^{-1 / p} x$ in $[1, \infty)$ or in $[a, b)$ respectively, and in this case both sides of (1b) are equal and finite if $1<a<b<\infty$. Thus, we have also shown that the constant factor p^{p} is the best possible in (1b) when $1<a<b<\infty$.

To see that the constant p^{p} is the best possible in the general case, we replace p^{p} in (1a) and (1b) by a constant A and consider particular functions $f(x)$ to show that $A \geq p^{p}$. In (1b) we put $f(x)=\left(x \log ^{1-\varepsilon+1 / p} x\right)^{-1}(\varepsilon>0)$ when $a=1$ and $1<b<\infty$, and we put $\left.f(x)=x \log ^{1+\varepsilon+1 / p} x\right)^{-1}(\varepsilon>0)$ when $1<a<\infty$ and $b=\infty$. In (1a) we put

$$
f(x)= \begin{cases}0, & (1 \leq x \leq 2) \\ \left(x \log ^{1+\varepsilon+1 / p} x\right)^{-1}, & (x>2)\end{cases}
$$

Straightforward calculation shows that in all cases, by letting $\varepsilon \rightarrow 0+$ we obtain $A \geq p^{p}$.

This completes the proof of Theorem 1.
By applying Lemma 1, Theorems 2-4 are proved in a similar way. To prove Theorem 2 we put $u(x)=F(x)=\int_{0}^{x} f(t) d t, Q(x)=x^{p-1}(-\log x)^{p}, G(u, x)=$ $-(u)^{p} \log x$. To prove Theorem 3 we put $u(x)=F(x)=\int_{1}^{x} f(t) d t, Q(x)=x^{p-1}$, $G(u, x)=u^{p} / \log ^{p-1} x$. To prove Theorem 4 we put $u(x)=-F(x)=-\int_{x}^{1} f(t) d t$, $Q(x)=x^{p-1}, G(u, x)=-(-u)^{p} /(-\log x)^{p-1}$.

References

1. D. C. Benson, Inequalities involving integrals of functions and their derivatives, J. Math. Anal. Appl. 17 (1967), 292-308.
2. D. T. Shum, On integral inequalities related to Hardy's, Canad. Math. Bull. 14 (1971), 225-230.
3. A. Zygmund, Trigonometric series, I, 2nd edition, Cambridge, 1968.

Department of Mathematics, University of Hong Kong, Hong Kong.

