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SOME EXTENSIONS OF HARDY'S INEQUALITY 

BY 
LING-YAU CHAN 

This note is concerned with some new integral inequalities which are 
extensions of the results in [2]. The method by which these results are obtained 
is due to D. C. Benson [1]. Throughout the present note we shall assume 
K p < o o and f(x) a non-negative measurable function. In [2], D. T. Shum 
proved that: 

THEOREM A. Let r% 1, and f(x) e L(0, b) or f(x) e L(a, ») according as r > 1 
or r< l , where a>0, b>0. If F(x) is defined by 

F(x)-
\[Xf(t)dt ( r> l ) , 

(*) = -{ Jo 

["/(D* (r<l), 

and if ft x~r (xf)p dx «*> in (i) and &x~r(xf)p dx<<* in (K), then 

(i) [ x~rFpdx+^b^F^^^i-^f x~r(xf)pdx for r> l , 

(ii) [ x-Tpdx + ̂ a1-Tp(a)^i-^rY[ x~r(xf)pdx for r< l , 

with equality in (i) or (ii) only for f = 0, where the constant [p/(r-l)]p or 
[p/(l-r)]p is the best possible when the left side of (i) or (ii) is unchanged 
respectively. 

The case when r = 1 was not discussed in [2]. In the present note we shall 
discuss this case in detail. In fact, Theorem A fails when r = 1: since JJx 1 d* -
oo and J?*-1 àx = », the integrals on the left sides of (i) and (ii) tend to infinity 
as a—»0+ and fc—»oo, unless f(x) = 0 a.e. However, if we decompose [0, oo), the 
interval of integration, into [0,1] and [l,00), we then have the following 
variants: 

THEOREM 1. Let f(t) e L(x, oo) for every x e (1, oo), and F(x) = $~f(t) dt. Then 
we have 

/• oo /• oo 

(la) x-1Fp(x)dx^pp\ x"1 (xlogx/(x))pdx. 
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More precisely, the following inequality holds for 1 < a < b =^o°: 

(lb) [ x~1Fp(x)dx^pp[ x~\x logx/'(x))pdx + p[Fp(b) log b-Fp(a)log a], 

where Fp(a) log a af a = l and Fp(h)logfc at b = oo are interpreted as 
l ima^1 + Fp(a) log a and limb_>00Fp(h)log b respectively; and we have 
lima_1+ Fp(a) log a = 0 if either ft x_ 1Fp(x) dx<™ or ft x_1(x logx/(x))p d x < 
oo ( K c < o o ) , and \\mb^ooF

p(b)\ogb = 0 if either ^ x~1Fv(x) dx<oo or 
J~ x_1(x logx /(x))p dx < oo (1< c < oo). Moreover, the constant factor pp is the best 
possible in ( la ) , and it is also the best possible in (lb) when the term 
p[Fp(b)log fc-Fp(a)log a] remains unchanged. Equal sign in ( l a ) or (lb) holds 
if and only if F(x) = K log~1/px (K>0) in [1,°°) or in [a,b) respectively. 

REMARK. When F(x) = Klog - 1 / px, K > 0 , and a = l or ft = 00, all integrals 
occurring in (la) and (lb) are infinite. Hence equality in (la), or in (lb) in the 
case when a = 1 or b = oo? holds if and only if both sides of the equality are 
either infinite (if K > 0 ) or zero (if K = 0). The same situation arises in the 
following Theorems 2-4. 

THEOREM 2. Let f(t) e L(0, x) for every x e (0,1), and F(x) = JS /(f) dt. Then 
we have 

(2a) [ x " 1 F p (x )dx<p p f x~\x\logx\f(x))pdx. 
Jo Jo 

More precisely, the following inequality holds for 0 < a < b < 1: 

(2b) x _ 1 F p ( x ) d x < p p 
b 

x-^xllog x|/(x))p dx + p[Fp(ft)log b - Fp(a)log a] , 

where Fp(a)log a at a = 0 and Fp(fc)logfe af b = l are interpreted as 
lima_^0+Fp(a)log a and \imb_^1_Fp(b)\ogb respectively; and we have 
lima_^0+ Fp(a)log a = 0 if either $c

0 x
_ 1Fp(x) dx <00 or $c

0 x
_1(x|log x|/(x))p dx < 

00 ( 0 < c < l ) , and l i m ^ . Fp(b)log b = 0 if either J* x_ 1Fp(x) dx<oo or 
Jc x_1(x|log x|/(x))p dx < oo(0 < c < 1). Moreover, the constant factor pp is the best 
possible in (2a), and it is also the best possible in (2b) when the term 
p[Fp(fc)log b -F p ( a ) log a] remains unchanged. Equal sign in (2a) or (2b) holds 
if and only if F(x) = K|log x |" 1 / p(K>0) in [0,1] or in [a, b] respectively. 

THEOREM 3. Let f(t) e L(l, x) for every x e (1,00), and F(x) = ft f(t) dt. Then 
we have 

(3a) f x-\F(x)/logx)pdx^C^--Y [ x-\xf(x))p dx. 
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More precisely, the following inequality holds for l < a < f c < o o : 

[ x-\F(x)l\og x)p dx 

where Fp(a)/logp 1a at a = l and Fp(b)/\ogp xb at fc = oo are interpreted as 
lima_>1+Fp(a)/logp~1 a and limb^00Fp(b)/logp~1 b respectively; and we have 
lima_»1+ Fp(a)/logp_1 a = 0 if either J; x_1(F(x)/log x)p dx < <*> or 
H x_1(x/(x))p dx<oo(l<c<oo), and l im^F p ( fc) / log p _ 1 b = 0 i/ eitfier 
J~x"1(F(x)/logx)pdx<oo or J~x_ 1(x/(x))pdx<oo(l< c<oo). Moreover, the 
constant factor [p/(p - l)]p is tfie besf possible in (3a), and if is a/so the best 
possible in (3b) when the term ( p /p - l)[Fp(b)/logp-1 fc-Fp(a)/logp-1 a] remains 
unchanged. Equal sign in (3a) or (3b) hoids i/ and only if F(x) = 
X l o g 1 _ 1 / p x ( K > 0 ) in [l,o°) or in [a, b) respectively 

THEOREM 4. Let f(t)eL(x, 1) /or euery xe(0 ,1) , and F(x) = j1
xf(t) dt. Then 

we have 

(4a) f x-i(F(x)/|logx|)pdx<(-£-ryf x-\xf(x))p dx. 
Jo \ P - 1 / Jo 

More precisely, the following inequality holds for 0 < a < b < 1 : 

f ' x-^FW/llog x|)p dx < ( -^-Y fb x-\xf(x))p dx 

(4b) J« V P " 1 / L 

+ p [ Fp(b) Fp(a) 
1 iiogtr1 iiog a r 1 ] ' 

where Fp(a)/|log a|p 1 at a = 0 and Fp(b)/|log b|p * at b = l are interpreted as 
lima_0+ Fp(a)/|log a|p_1 and l i m ^ ! . Fp(fc)/|log b | p _ 1 respectively; and we have 
lima_o+ Fp(a)/|log a|p_1 = 0 if either jc

0 x_1(F(x)/|log x|)p dx <oo 0r 
JSx~1U/W)pdx<oo ( 0 < c < l ) , and limb_1_ Fp(ft)/|log 6|p~1 = 0 i/ eitfier 
hx~1(F(x)/ |logx|)pdx<oo or £ x_1(x/(x))pdx<oo ( 0 < c < l ) . Moreover, the 
constant factor [p / (p- l ) ] p is the best possible in (4a), and it is also the best 
possible in (4b) when the term (p/p-l)[Fp(b)/ | log fc|p_1-Fp(a)/|log a|p_1] re
mains unchanged. Equal sign in (4a) or (4b) holds if and only if F(x) = 
K|logx|1 _ 1 / p (K>0) in [0, 1] or in [a, b] respectively. 

The proofs of Theorems 1-4 are similar to that of Theorem 2 in [2], so I only 
give the proof of Theorem 1 in a very condensed form. The proof depends 
upon the following lemma, which is essentially due to Benson [1, p. 300]: 

LEMMA 1 [2, Lemma 1]. Let u(x) be absolutely continuous on [a, b] with 
u'(x)^0 a.e. in [a,b]. Also, suppose that Q(x) is positive and continuous on 
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(a, b), and G(u, x) is continuously differentiable for x in [a, b] and u in the range 
of the function u(x), with Gu(u, x)>0. Then, if the integral exists, 

[ {Qu'p + (y/p)p / ( p _ 1 )(p- ïjG^-VQ-vtp-v+yGJ dx 

>y{G(u(b),b)-G(u(a),a)}, 

where y is any positive number, p > l and Gu = (d/du)G(u,x), Gx = 
(d/dx)G(u, x). Equality holds if and only if the differential equation 

V I / (P-D 

is satisfied for almost all x in [a, b]. 

<-<$"(%)' 

Proof of Theorem 1. We first prove (lb) for Ka<b<oo. Let K a < J C < 
&<oo. Applying Lemma 1 with u(x) = -F (x ) = - £ / ( * ) dt, Q(x) = x p _ 1 logpx, 
G(u, x) = -(-u)p log x, we get 

{X-\X lOgX f(x))P + [ ( p - l)y^CP-l)_ y ] x - l ( - M ) P } dx 

> y[-Fp(b) log b + Fp(a) log a] 

for every y ^ O . Since [ (p- l )y p / ( p _ 1 ) - 'y ] attains its minimum value - l / p p at 
y = l / p p ~\ (lb) follows immediately. 

Next, consider the case when a — 1 or b = oo. From what we have just 
proved we see that if ft x_ 1(xlogx/(x))pdx<oo5 then fax^F^ix) dx< 
£ x - 1 ^ * ) dx+ p]^(a) log a <p p f t ^ 
(x log* /(x))p dx + pFp(c)log c < oo for every a G (1, c), and it follows 
that \c

1x~1Fp{x)dx<^. But ft x"1Fp(x) dx<™ implies F p (a) loga = 
F^aJJ î x'1 dx < JJ x_ 1Fp(x) dx -» 0 as a -» 1+ (in fact Lemma 3 in [2] can also 
be proved by this simple argument). Thus either ft x~1Fv(x) dx<oo or 
ft x_1(x logx /(x))p dx <oo implies l im a^1 + F ' ^ l o g a = 0. On the other hand, if 
Jrx~1Fp(x)dx<oo, we have Fv(b)\ogb = 2Fp(b)^bx~Ux^2^bx-1Fv(x)dx^ 
0 as b—»oo. if J"x_ 1(x logx/(x))pdx<oo? by a standard application of 
Holder's inequality (as in [3, pp. 20-21], for example) we have 

F(b) = /(x)x (p-1) /p logx (x(p-1Vp log x)"1 dx 

< { [ x -^x logx/(*))" <fxj1/fj f (x log^P-^x)-1 dx] 

= J j x"x(x logx/(x))p dxj {(p - l)(p-1)/p(log ft)"1/p}, 

and again we obtain lim^oo Fp(b)log b = 0. So, we have proved (lb) for a = 1 
or fc = oo. (la) is the special case of (lb) in which a = 1 and b = oo. 

(P-D/P 

https://doi.org/10.4153/CMB-1979-023-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1979-023-5


1979] EXTENSIONS OF HARDY'S INEQUALITY 169 

We now investigate the condition under which equality in (lb) or (la) occurs. 
When K a < b < » , Lemma 1 shows that equality in (lb) holds if and only if 
the differential equation w' = (y/p)1/(p"1)(Gu/Q)1/(p_1) is satisfied for almost all x 
in [a, b], where y = l /pp"\ Calculation shows that this is equivalent to F(x) = 
Klog~1/px in [a, b], where K is a non-negative constant. 

Write I(a, 0) 

= [ {x-\x log* f(x))p dx - p'px"1Fp(x)} dx 
Joe 

+ p-p+1[Fp(j3)log 0 -Fp(a)log a] 

= [ fx-1(xlogx/(x))p-p-px-1Fp(x) + p-p+1-^[Fp(x)logx]|dx. 

We have I(a,/3)>0 for K a < 0 < o o , and I(a, j3) = 0 if and only if F(x) = 
Xlog~1/p x in [a, j8]. Therefore equality in (la) or in (lb) holds if and only if 
F(x) = K log~1/p x in [1, oo) or in [a, b) respectively, and in this case both sides 
of (lb) are equal and finite if 1 < a < b <°°. Thus, we have also shown that the 
constant factor pp is the best possible in (lb) when l<a<b<*>. 

To see that the constant pp is the best possible in the general case, we 
replace pp in (la) and (lb) by a constant A and consider particular functions 
f(x) to show that A>pv. In (lb) we put /(x) = (x log1_e+1/px)_1 (e>0) when 
a = 1 and 1< fc < oo, and we put f(x) = x log1+e+1/p x)_1 (e > 0) when 1< a < oo 
and b - oo. In (la) we put 

( l < x < 2 ) 

(xlog1+e+1/px)-\ (x>2). 

Straightforward calculation shows that in all cases, by letting e-»0+ we obtain 
A>f. 

This completes the proof of Theorem 1. 
By applying Lemma 1, Theorems 2-4 are proved in a similar way. To prove 

Theorem 2 we put w(x) = F(x) = JS/(0 dt, Q(x) = xp~1(~logx)p, G(w,x) = 
- (w)p log x. To prove Theorem 3 we put u(x) = F(x) = Jï f(t) dt, Q(x) = xp"\ 
G(u, x)= wp/logp_1 x. To prove Theorem 4 we put u(x)= -F(x)= -jlf(t) dt, 
Q(x) = xp"\ G(u, x) = - ( - u)p/(-log x)*-1. 
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