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Revealed strength of preference: Inference from response times

Arkady Konovalov∗ Ian Krajbich†

Abstract

Revealed preference is the dominant approach for inferring preferences, but it is limited in that it relies solely on discrete

choice data. When a person chooses one alternative over another, we cannot infer the strength of their preference or predict

how likely they will be to make the same choice again. However, the choice process also produces response times (RTs), which

are continuous and easily observable. It has been shown that RTs often decrease with strength-of-preference. This is a basic

property of sequential sampling models such as the drift diffusion model. What remains unclear is whether this relationship

is sufficiently strong, relative to the other factors that affect RTs, to allow us to reliably infer strength-of-preference across

individuals. Using several experiments, we show that even when every subject chooses the same alternative, we can still rank

them based on their RTs and predict their behavior on other choice problems. We can also use RTs to predict whether a subject

will repeat or reverse their decision when presented with the same choice problem a second time. Finally, as a proof-of-concept,

we demonstrate that it is also possible to recover individual preference parameters from RTs alone. These results demonstrate

that it is indeed possible to use RTs to infer preferences.
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1 Introduction

When inferring a person’s preferences, decision scientists

often rely on choice outcomes. This is the standard revealed

preference approach (Samuelson, 1938). While very power-

ful, relying purely on choice data does have its limitations.

In particular, observing a single choice between two options

merely allows us to order those two options (as less and

more preferred); we cannot infer the strength of the prefer-

ence. That is, we do not know the confidence with which

the person made the choice or the likelihood that they would

choose the same alternative again.

Choice itself is not the only output of the choice process.

We are also often able to observe other features such as re-

sponse times (RT), which are continuous and so may carry

more information than discrete choice outcomes (Loomes,

2005; Spiliopoulos & Ortmann, 2017). The potential is-

sue with RTs is that they are known to reflect many factors,
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including subject-level traits such as decision strategy and

motor latency (Kahneman, 2013; Luce, 1986), as well as fea-

tures of the choice problems such as complexity, stake size,

and option similarity (or attributes) (Bergert & Nosofsky,

2007; Bhatia & Mullett, 2018; Diederich, 1997; Fific, Little

& Nosofsky, 2010; Gabaix, Laibson, Moloche & Weinberg,

2006; Hey, 1995; Rubinstein, 2007; Wilcox, 1993).

One useful characteristic of RTs is that they often cor-

relate (negatively) with strength-of-preference. This effect

was observed in early studies in psychology and economics

(Dashiell, 1937; Diederich, 2003; Jamieson & Petrusic,

1977; Mosteller & Nogee, 1951; Tversky & Shafir, 1992)

and has been recently extensively researched using choice

models (Alós-Ferrer, Granić, Kern & Wagner, 2016; Buse-

meyer, 1985; Busemeyer & Rapoport, 1988; Busemeyer &

Townsend, 1993; Echenique & Saito, 2017; Hutcherson,

Bushong & Rangel, 2015; Krajbich, Armel & Rangel, 2010;

Krajbich & Rangel, 2011; Moffatt, 2005; Rodriguez, Turner

& McClure, 2014). In other words, choices between more

equally-liked options tend to take more time. If this relation-

ship is strong, relative to the other factors that affect RT, then

we should be able to infer strength-of-preference information

from RTs.1

Consider the following example. Suppose we are attempt-

ing to determine which of two people, Anne or Bob, has a

higher discount factor for future rewards (in other words,

is less patient). We ask each of them the same question:

“would you rather have $25 today or $40 in two weeks?”

1A similar approach has been adopted in the neuroimaging literature,

where it is considered important to go beyond correlations and demonstrate

that behavior can be predicted from brain activity (Haxby, Connolly &

Guntupalli, 2014).
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Suppose that both take the $40. With just this information

there is no way to distinguish between them. Now suppose

Anne made her choice in 5 seconds, while Bob made his

in 10 seconds. Who is more patient? We argue that the

answer is likely Anne. Since Anne chose the delayed option

more quickly than Bob, it is likely that she found it more

attractive. In other words, Anne’s relative preference for the

delayed option was likely stronger than Bob’s; she was far-

ther from indifference (i.e., the point at which she is equally

likely to choose either option).

Of course, if Anne and Bob employ different decision

strategies (e.g., Anne chooses based on heuristics while Bob

chooses based on deliberation) or differ on other relevant

characteristics (e.g., Anne is smarter or younger) then we

might be misled about their preferences. It is thus an em-

pirical question whether our example is actually feasible, or

merely speculation. This is a key question that we tackle in

this paper.

The answer to this question has potential practical im-

portance. Consider an online marketplace. A customer

might inspect a series of products but reject them all, mak-

ing the choice data uninformative. However, the customer

may linger more on certain items, revealing which ones were

most appealing. The online seller could use that information

to target related products at the customer. Or returning to

an interpersonal example, an overloaded clothes salesman

might focus their attention more on customers who hesitate

longer before returning items to the rack.

Taking this idea one step further, we might also want to

know whether choice data are necessary to infer preferences,

or whether RTs alone could suffice. In the example with

Anne and Bob, we used both the choice outcome and the

RT to rank the two decision makers on patience. While

the RT told us how easy the decision was for each person,

without the choice outcome we could not know whether

Anne faced an easy decision because she was very patient

or very impatient. This might lead one to believe that it is

still necessary to observe choice outcomes in order to infer

preferences. However, in theory, all we need is a second RT.

Suppose that both Anne and Bob take 5 seconds to choose

between the $25 today vs. $40 in two weeks, but we do not

see their choices. Let us assume, for the sake of this example,

that strength-of-preference is the only factor that affects RT.

At this point we can use Anne and Bob’s RTs to infer their

distance from indifference, but we cannot say whether they

were on the patient side or impatient side. Now we ask a

second question: $25 today vs. $50 in two weeks. Relative

to the previous question, we have made the “patient” option

more attractive, i.e., we have made the decision easier for a

patient person (e.g., someone who chose the $40) and more

difficult for an impatient person (e.g., someone who chose

the $25). Suppose Anne makes this decision in 6 seconds

while Bob makes this decision in 4 seconds. We can then

conclude that Bob is on the patient side and Anne is on the

impatient side. With just two questions we are thus able to

infer their temporal discounting factors (preferences, more

generally). Of course, this procedure assumes a noiseless

relationship between strength-of-preference and RT. In what

follows, we investigate the usefulness of this procedure using

more than two decisions (to compensate for noise in the

decision process) and show that the preferences inferred from

RTs can indeed be reliable.

Our work builds on a growing literature focused on se-

quential sampling models (SSM) (such as the drift-diffusion

model (DDM)) of economic decision making. The idea of

applying SSMs to economic choice was first introduced by

Jerome Busemeyer and colleagues in the 1980s (Busemeyer,

1985) and further developed into decision field theory in

subsequent years (Diederich, 1997, 2003; Roe, Busemeyer

& Townsend, 2001). Recent years have seen renewed in-

terest in this work due to the ability of these models to si-

multaneously account for choices, RTs, eye movements, and

brain activity in many individual preference domains such as

risk and uncertainty (Fiedler & Glöckner, 2012; Hunt et al.,

2012; Stewart, Hermens & Matthews, 2015), intertemporal

choice (Amasino, Sullivan, Kranton & Huettel, 2019; Dai &

Busemeyer, 2014; Rodriguez et al., 2014), social preferences

(Hutcherson et al., 2015; Krajbich, Bartling, Hare & Fehr,

2015; Krajbich, Hare, Bartling, Morishima & Fehr, 2015),

food and consumer choice (De Martino, Fleming, Garret &

Dolan, 2013; Krajbich et al., 2010; Milosavljevic, Malmaud,

Huth, Koch & Rangel, 2010; Polanía, Krajbich, Grueschow

& Ruff, 2014), and more complex decision problems (Caplin

& Martin, 2016; Konovalov & Krajbich, 2016). The SSM

framework views simple binary decisions as a mental tug-of-

war between the options (Bogacz, Brown, Moehlis, Holmes

& Cohen, 2006; Brunton, Botvinick & Brody, 2013; Fuden-

berg, Strack & Strzalecki, 2018; Shadlen & Shohamy, 2016;

Tajima, Drugowitsch & Pouget, 2016; Usher & McClelland,

2001; Woodford, 2014). For options that are similar in

strength (subjective value) it takes more time to determine

the winner, and in some cases the weaker side may prevail.

In other words, these models predict that long RTs indicate

indifference, and that RTs decrease as the superior option

gets better than the inferior option.

Here, we estimate individual preferences using subjective

value (utility) functions with single parameters and demon-

strate the strength of the relationship between preference and

RT, using experimental data from three prominent choice

domains: risk, time, and social preferences. We show that

single-trial RTs can be used to rank subjects according to

their degree of loss aversion, that RTs on “extreme” trials

(where most subjects choose the same option) can be used to

rank subjects according to their loss, time, and social pref-

erences, and that RTs from the full datasets can be used to

estimate preference parameters. In every case these rank-

ings significantly align with those estimated from subjects’

choices over the full datasets. We also show that trials with
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longer RTs are less consistent with a subject’s other choices,

and more likely to be reversed if presented a second time.

These results complement several recent papers that have

investigated the relationship between RT and preferences.

Chabris et al. (2009) use a structural RT model to estimate

time preferences in groups, but they do not attempt the same

exercise at the individual level. Alós-Ferrer et al. (2016)

demonstrate that preference reversals between choice and

valuation tasks are associated with longer RTs. We take

this idea a step further by looking at reversals between two

instances of identical choice problems. Finally, Clithero

(2018) uses the DDM to improve out-of-sample predictions

in food choice. We provide a complementary approach

where subjective values can be inferred parametrically, and

apply the DDM without using the choice data. Consider-

ing these results, our main contribution is in demonstrating

that, across many decision domains, there are several ways

in which RTs can supplement or even replace choice data in

individual preference estimation.

2 Methods

We analyze four separate datasets: the last two (Studies 2

and 3) were collected with other research goals in mind,

but included precise measurements of RTs, while the first

two (Study 1) were collected specifically for this analysis

(see Note 1 in the Supplement for summary statistics). For

each dataset, we selected a common, single-parameter pref-

erence model (i.e., subjective-value function). Our goal here

was not to compare different preference models but rather

to identify best-fitting parameter values given a particular

model that explains the data well. The decision problems in

these datasets were specifically designed with these particu-

lar models in mind.

In addition to the differing domains, these tasks vary along

a couple of dimensions that might affect the relationship be-

tween preference and RT. One dimension is time constraint.

Time limits are common in binary choice tasks in order

to keep subjects focused, but overly restrictive cutoffs may

dampen the effect of strength-of-preference on RTs. Here we

examine datasets with varying time constraints (3s, 10s, and

unlimited) in order to explore the robustness of our results.

2.1 Study 1: risky choice

2.1.1 Participants

This experiment was conducted at The Ohio State Univer-

sity. The experiment had two versions: 61 subjects partic-

ipated in the adaptive version of the task, earning $17–20

on average; and 39 subjects participated in the non-adaptive

version, earning $18 on average. In order to cover any po-

tential losses, subjects first completed an unrelated task that

endowed them with enough money to cover any potential

losses.

2.1.2 Adaptive risky choice task

In each trial, subjects chose between a sure amount of money

and a 50/50 lottery that included a positive amount and a loss

(which in some rounds was equal to $0). The set of decision

problems was adapted from Sokol-Hessner et al. (2009).

Subjects’ RTs were not restricted. In the adaptive experi-

ment, each subject’s choice defined the next trial’s options

using a Bayesian procedure to ensure an accurate estimate of

the subject’s risk and loss aversion within a limited number

of rounds (Chapman, Snowberg, Wang & Camerer, 2018).

Each subject completed the same three unpaid practice tri-

als followed by 30 paid trials. Each subject received the

outcome of one randomly selected trial. Importantly, every

subject’s first paid trial was identical.

2.1.3 Non-adaptive risky choice task

In the non-adaptive experiment, each subject first completed

a three-trial practice followed by 276 paid trials. These trials

were presented in two blocks of the same 138 choice prob-

lems, each presented in random order without any pause be-

tween the two blocks. Subjects were endowed with $17 and

additionally earned the outcome of one randomly selected

trial (in case of a loss it was subtracted from the endowment).

2.1.4 Preference model

For both experiments we assumed a standard Prospect The-

ory value function (Kahneman & Tversky, 1979):

U(x) =

{

xρ if x ≥ 0

−λ · −xρ if x < 0,
(1)

where x is the monetary amount, ρ reflects risk aversion, and

λ captures loss aversion. For simplicity, we assumed linear

probability weighting. Similar to prior work using this task,

we found that risk aversion plays a minimal role in this task

relative to loss aversion, with ρ estimates typically close to 1.

Therefore, acknowledging that varying levels of risk aversion

could add noise to the RTs, for the analyses below (both

choice- and RT-based) we assumed risk neutrality (ρ = 1).

In the non-adaptive experiment, the preference functions

were estimated using a standard MLE approach with a logit

choice function. We used only trials with non-zero losses

(specifically, 112 out of 138 decision problems). Two sub-

jects with outlying estimates of λ (beyond three standard

deviations of the mean) were removed from the analysis due

to unreliability of these estimates (subjects making choices

that are extremely biased towards one of the options). The

same exclusion criterion was used for the other datasets.

https://doi.org/10.1017/S1930297500006082 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500006082


Judgment and Decision Making, Vol. 14, No. 4, July 2019 Preference strength inferred from response time 384

2.2 Study 2: intertemporal choice

2.2.1 Participants

This experiment was conducted while subjects underwent

functional magnetic resonance imaging (fMRI) at the Cal-

ifornia Institute of Technology (Hare, Hakimi & Rangel,

2014). 41 subjects participated in this experiment, earning a

$50 show-up fee and the amount from one randomly selected

choice. The payments were made using prepaid debit cards

that were activated at the chosen delayed date.

2.2.2 Task

In each round, subjects chose between getting $25 right after

the experiment or a larger amount (up to $54) at a later date

(7 to 200 days). There were 108 unique decision problems

and subjects encountered each problem twice. All 216 trials

were presented in random order. Each trial, the amount

was first presented on the screen, followed by the delay, and

subjects were asked to press one of two buttons to accept or

reject the offer. The decision was followed by a feedback

screen showing “Yes” (if the offer was accepted) or “No”

(otherwise). The decision time was limited to 3 seconds,

and if a subject failed to give a response, the feedback screen

contained the text “No decision received”. These trials (2.6%

across subjects) were excluded from the analysis. Trials were

separated by random intervals (2–6 seconds).

2.2.3 Preference model

In line with the authors who collected this dataset, we used a

hyperbolic discounting subjective-value function (Loewen-

stein & Prelec 1992; Ainslie 1992):

U(x,D) =
x

1 + kD
, (2)

where x is the delayed monetary amount, k is the discount

factor (higher is more impatient), and D is the delay period

in days. One subject who chose $25 now on every trial

was removed from the analysis. Preference parameters were

estimated using a standard MLE approach with a logit choice

function. Two subjects with outlying estimates of k were also

removed from the analysis.2

2.3 Study 3: social preference

2.3.1 Participants

This dataset was collected while subjects underwent fMRI

at the Social and Neural Systems laboratory, University of

Zurich (Krajbich et al., 2015). In total, 30 subjects were

2We also considered an alternative attribute-wise comparison model

(Dai & Busemeyer, 2014), but it did not fit the data as well as the hyperbolic

model (total log-likelihood of −3148 vs. −3024). Therefore, for the rest of

the paper we focus only on the hyperbolic model.

recruited for the experiment. They received a show-up fee

of 25 CHF and a payment from 6 randomly chosen rounds,

averaging at about 65 CHF.

2.3.2 Task

Subjects made choices between two allocations, X and Y,

which specified their own payoff and an anonymous re-

ceiver’s payoff. The payoffs were displayed in experimen-

tal currency units, and 120 predetermined allocations were

presented in random order. Each allocation had a tradeoff

between a fair option (more equal division) and a selfish

option (with higher payoff to the dictator). 72 out of 120 de-

cision problems per subject had higher payoff to the dictator

in both options X and Y (to identify advantageous inequality

aversion), while the rest of the problems (48/120) had higher

payoffs to the receiver in both options (to identify disadvan-

tageous inequality aversion). In each trial, subjects observed

a decision screen that included the two options, and had to

make a choice with a two-button box. Subjects were required

to make their decisions within 10 seconds; if a subject failed

to respond under this time limit, that trial was excluded from

the analysis (4 trials were excluded). Intertrial intervals were

randomized uniformly from 3 to 7 seconds. Subjects read

written instructions before the experiment, and were tested

for comprehension with a control questionnaire. All subjects

passed the questionnaire and understood the anonymous na-

ture of the game.

2.3.3 Preference model

To fit choices in this experiment, we used a standard Fehr-

Schmidt other-regarding preference model (Fehr & Schmidt,

1999):

Ui(xi, xj) = xi−α ·max(xj− xi,0)− β ·max(xi− xj,0), (3)

where xi is the dictator’s payoff, xj is the receiver’s payoff, α

reflects disadvantageous inequality aversion, and β reflects

advantageous inequality aversion. Each trial was designed to

either measure α or β, so we treated this experiment as two

separate datasets. The preference parameters were estimated

using a standard MLE approach with a logit choice function.

One subject with an outlying estimate of α was removed

from the analysis.

2.4 Computational modeling

2.4.1 Choice-based estimations

The three preference functions we selected to model sub-

jects’ choices performed well above chance. To examine the

number of choices that were consistent with the estimated

parameter values, we used standard MLE estimates of logit

choice functions (see the Supplement) to identify the “pre-

ferred” alternatives in every trial and compared those to the
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actual choice outcomes. More specifically, we calculated

subjective values using parameters estimated purely from

choices, and in every trial predicted that the alternative with

the higher subjective value would be chosen with certainty.

All subjects were very consistent in their choices even in

the datasets with a large number of trials: social choice α:

94%, social choice β: 93%, intertemporal choice: 83%,

non-adaptive risky choice: 89% (see Figure S5).

2.4.2 Drift-diffusion model (DDM)

We used the simple, most robust SSM variant, which is

the DDM with constant thresholds (see Note 2 in the

Supplement), where we assumed that drift rate on every trial

is a linear function of the difference in the subjective values

of the two alternatives. Unlike previous studies, we assume

that only RT data are available and use the RT probability

densities to estimate the preference parameter for each sub-

ject i (θi) given the empirical distribution of RTs. Note that

we do not use choice-conditioned RT distributions. Instead

we maximize the RT likelihood function across both choice

boundaries:

LL =

∑

n log
(

f (RTn,an = 1|b, τ, vn)
)

+ log
(

f (RTn,an = 2|b, τ, vn)
)

.
(4)

Here f (·) is the response time density function, RT is the

response time on a specific trial, a is the choice the subject

could have made, b is the DDM decision boundary, τ is non-

decision time, and vn is the drift rate on the specific trial n,

which depends on the difference in subjective values, which

in turn depends on the subject’s preference parameter (θi)

(see Note 2 in the Supplement). Intuitively, the individual

parameter is identified due to the fact that longer RTs corre-

spond to lower drift rates and thus smaller subjective-value

differences. Please see the Supplement for more detail.

3 Results

3.1 RTs peak at indifference

We first sought to establish the hypothesized negative corre-

lation between strength-of-preference and RT. For this analy-

sis, our measure of strength-of-preference was the difference

between the subject’s preference parameter (estimated purely

from their choices, see Note 2 in the Supplement) and the

parameter value that would make the subject indifferent be-

tween the two options in that trial (we refer to this as the

“indifference point”). When a subject’s parameter value is

equal to the indifference point of a trial, we say that the sub-

ject is indifferent on that trial and so strength-of-preference

is zero.

Let us illustrate this concept with a simple example. Sup-

pose that in the intertemporal-choice task a subject has to

choose between $25 today and $40 in 30 days. The subject

would be indifferent with an individual discount rate k∗ that

is the solution to the equation $25 = $40/(1 + 30k∗), or

k∗ = 0.0125. This would be the indifference point of this

particular trial. A subject with k = k∗ would be indifferent

on this trial, a subject with a k < k∗ would favor the delayed

option, and a subject with a higher k > k∗ would favor the

immediate option.

We hypothesized that the bigger the absolute difference

between the subject’s parameter and the trial’s indifference

point |k− k∗ |, the stronger the preference, and the shorter the

mean RT. This is analogous to how, in decision field theory,

the difference in valence between the two options determines

the preference state and thus the average speed of the deci-

sion (Busemeyer & Townsend 1993). We observe this effect

in all of our datasets, with RTs peaking when a subject’s

parameter is equal to the trial indifference point (Figure 1).

Mixed-effects regression models show strong, statistically

significant effects of the absolute distance between the indif-

ference point and subjects’ individual preference parameters

on log(RTs) for all the datasets (fixed effect of distance on

RT: dictator game α: t = −7.5, p < 0.001; dictator game β:

t = −9.1, p < 0.001; intertemporal choice k: t = −9.9, p <

0.001; non-adaptive risky choice λ: t = −9.6, p < 0.001,

adaptive risky choice λ: t = −4.4, p < 0.001).

Having verified the relationship between strength-of-

preference and RT, we next asked whether we could invert

this relationship. In other words, we sought to test whether

one can estimate preferences from RTs. First, we investi-

gated whether RTs can reveal preference information when

only a single trial’s data is available.

3.2 One-trial preference ranking

In the adaptive risk experiment, all subjects faced the same

choice problem in the first trial. They had to choose between

a 50/50 lottery with a gain ($12) and a loss ($7.5), vs. a sure

amount ($0). Assuming risk neutrality, a subject with a loss

aversion coefficient of λ = 1.6 should be indifferent between

these two options, with more loss-averse subjects picking the

safe option, and the rest picking the risky option.

Because the mean loss aversion (estimated based on all the

choices) in our sample was 2.5 (median = 2.46), most of the

subjects (44 out of 61) picked the safe option in this first trial.

Now, if we had to restrict our experiment to just this one trial,

the only way we could classify subjects’ preferences would

be to divide them into two groups: those with λ ≥ 1.6 and

those with λ < 1.6. Within each group we would not be able

further distinguish between individuals.

However, by additionally observing RTs we can establish

a ranking of the subjects in each group. Specifically, we

hypothesized that subjects with loss aversion closer to 1.6

would exhibit longer RTs. To test this hypothesis we ranked

subjects in each group according to their RTs and then com-
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Figure 1: RTs peak at indifference. Mean RT in seconds as a function of the distance between the individual subject’s

preference function parameter and the indifference point on a particular trial; data are aggregated into bins of width 0.02 (top

row), 0.01 (bottom left panel), and 1 (bottom right panel), which are truncated and centered for illustration purposes. Bins with

fewer than 10 subjects are removed for display purposes. Bars denote standard errors, clustered at the subject level.

pared those rankings to the “true” loss aversion parameters

estimated from all 30 choices in the full dataset (see Figure 2,

Note 2 in the Supplement, and Figure S5 for the choice-based

estimates).

There was a significant rank correlation (Spearman) be-

tween RTs and loss seeking in the “safe option” group (r =

0.43, p = 0.004) and marginally between RTs and loss aver-

sion in the “risky option” group (r = 0.41, p = 0.1). Thus,

the single-trial RT-based rankings aligned quite well with

the 30-trial choice-based rankings.

3.3 Uninformative choices

A similar use of RT-based inference is the case where an

experiment (or questionnaire) is flawed in such a way that

most subjects give the same answer to the choice problem

(e.g., because it has an extreme indifference point, or because

people feel social pressure to give a certain answer, even

if it contradicts their true preference (Coffman, Coffman

& Ericson, 2017)). This method could be used to bolster

datasets that are limited in scope and so unable to recover all

subjects’ preferences.

To model this situation, for each dataset (non-adaptive

risk, intertemporal choice, and social choice) we isolated the

4–10 trials (depending on the dataset) with the highest indif-

ference points, where most subjects chose the same option

(e.g., the risky option), and limited our analysis to those sub-

jects who picked this most popular option. Then we iterated

an increasing set of trials (just the highest point, the first and

the second highest points, the first, second, and third, and so

on), took the median RT in this set, and correlated it with

the “true” choice-based estimates. We hypothesized that the

slower the decisions on these trials, the more extreme the

choice-based parameter value for that subject.

The set of trials varied across datasets due to the structure

of the experiments. In the risk and intertemporal datasets
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Figure 2: Preference rank inferred from a single decision problem. RTs in the first trial of the adaptive risk experiment as

a function of the individual subject’s loss-aversion coefficient from the whole experiment; each point is a subject, Spearman

correlations displayed. In this round, each subject was presented with a binary choice between a lottery that included a 50%

chance of winning $12 and losing $7.5, and a sure option of $0. The right panel displays subjects who chose the safe option,

and the left panel shows those who chose the risky option. The solid black lines are regression model fits.

every decision problem was shown twice, so we started with

two trials and then increased in steps of two. For the risk task

there were several trials with identical indifference points

after the first 8 trials, so we stopped there. For the social-

preference datasets there were many trials with the same

indifference point (8 and 6 for α and β respectively) so we

simply used those trials, going from lowest to highest game id

number (arbitrarily assigned in the experiment code). Note

that we used only the highest indifference points, since trials

with indifference parameters close to zero were often trivial

“catch” trials, e.g., $25 today vs. $25 in 7 days.

Confirming the hypothesis, we found that the RTs on these

trials were strongly predictive of subjects’ choice-based pa-

rameters in all four domains (Figure 3), with Spearman cor-

relations ranging from 0.37 to 0.84 (for the largest set: risk

choice (n = 19): ρ = 0.50, p = 0.03; intertemporal choice

(n = 25): ρ = 0.59, p = 0.002; social choice α (n = 26): ρ

= 0.50, p = 0.009; social choice β (n = 20): ρ = 0.84, p <

0.001). Thus, we again see, in every domain, that RT-based

rankings from a small subset of trials align well with choice-

based rankings from the full datasets. These analyses also

hint at potential benefits from including more trials, but also

suggest that RTs may not be that noisy once we control for

the difficulty of the question and subject-level heterogeneity.

3.4 DDM-based preference parameter esti-

mation from RTs

The results described in the previous sections demonstrate

that we can use RT to rank subjects according to their prefer-

ences on trials where they all make the same choice. A more

challenging problem is to estimate a subject’s preferences

from RT alone. In this section, we explore ways to estimate

individual subjects’ preference parameters from their RTs

across multiple choice problems.

The DDM predicts more than just a simple relationship

between strength-of-preference and mean RT; it predicts en-

tire RT distributions. The drift rate in the model is a linear

function of the subjective value difference (or in decision

field theory the valence difference) and so by estimating drift

rates we can potentially identify the latent preference param-

eters. We hypothesized that the DDM-derived preference

parameters, using only RT data, would correlate with the

choice-based preference parameters estimated in the usual

way.

We used the simple standard DDM, but did not condition

the RT distributions on the choice made in each trial (see

Section 2.4. and the Supplement). We assumed no starting

point bias and, following the traditional approach, assumed

that the drift rate is a simple linear function of the differ-

ence in subjective values (Busemeyer & Townsend, 1993;

Dai & Busemeyer, 2014). Parameter recovery simulations

confirmed that the preference parameters could be identified

using this method (Figure S6).

First, we estimated the DDM assuming that the boundary

parameter b, non-decision time τ, and drift scaling parameter

z were fixed across subjects (see Note 2 in the Supplement).

We made this simplifying assumption to drastically reduce

the number of parameters we needed to estimate. In each

dataset, we found that DDM-derived preference parameters

were correlated with the choice-based parameters (social

choice α: r = 0.39, p = 0.04, t(27) = 2.2; social choice β: r

= 0.52, p = 0.003, t(28) = 3.2; intertemporal choice k: r =

0.57, p < 0.001, t(37) = 4.2; risky choice λ: r = 0.36, p =
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Figure 3: Spearman correlations between choice-based parameter estimates and the median RT in the trials with the highest

indifference points, for increasing sets of these extreme trials.

0.03, t(35) = 2.26; Pearson correlations, Figure S7).

We did not use the adaptive risk dataset here (or for subse-

quent analyses) since the adaptive nature of the task means

that subjects should be closer to indifference as the exper-

iment progresses. The well-established negative correla-

tion between trial number and RT would thus counteract the

strength-of-preference effects and interfere with our ability

to estimate preferences.

We also estimated the DDM for each subject separately,

assuming individual variability in the boundary parameter

b, non-decision time τ, and drift scaling parameter z. In

some cases, this causes identification problems for certain

subjects (the parameters were estimated at the bounds of the

possible range), most likely due to the small number of trials

(only 48 trials to estimate 4 parameters in the case of α in

the social preference task) and the tight distribution of sub-

jects’ indifference points in that task. After excluding these

subjects (2/30 and 2/30 in the social choice dataset, 16/39 in

the intertemporal choice dataset, and 7/37 in the risk choice

dataset), we found that in most cases correlations between

DDM parameters and choice-based parameters were stronger

than in the pooled estimation variant (social choice α: r =

0.09, p = 0.65, t(25) = 0.45; social choice β: r = 0.74, p <

0.001, t(26) = 5.54; intertemporal choice k: r = 0.63, p =

0.001, t(22) = 3.84; risky choice λ: r = 0.53, p = 0.002, t(28)

= 3.33; Pearson correlations, Figure S8).

These results highlight that it is useful to have trials with a

wide range of indifference points. This can be inefficient with

standard choice-based analyses, since most subjects choose

the same option on trials with extreme indifference points.

However, when including RTs, these trials can still convey

useful information, namely the strength-of-preference.

3.5 Alternative approaches to preference pa-

rameter estimation from RTs

The DDM may seem optimal for parameter recovery if that

is indeed the data generating process. However, several fac-

tors likely limit its usefulness in our settings. The DDM has

several free parameters that are identified using features of
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Figure 4: Slow decisions tend to occur at indifference. (a-d) Subject data from each task. RT in seconds as a function of

the distance between the individual subject preference parameter and the indifference point on a particular trial; gray dots

denote individual trials. Red triangles denote trials with the highest RT for each individual subject. (e) Simulation of the

DDM. Response times (RTs) as a function of the difference in utilities between two options in 900 simulated trials. The gray

dots show individual trials, the black circles denote averages with bins of width 10. The parameters used for the simulation

correspond to the parameters estimated at the group level in the time discounting experiment (b = 1.33, z = 0.09, τ = 0.11).

Subjective-value differences are sampled from a uniform distribution between −20 and 20. (f) Example of an individual

subject’s RT-based parameter estimation. The plot shows RTs in all trials as a function of the indifference parameter value

on that trial. Observations in the top RT decile are shown in red. The red triangle shows the longest RT for the subject. The

solid vertical red line shows the subject’s choice-based parameter estimate. The dotted vertical red line shows the average

indifference value for the top RT decile approach. The dotted grey line shows the local regression fit (LOWESS, smoothing

parameter = 0.5).

choice-conditioned RT distributions. Identification thus typ-

ically relies on many trials and observing choice outcomes.

Without meeting these two requirements, the DDM approach

may struggle to identify parameters accurately. Thus, we ex-

plored alternative, simpler approaches to analyzing the RTs.

One alternative approach is to focus on the longest RTs.

Long RTs are considerably more informative than short RTs.

Sequential sampling models correctly predict that short RTs

can occur at any level of strength-of-preference, but long RTs

almost exclusively occur near indifference (Figure 4). With

these facts in mind, we set about constructing an alternative

method for using RTs to infer a subject’s indifference point.

Clearly, focusing on the slowest trials would yield less biased

estimates of subjects’ indifference points. However, using

too few slow trials would increase the variance of those

estimates. We settled on a simple method that uses the

slowest 10% of a subject’s choices, though we also explored

other cutoffs (Figure S9).

In short, our estimation algorithm for an individual sub-

ject includes the following steps: (1) identify trials with RTs

in the upper 10% (the slowest decile); (2) for each of these

trials, calculate the value of the preference parameter that

would make the subject indifferent between the two alter-

natives; (3) average these values to get the estimate of the
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Figure 5: Estimates of subjects’ preference parameters, estimated using the top RT decile method. Subject-level correlation

(Pearson) between parameters estimated from choice data and RT data. The solid lines are 45 degree lines. The dotted red

lines indicate the minimum and maximum parameter values that can be estimated from the RTs.

subject’s parameter (see Figure 4f and the Supplement for

formal estimation details and Figure S6 for the parameter re-

covery simulations). It is important to note that this method

puts bounds on possible parameter estimates: the average

of the highest 10% of all possible indifference values is the

upper bound, while the average of the lowest 10% of the

indifference values is the lower bound.

Again, the parameters estimated using this method were

correlated with the same parameters estimated purely from

the choice data, providing a better prediction than the DDM

approach (social choice α: r = 0.44, p = 0.02, t(27) = 2.54;

social choice β: r = 0.56, p = 0.001, t(28) = 3.57; intertempo-

ral choice k: r = 0.71, p < 0.001, t(37) = 6.17; risky choice λ:

r = 0.64, p < 0.001, t(35) = 4.9; Pearson correlations; Figure

5, see the Supplement for estimation details for both meth-

ods). Furthermore, these parameters provided prediction

accuracy that was better than the informed baseline in three

out of four cases (excluding social choice α). In all cases, a

random 10% sample of trials produced estimates that were

not a meaningful predictor of the choice-based parameter

values (since these estimates are just a mean of 10% random

indifference points). The RT-based estimations have upper

and lower bounds due to averaging over a 10% sample of tri-

als and thus are not able to capture some outliers (Figure 5).

Furthermore, the number of “extreme” indifference points in

the choice problems that we considered is low, biasing the

RT-based estimates towards the middle.

We also explored a method using the whole set of RT data

and a non-parametric regression, but its performance was

uneven across the datasets (see the Supplement and Figure

S6 for the parameter recovery).

3.6 Choice reversals

Finally, we explored one additional set of predictions from

the revealed strength-of-preference approach. We know that

when subjects are closer to indifference, their choices be-

come less predictable, and they slow down. Therefore, slow
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choices should be less likely to be repeated (Alós-Ferrer et

al., 2016).

In all three datasets, the choice-estimated preference

model was significantly less consistent with long-RT choices

than with short-RT choices (based on a median split within

subject): 80% vs 89% (p < 0.001) in the risky choice exper-

iment, 71% vs 79% (p < 0.001) in the intertemporal choice

experiment, 88% vs 94% (p = 0.008) and 90% vs 96% (p

< 0.001) in the dictator game experiment; p-values denote

Wilcoxon signed rank test significance on the subject level.

A second, more nuanced feature of DDMs is that with

typical parameter values, without time pressure, they some-

times predict “slow errors”, even conditioning on difficulty

(Ratcliff & McKoon, 2008). In preferential choice there

are no clear correct or error responses, however, we can

compare choices that are consistent or inconsistent with the

best-fitting choice model. The prediction is that inconsistent

choices should be slower than consistent ones.

To control for choice difficulty, we ran mixed-effects re-

gressions of choice consistency on the RTs and the absolute

subjective-value difference between the two options. In all

cases we found a strong negative relationship between the

RTs and the choice consistency (slower choice = less consis-

tent) (fixed effects of RTs: social choice α: z = −2.62, p =

0.009; social choice β: z = −3.3, p < 0.001, intertemporal

choice: z = −5.28, p < 0.001, risk choice: z = −5.35, p <

0.001).

In two of the datasets (intertemporal choice and non-

adaptive risk choice) subjects faced the same set of decision

problems twice. This allowed us to perform a more direct

test of the slow inconsistency hypothesis by seeing whether

slow decisions in the first encounter were more likely to be

reversed on the second encounter.

In the intertemporal choice experiment, the median RT for

a later-reversed decision was 1.36 s, compared to 1.17 s for

a later-repeated decision. A mixed-effects regression effect

of first-choice RT on choice reversal, controlling for the ab-

solute subjective-value difference, was highly significant (z

= 4.04, p < 0.001). The difference was even stronger in the

risk choice experiment: subsequently reversed choices took

2.36 s versus only 1.4 s for subsequently repeated choices.

Again, a mixed-effects regression revealed that RT was a sig-

nificant predictor of subsequent choice reversals (controlling

for absolute subjective-value difference, z = 5.2, p < 0.001).

There are a couple of intuitions for why slow decisions are

still less consistent, even after controlling for difficulty. First,

the true difficulty of a decision can only be approximated.

Even with identical choice problems, one attempt at that

decision might be more subjectively difficult than another.

In the DDM, this is captured by across-trial variability in drift

rate. In other words, one cannot fully control for difficulty

in these kinds of analyses. So, slow decisions can still signal

proximity to indifference, and thus inconsistency in choice.

Second, slow errors can also arise from starting-points that

are biased towards the preferred category (e.g., risky options)

(Chen & Krajbich, 2018; White & Poldrack, 2014). In these

cases, preference-inconsistent choices typically have longer

distances to cover during the diffusion process and so take

more time.

4 Discussion

Here we have demonstrated a proof-of-concept for the

method of revealed strength-of-preference. This method

contrasts with the standard method of revealed preference, by

using response times (RTs) rather than choices to infer pref-

erences. It relies on the fact that people generally take longer

to decide as they approach indifference. Using datasets from

three different choice domains (risk, temporal, and social)

we established that preferences are highly predictable from

RTs alone. Finally, we also found that long RTs are predic-

tive of choice errors, as captured by inconsistency with the

estimated preference function and later choice reversals.

Our findings also have important implications for anyone

who studies individual preferences.

First, using RTs may allow one to estimate subjects’ pref-

erences using very short and simple decision tasks, even

a single binary-choice problem. This is important since

researchers, and particularly practitioners, can often only

record a small number of decisions (Toubia, Johnson, Evge-

niou & Delquié, 2013). Since RT data is easily available in

online marketplaces, and many purchases or product choices

occur only once, these data might provide important insight

into customers’ preferences. Along the way, the speed with

which customers reject other products might also reveal im-

portant information. On the other hand, clients who wish

to conceal their strength-of-preference, might use their RT

strategically to avoid revealing their product valuations.

Second, the fact that RTs can be used to infer preferences

when choices are unobservable or uninformative is an im-

portant point for those who are concerned about private in-

formation, institution design, etc. For instance, while voters

are very concerned about the confidentiality of their choices,

they may not be thinking about what their time in the vot-

ing booth might convey about them. In an election where

most of a community’s voters strongly favor one candidate,

a long stop in the voting booth may signal dissent. Another

well-known example is the implicit association test (IAT),

where subjects’ RTs are used to infer personality traits (e.g.,

racism) that the subjects would otherwise not admit to or even

be aware of (Greenwald, McGhee & Schwartz, 1998). Thus,

protecting privacy may involve more than simply masking

choice outcomes.

Third, our work highlights a method for detecting choice

errors. While the standard revealed preference approach

must equate preferences and choices, the revealed strength-

of-preference approach allows us to identify choices that are
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more likely to have been errors, or at the very least, made

with low confidence.

There are of course limitations to using RTs to infer

strength-of-preference. Other factors may influence RTs in

addition to strength-of-preference, such as complexity, stake

size, and trial number (Krajbich, Hare, Bartling & Fehr,

2015; Logan, 1992; Moffatt, 2005). It may be important to

account for these factors in order to maximize the chance

of success. A second issue is that we have focused on re-

peated decisions which are made quite quickly (1–3 seconds

on average) and so the results may not necessarily extend

to slower, more complex decisions (but see Krajbich, Hare,

Bartling & Fehr, 2015).

More research is required to distinguish between SSMs

and alternative frameworks (Achtziger & Alós-Ferrer, 2013;

Alós-Ferrer et al., 2016; Alós-Ferrer & Ritschel, 2018; Hey,

1995; Kahneman, 2013; Rubinstein, 2016), where long RTs

are associated with more careful or deliberative thought and

short RTs are associated with intuition. It may in fact be

the case that in some instances people do use a logic-based

approach, in which case a long RT may be more indicative

of careful thought, while in other instances they rely on a

SSM approach, in which case a long RT likely indicates

indifference. This could lead to contradictory conclusions

from the same RT data; for example, one researcher may see a

long RT and assume the subject is very well informed, while

another researcher may see that same RT and assume the

subject has no evidence one way or the other. More research

is required to test whether SSMs, which are designed to

tease apart such explanations, can be successfully applied to

complex decisions.
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