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Congruence Class Sizes in Finite
Sectionally Complemented Lattices

G. Grätzer and E. T. Schmidt

Abstract. The congruences of a finite sectionally complemented lattice L are not necessarily uniform

(any two congruence classes of a congruence are of the same size). To measure how far a congruence Θ

of L is from being uniform, we introduce Spec Θ, the spectrum of Θ, the family of cardinalities of the

congruence classes of Θ. A typical result of this paper characterizes the spectrum S = (m j | j < n) of

a nontrivial congruence Θ with the following two properties:

(S1) 2 ≤ n and n 6= 3.

(S2) 2 ≤ m j and m j 6= 3, for all j < n.

1 Introduction

1.1 Generalizing N6

The classical result of R. P. Dilworth (see G. Grätzer and E. T. Schmidt [2] and

G. Grätzer [1, Section II.3]) states that every finite distributive lattice D can be rep-

resented as the congruence lattice of a finite lattice A. In fact, the G. Grätzer and

E. T. Schmidt [2] version claims that A can be constructed as a finite sectionally com-

plemented lattice.
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Figure 1: The lattices N6.

The basic building stone of this lattice A is the lattice N6 of Figure 1. This lattice

has some crucial properties:
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(i) N6 is sectionally complemented.

(ii) N6 has exactly one nontrivial congruence Θ.

(iii) Θ has exactly two congruence classes: the prime ideal {0, q1, q2, q} and the dual

prime ideal {p, 1}.

(iv) p ≡ 0 (Φ) implies that q ≡ 0 (Φ), for every congruence Φ of N6.

We can associate with Θ the pair 〈4, 2〉 measuring the size of the two congruence

classes. We started with the following question: Which pairs 〈t1, t2〉 can substitute for

〈4, 2〉? In other words, for which pairs of integers 〈t1, t2〉 is there a finite lattice L such

that

(1) L is sectionally complemented.

(2) L has exactly one nontrivial congruence Θ.

(3) Θ has exactly two congruence classes: the prime ideal P and the dual prime ideal

Q satisfying that |P| = t1 and |Q| = t2.

(We did not add the fourth property from above since it follows from the three we

have stated.)

This question is answered as follows:

Theorem 1 Let 〈t1, t2〉 be a pair of natural numbers. Then there is a finite lattice L

with properties (1)–(3) iff 〈t1, t2〉 satisfies the following three conditions:

(P1) 2 ≤ t1 and t1 6= 3.

(P2) 2 ≤ t2 and t2 6= 3.

(P3) t1 > t2.

Figure 2 illustrates the lattice we obtain for 〈5, 4〉.

Figure 2: A lattice representing 〈5, 4〉.
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1.2 Spectrum

The question answered by Theorem 1 is a very special case of a more general problem:

What can we say about the cardinalities of the congruence classes of a nontrivial

congruence in a finite sectionally complemented lattice?

Let L be a finite lattice, and let Θ be a congruence of L. We denote by Spec Θ the

spectrum of Θ, that is, the family of cardinalities of the congruence classes of Θ. So

Spec Θ has |L/Θ| elements, and each element is an integer ≥ 1.

It is clear that if S is a family of integers ≥ 1, then it is the spectrum of some con-

gruence (take L as an appropriate chain). We are interested in the following prob-

lem: Characterize the spectra of nontrivial congruences of finite sectionally comple-

mented lattices.

This problem is completely solved by the following result:

Theorem 2 Let S = (m j | j < n) be a family of natural numbers, n ≥ 1. Then

there is a finite sectionally complemented lattice L with more than one element and a

nontrivial congruence Θ of L such that S is the spectrum of Θ iff S satisfies the following

conditions:

(S1) 2 ≤ n and n 6= 3.

(S2) 2 ≤ m j and m j 6= 3, for all j < n.

Figure 3 illustrates the lattice we obtain for S = (4, 4, 2, 2, 2).

Figure 3: A lattice representing S = (4, 4, 2, 2, 2).

This result is not a direct generalization of Theorem 1, since we did not assume

that Θ is the only nontrivial congruence of K. This additional condition is easy to

accommodate:

Corollary Let S = (m j | j < n) be a family of natural numbers, n > 1. Then there

is a finite sectionally complemented lattice L with more than one element with a unique

https://doi.org/10.4153/CMB-2004-019-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2004-019-3


194 G. Grätzer and E. T. Schmidt

nontrivial congruence Θ of L such that S is the spectrum of Θ iff S satisfies (S1) and (S2),

and additionally:

(S3) S is not constant, that is, there are j, j ′ < n satisfying that m j 6= m j ′ .

(S4) n 6= 4.

1.3 Valuation

There is a more sophisticated way of looking at spectra. Let L be a finite lattice, and

let Θ be a congruence of L. Then there is a natural map v : L/Θ → N (where N is the

set of natural numbers) defined as follows: Let a ∈ L/Θ; then a is a congruence class

of Θ, so we can define v(a) = |a|. We call v a valuation on L/Θ.

Now if L is a finite sectionally complemented lattice and Θ is a nontrivial con-

gruence of L, then we obtain the finite sectionally complemented lattice K = L/Θ
and the valuation v on K. The question is the following: Given a finite sectionally

complemented lattice K and a map v : K → N, when is v a valuation?

Theorem 3 Let K be a finite sectionally complemented lattice with more than one

element, and let v : K → N. Then there exists a finite sectionally complemented lattice

L and a nontrivial congruence Θ of L, such that there is an isomorphism ϕ : K → L/Θ
satisfying

v(a) = |ϕ(a)|, for all a ∈ K,

iff v satisfies the following conditions:

(V1) v is anti-isotone, that is, if a ≤ b in K, then v(a) ≥ v(b) in N.

(V2) 2 ≤ v(a) and v(a) 6= 3, for all a ∈ K.

As a very small example, let us start with K = M3 with the valuation illustrated on

Figure 4. The lattice L we construct from this valuation is the one shown in Figure 3.

4

2

2

4

2

Figure 4: A valuation on M3.

Again, we can ask about valuations induced by a finite sectionally complemented

lattice L and the unique nontrivial congruence Θ of L.

Corollary Let K be a finite sectionally complemented lattice with more than one

element, and let v : K → N. Then there exists a finite sectionally complemented lat-

tice L and a unique nontrivial congruence Θ of L, such that there is an isomorphism
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ϕ : K → L/Θ satisfying

v(a) = |ϕ(a)|, for all a ∈ K,

iff v satisfies the conditions (V1) and (V2), and additionally, v satisfies the following two

conditions:

(V3) v is not a constant function.

(V4) K is simple.

1.4 Uniformity and Regularity

Let L be a lattice, and let Θ be a congruence on L. The congruence Θ is called regular if

any congruence class determines Θ; it is called uniform if any two congruence classes

are of the same size. A lattice L is called regular if any congruence of L is regular; a

lattice L is called uniform if any congruence of L is uniform.

Sectionally complemented lattices are regular, however, in general, they are not

uniform as witnessed by N6. When are finite, sectionally complemented lattices uni-

form?

Theorem 4 Let L be a finite sectionally complemented lattice. Then L is uniform iff L

is a direct product of simple sectionally complemented lattices.

Finite relatively complemented lattices are not very interesting from the point of

view of congruence lattices; they all have Boolean congruence lattices. The following,

however, holds:

Theorem 5 A finite relatively complemented lattice is uniform. In fact, it is isoform.

Isoform lattices were introduced in G. Grätzer and E. T. Schmidt [4]. Let L be a

lattice, and let Θ be a congruence on L. The congruence Θ is called isoform if any two

congruence classes of Θ are isomorphic as lattices. A lattice L is called isoform if any

congruence of L is isoform.

Theorems 4 and 5 are quite easy to prove; they may even be folklore. Note that

Theorems 5 implies that a finite, relatively complemented lattice is a direct product

of simple relatively complemented lattices.

1.5 Outline

In Section 2, we prove a few useful lemmas on congruences of sectionally comple-

mented finite lattices to lay the foundation for later proofs. We also prove Theo-

rems 4 and 5. In Section 3, we present the basic lattice construction, and verify the

relevant properties of the lattice constructed. In Section 4, we prove Theorem 3. This

is easy, most of the work is done in Section 3. Most of this section is the proof of

the Corollary of Theorem 3. Theorems 1 and 2 are proved in Section 5; they are easy

consequences of Theorem 3. Finally, in Section 6, we list some open problems.
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2 Congruence Classes

We now prove a few lemmas that will be useful in proving the theorems of this paper.

In this section, let L be a finite sectionally complemented lattice with bounds 0L

and 1L. Let Θ be a nontrivial congruence of L. We set I = [0L]Θ (the congruence

class containing 0L). For any congruence class A of Θ, we set A = [oA, iA].

Lemma 1 The map ϕA : x 7→ x ∨ oA is a join-homomorphism of I onto A.

Proof ϕA is obviously a join-homomorphism. Let x ∈ A. Let x ′ be a sectional

complement of oA in [0L, x]. Then x ′ ∈ I and ϕA(x ′) = x, so ϕA is onto.

Corollary |A| ≤ |I|.

Lemma 2 Let A and B be congruence classes of Θ. If A ≤ B in L/Θ, then |B| ≤ |A|.

Proof Define a join-homomorphism ϕA,B of A into B by ϕA,B : x 7→ x ∨ oB. Obvi-

ously, ϕA ◦ ϕA,B = ϕB. By Lemma 1 ϕB is onto; therefore, so is ϕA,B. It follows that

|B| ≤ |A|.

Lemma 3 Let us assume that Θ is uniform. Then L ∼= I × L/Θ.

Proof Let A be a congruence class of Θ. Then by Lemma 1, ϕA is a join-homomor-

phism of I onto A. However, by the uniformity of Θ, it follows that |I| = |A|. There-

fore, ϕA : I → A is an isomorphism. For x ∈ A, let x ′ ∈ I be the unique element with

ϕA(x ′) = x. It is clear that

x 7→ 〈x ′, A〉

establishes the required isomorphism L ∼= I × L/Θ.

Note that Lemma 3 utilizes only that Θ is a standard congruence (see [1, Sec-

tion III.2]).

As a side result, we obtained:

Lemma 4 A uniform congruence of a finite sectionally complemented lattice is also

isoform.

Now the results of Section 1.4 easily follow.
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Proof of Theorem 4 Let L be a finite sectionally complemented lattice. We proceed

by induction on |L|. If L is simple, then we are done. If L is not simple, then L has

a nontrivial congruence Θ. By Lemma 3, we have the isomorphism L ∼= I × L/Θ.

Since |I| and |L/Θ| < |L|, the theorem follows by induction.

Proof of Theorem 5 Let L be a finite relatively complemented lattice. Let A be a

congruence class of Θ. By Lemma 1, |I| ≥ |A|. The dual of L is also sectionally

complemented. Applying Lemma 1 again, we get that |I| ≤ |A|. Hence Θ is uniform.

We conclude from Lemma 4 that Θ is isoform. Therefore, so is L.

3 A Lattice Construction

3.1 The Construction

Let K be a finite sectionally complemented lattice with more than one element, with

bounds 0 and 1. Let v : K → N satisfy conditions (V1) and (V2) of Theorem 3.

Now we construct the lattice L = L(K, v). Let n = v(0) − 2 and M = Mn with

bounds o and i, and atoms p1, . . . , pn. By (V2), n ≥ 0. If v(0) = 2, then n = 0; in

this case, M0 stands for the two-element lattice.

We form the direct product K × M and define L = L(K, v) as a subset of K × M.

Let 〈k, m〉 ∈ K × M; then 〈k, m〉 ∈ L iff one of the following three conditions hold:

(i) m = o;

(ii) m = i;

(iii) m = p j and j ≤ v(k) − 2.

3.2 The Closure Operator

We define a map % : K × M → K × M. Let 〈k, m〉 ∈ K × M; then

%(〈k, m〉) =

{

〈k, m〉, if 〈k, m〉 ∈ L;

〈k, i〉, if 〈k, m〉 /∈ L.

Now recall that 〈k, m〉 /∈ L means that m = p j and j > v(k) − 2.

We claim that % is a closure operator on K × M, that is

(a) x ≤ %(x), for x ∈ K × M.

(b) %
(

%(x)
)

= %(x), for x ∈ K × M.

(c) %(x) ≤ %(y), if x ≤ y in K × M.

(a) and (b) are clear by the definition of %. Now let x ≤ y in K × M. If x ∈ L,

then %(x) = x, so %(x) ≤ %(y) follows from (a). If x /∈ L, then x = 〈k, p j〉 and

j > v(k) − 2. Let y = 〈l, m〉. Since x ≤ y, it follows that k ≤ l in K and p j ≤ m in

M. By (V1), v(k) ≥ v(l), so 〈l, p j〉 /∈ L. It follows that %(x) = 〈k, i〉 and %(y) = 〈l, i〉,
so %(x) ≤ %(y), verifying (c).
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3.3 L is a Lattice

A closure operator is always a meet-homomorphism, so L is a zero-preserving meet-

homomorphic image of K × M; hence, L is a meet-semilattice with unit, and there-

fore, a lattice.

Let ∧× and ∨× denote the lattice operations in K × M. Then the the lattice oper-

ations ∧ and ∨ in L are described as follows. For x, y ∈ L, we have x ∧ y = x ∧× y,

while x ∨ y = %(x ∨× y).

3.4 L is Sectionally Complemented

Take 〈k, m〉, 〈k ′, m ′〉 ∈ L and let 〈k, m〉 < 〈k ′, m ′〉. We have to find 〈k ′ ′, m ′′〉 ∈ L

satisfying

〈k, m〉 ∧ 〈k ′ ′, m ′ ′〉 = 〈0, o〉,(1)

〈k, m〉 ∨ 〈k ′ ′, m ′ ′〉 = 〈k ′, m ′〉.(2)

Since 〈k, m〉 < 〈k ′, m ′〉, it follows that k = k ′ or k < k ′. We deal separately with

these two cases.

First Case: k = k ′. Let m ′ ′ be a sectional complement of m in [o, m ′] in M. Since

v(k) 6= 1, 3 by (V2), we can choose m ′ ′ so that 〈k, m ′′〉 ∈ L. It follows that 〈0, m ′′〉 ∈
L. It is now clear that we can choose 〈0, m ′′〉 as the required sectional complement

since (1) is obvious, and (2) holds in the stronger form

〈k, m〉 ∨× 〈k ′ ′, m ′ ′〉 = 〈k ′, m ′〉.

Second Case: k < k ′. Let k ′ ′ be a sectional complement of k in [0, k ′] in K.

If v(k ′ ′) = 2, then by (V1) and (V2), we also have that v(k ′) = 2, so we can choose

m ′ ′ = o.

If v(k ′ ′) 6= 2, then by (V2), we have that v(k ′ ′) ≥ 4. Again, only the case m = p j

is interesting. Now if 〈k ′, p j〉 ∈ L, then by (V1), 〈k ′ ′, p j〉 ∈ L. So we can choose

a sectional complement m ′ ′ of m in [o, m ′] in M so that 〈k ′′, m ′′〉 ∈ L. Obviously,

〈k ′ ′, m ′ ′〉 is the required sectional complement. If 〈k ′, p j〉 /∈ L, then 〈k ′ ′, o〉 is the

required sectional complement.

3.5 The Congruence Θ

Let Φ be the congruence kernel of the first projection map of K × M, that is, let

〈k, m〉 ≡ 〈k ′, m ′〉 (Φ) iff k = k ′. Let Θ be the restriction of Φ to L. Since Φ is a

congruence of K×M with the property that x ≡ %(x) (Φ), for all x ∈ K×M, it follows

from the description of the operations in L in Section 3.3 that Θ is a congruence of L.

3.6 The Valuation v on L

The congruence Θ defines a valuation v on K. It is clear from the construction that

v = v.
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4 Proving Theorem 3

Necessity Let K be a finite sectionally complemented lattice with more than one

element, with bounds 0 and 1, and let v : K → N. Let us assume that there exists

a finite sectionally complemented lattice L, with bounds 0L and 1L, and a nontrivial

congruence Θ of L, such that there is an isomorphism ϕ : K → L/Θ satisfying

v(a) = |ϕ(a)|, for all a ∈ K.

We have to verify (V1) and (V2) for v.

(V1). This was proved in Lemma 2.

(V2). We have to prove that v(a) 6= 1, 3. Indeed, if v(a) = 1, then the Θ con-

gruence class ϕ(a) of L is a singleton; this contradicts that Θ is a nontrivial regular

congruence (because L is sectionally complemented).

Now let v(a) = 3. Let ϕ(a) = [oa, ia], an interval of L. There is a unique x ∈ L

satisfying oa < x < ia. Since L is sectionally complemented, oa has a sectional

complement y in [0L, x]. There is also a sectional complement z of y in [0L, ia]. Since

x ≡ oa (Θ), it follows that y ≡ 0L (Θ), and so z ≡ ia (Θ), that is, z ∈ [oa, ia].

Since |[oa, ia]| = 3, therefore, z ≤ x or z = ia. The first would imply that z ∨ y ≤
x, contradicting that z ∨ y = ia, while the second would imply that z ∧ y = y,

contradicting that z ∧ y = 0L.

Sufficiency Let K be a finite sectionally complemented lattice with more than one

element, and let v : K → N satisfy (V1) and (V2). Let L = L(K, v) be the lattice with

the congruence Θ constructed in Section 3. All the required properties of L and Θ

were proved in Section 3.

Proof of the Corollary of Theorem 3 Let K be a finite sectionally complemented

lattice with more than one element, and let v : K → N satisfy (V1) and (V2). By

Theorem 3, there exists a finite sectionally complemented lattice L and nontrivial

congruence Θ of L, such that there is an isomorphism ϕ : K → L/Θ satisfying

v(a) = |ϕ(a)|, for all a ∈ K.

We take for L and Θ the lattice and the congruence constructed in Section 3, respec-

tively. We show that (V3) and (V4) are necessary and sufficient for Θ to be the unique

nontrivial congruence Θ of L.

Necessity Let us assume that Θ is the unique nontrivial congruence of L.

To verify (V3), assume to the contrary that v is constant. Then Θ is uniform. By

Lemma 3, then L ∼= I × L/Θ, which contradicts that Θ is the unique nontrivial

congruence of L.

To verify (V4), assume to the contrary that K is not simple; let Ψ be a nontrivial

congruence of K. Then the inverse image Ψ ′ of Ψ under the natural homomorphism

L → L/Θ is a nontrivial congruence of L different from Θ, a contradiction.
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Sufficiency Let us now assume that conditions (V3) and (V4) hold. We shall prove

that Θ is the unique nontrivial congruence of L.

We shall use the notation ϕ(a) = [oa, ia], an interval of L, for a ∈ K. Equivalently,

[oa, ia] = {〈a, m〉 ∈ L | m ∈ M}.

Let x/y ↗ u/v be shorthand for x ∧ v = y and x ∨ v = u, see Section III.1 of [1].

The following statement is trivial:

Claim 1 For any a, b ∈ K, with a ≤ b, we have ia/oa ↗ ib/ob.

Let Ψ be a nontrivial congruence of L.

We continue with the following claim:

Claim 2 Θ ≤ Ψ.

Proof Let x < x ′ in L and let x ≡ x ′(Ψ). Let x = 〈k, m〉 and x ′ = 〈k ′, m ′〉. Since L

is sectionally complemented, we can assume that x = 0L (= o0).

Now we distinguish two cases: k ′ = 0 and k ′ > 0.

First Case: k ′ = 0. In this case, o0 = 〈0, o〉 ≡ 〈0, m ′〉 (Ψ), for some m ′ > o in M.

We distinguish two subcases: v(0) = 4 and v(0) 6= 4.

First Subcase: v(0) = 4. By (V1) and (V2), it follows that v(a) = 2 or 4, for all

a ∈ K. Since 〈0, o〉 ≡ 〈0, m ′〉 (Ψ), for some m ′ > o in M, we can assume that

m ′ = p1 or m ′ = p2.

Since v(a) = 2 or 4, for all a ∈ K, but by (V3), v is not constant, there is a u ∈ K

with v(u) = 2. Joining the congruence 〈0, o〉 ≡ 〈0, m ′〉 (Ψ) (where m ′ = p1 or

m ′
= p2) with ou, we obtain that ou ≡ iu (Ψ). Meeting with i0, by Claim 1 we get

that o0 ≡ i0 (Ψ), and finally, for an arbitrary a ∈ K, joining with oa, we conclude

that

oa ≡ ia (Ψ),

proving that Θ ≤ Φ.

Second Subcase: v(0) 6= 4. Observe that in this case v(0) ≥ 5. Indeed, if not,

then by (V2), we have that v(0) = 2. By (V1) and (V2), it follows that v(a) = 2, for

all a ∈ K, contradicting (V3). Since v(0) ≥ 5, it follows that M is a simple lattice.

Therefore, o0 ≡ i0 (Ψ). This implies that oa ≡ ia (Ψ), for an arbitrary a ∈ K, proving

that Θ ≤ Φ.

Second case: k ′ > 0. We can assume that m ′
= o; otherwise, joining the congruence

with ok ′ and taking a sectional complement, we are back to the first case. So we start

with the congruence o0 ≡ ok ′ (Ψ), that is, with

〈0, o〉 ≡ 〈k ′, o〉 (Ψ),

and join it with oa1
= 〈a1, o〉, we get

〈a1, o〉 ≡ 〈k ′ ∨ a1, o〉 (Ψ);
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meeting this with ob1
= 〈b1, o〉, we obtain that

〈a1 ∧ b1, o〉 ≡ 〈(k ′ ∨ a1) ∧ b1, o〉 (Ψ).

In general, if p(x) is a unary algebraic function on K (that is, a polynomial with

constants from K), then

op(0) ≡ op(k ′) (Ψ).

Since K is simple, for any a ≺ b in K, there is an algebraic function p(x) such that

p(0) = a and p(k ′) = b (see Section III.1 of [1]). This implies the congruence

oa ≡ ob (Ψ).

By transitivity, this congruence holds for arbitrary a, b in K.

Since by (V3) the function v is not constant, we can choose a < b in K with v(a) >
v(b). This means that 〈a, pv(a)−2〉 ∈ L but 〈b, pv(a)−2〉 /∈ L. Join the congruence

oa ≡ ob (Ψ) with 〈a, pv(a)−2〉 and observe that ob ∨ 〈a, pv(a)−2〉 = ib, so we obtain

the congruence

〈a, pv(a)−2〉 ≡ ib (Ψ),

and meeting with ia, we conclude that

〈a, pv(a)−2〉 ≡ ia (Ψ).

By taking the sectional complement x of 〈a, pv(a)−2〉 in [o0, ia], we get x ≡ o0 (Ψ),

where x ∈ [o0, i0] and x > o0, reducing the second case to the first case.

Note that in this second case, we have proved that Ψ = ι, the largest congruence.

Indeed, we verified that

oa ≡ ob (Ψ)

holds for arbitrary a, b in K, and also the conclusion of the first case holds, namely,

that

oa ≡ ia (Ψ),

for arbitrary a, b in K. The last two displayed congruences imply that Ψ = ι.

Continuing the proof of the sufficiency, let Ψ be a nontrivial congruence of L

satisfying Ψ 6= Θ. So there exist x < x ′ in L such that x ≡ x ′ (Ψ) but x 6≡ x ′ (Θ). Let

x = 〈k, m〉 and x ′
= 〈k ′, m ′〉. Since L is sectionally complemented, we can assume

that x = o0, the zero of L.

Now we cannot have k ′ = 0, because then x = o0 ≡ x ′ = 〈0, m ′〉 (Θ). So k ′ > 0,

the second case in Claim 2. However, in the second case we concluded that Ψ = ι.
So Ψ = ι holds, concluding the proof of the sufficiency.
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5 Proving Theorems 1 and 2

We start by proving Theorem 2.

Let S = (m j | j < n) be a family of natural numbers, n ≥ 1.

Necessity Let us assume that there is a finite sectionally complemented lattice L with

more than one element and a nontrivial congruence Θ of L such that S is the spec-

trum of Θ. We have to verify that conditions (S1) and (S2) hold.

If (S1) fails, then n = 1 or n = 3. But n = 1 contradicts that L has more than

one element, and n = 3 is impossible because there is no sectionally complemented

lattice with three elements. So (S1) holds.

(S2) follows from (V2) of Theorem 3 applied to L/Θ.

Sufficiency Let us assume that conditions (S1) and (S2) hold. The valuation v on

L/Θ satisfies (V2), so the spectrum satisfies (S2). Define max S = max(m j | j < n)

and min S = min(m j | j < n). Let K = Mn−2, with bounds 0 and 1. We define a

valuation v on K as follows:

v(0) = max S,

v(1) = min S,

and we arbitrarily assign the remaining n−2 elements of S as v-values to the atoms of

K. Then v satisfies (V1) and (V2) because of (S1) and (S2) and the way we defined v.

So Theorem 3 provides us with a finite sectionally complemented lattice L and a

nontrivial congruence Θ of L realizing v. Obviously, S is the spectrum of Θ.

Moreover, it is clear that S is not constant iff the valuation v we have constructed

from S is not constant. Observe that there is no four-element simple sectionally com-

plemented lattice, so (S4) is necessary. And in the presence of (S4), the lattice K we

constructed for S is always simple. So the Corollary of Theorem 2 follows from the

Corollary of Theorem 3.

Finally, Theorem 1 is the special case of the Corollary of Theorem 2: n = 2 and

S = (t1, t2). Condition (S1) then corresponds to (P1), (S2) to (P2), and (S3) to (P3);

(S4) is trivially satisfied since n = 2.

6 Problems

6.1 Spectra

We only know that the congruence lattice Con L of the lattice L we construct in The-

orem 2 has three or more elements. Can we prescribe its structure?

Problem 1 Let D be a finite distributive lattice. Can we construct the lattice L of

Theorem 2 that represents the given S = (m j | j < n) as the spectrum of a nontrivial

congruence Θ so that L also satisfies D ∼= Con L?

The following form is even harder:
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Problem 2 Let D be a finite distributive lattice, and let a ∈ D, a 6= 0, 1. Can we

construct the lattice L of Theorem 2 that represents the given S = (m j | j < n) as the

spectrum of a nontrivial congruence Θ so that L also satisfies D ∼= Con L and under

this isomorphism the element a of D maps to the congruence Θ of L?

Note that the Corollary of Theorem 2 solves this problem for D = C3, the three-

element chain.

6.2 Valuations

We can state Problems 1 and 2 also for valuations.

Problem 3 Let D be a finite distributive lattice. Can we prove Theorem 3 with the

additional condition: Con K ∼= D?

Problem 4 Let D be a finite distributive lattice, and let a ∈ D, a 6= 0, 1. Can we

prove Theorem 3 with Con K ∼= D so that under this isomorphism a maps to Θ?

Note that the Corollary of Theorem 3 solves this problem for D = C3, the three-

element chain.

6.3 Infinite Relatively Complemented Lattices

Does Theorem 5 extend to the infinite case?

Problem 5 Are infinite relatively complemented lattices uniform?

They are not isoform. For an example, take an infinite set X, and let L be the lattice

of all finite and cofinite subsets of X. Let Θ be the congruence under which a ≡ b (Θ)

iff (a − b) ∪ (b − a) is finite. Then Θ has two congruence classes, an ideal P and a

dual ideal Q. Obviously, L is relatively complemented, but P 6∼= Q.

6.4 Congruence Preserving Extensions

Let L be a lattice. A lattice L ′ is a congruence-preserving extension of L, if L ′ is an

extension and every congruence Θ of L has exactly one extension Θ ′ to L ′. Of course,

then the congruence lattice of L is isomorphic to the congruence lattice of L ′.

There is a large body of results on congruence-preserving extensions with special

properties. See Appendix C of [1] for a survey of this field; the following example

from G. Grätzer and E. T. Schmidt [3] is typical:

Theorem Every finite lattice has a congruence-preserving extension to a finite section-

ally complemented lattice.
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Problem 6 Let L be a finite lattice and let Θ be a nontrivial congruence of L with

spectrum v on K = L/Θ. Let v ′ : K → N satisfy (V1) and (V2). If v ≤ v ′ (i.e.,

v(a) ≤ v ′(a), for all a ∈ K), then does there exist a finite congruence-preserving

extension L ′ of L such that the spectrum on L ′/Θ ′ is v ′?

6.5 Chopped Lattices

We need a few concepts.

Let M be a finite poset such that inf{a, b} exists in M, for all a, b ∈ M. We define

in M:

a ∧ b = inf{a, b}, for all a, b ∈ M;

a ∨ b = sup{a, b}, whenever sup{a, b}exists.

This makes M into a finite chopped lattice.

An equivalence relation Θ on the chopped lattice M is a congruence relation iff for

all a0, a1, b0, b1 ∈ M, a0 ≡ b0 (Θ) and a1 ≡ b1 (Θ) imply that a0 ∧ a1 ≡ b0 ∧ b1 (Θ)

provided that a0 ∧ a1 and b0 ∧ b1 both exist, and a0 ∨ a1 ≡ b0 ∨ b1 (Θ), provided that

a0 ∨ a1 and b0 ∨ b1 both exist.

The set Con M of all congruence relations of M is a lattice.

An ideal I of a finite chopped lattice M is a non-empty subset I ⊆ M such that

i ∧ a ∈ I, for i ∈ I and a ∈ M; and i ∨ j ∈ I, for i, j ∈ I, provided that i ∨ j exists in

M. The ideals of the finite chopped lattice M form the finite lattice Id M.

The following lemma was published in G. Grätzer [1].

Lemma (G. Grätzer and H. Lakser) Let M be a finite chopped lattice. Then for every

congruence relation Θ of M, there exists exactly one congruence relation Θ of Id M such

that, for a, b ∈ M,

(a] ≡ (b] (Θ) iff a ≡ b (Θ).

In particular, Con M ∼= Con(Id M).

From the point of view of this paper, the significance of this lemma is that many

finite sectionally complemented lattices with a given congruence lattice were con-

structed using this approach: We construct a finite sectionally complemented chop-

ped lattice M, and then Id M is the desired lattice, see, for instance, [2] and [3].

Unfortunately, we do not know under what conditions Id M inherits from M the

property of being sectionally complemented.

Problem 7 When is the ideal lattice of a finite sectionally complemented chopped

lattice a sectionally complemented lattice?
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