Congruence Class Sizes in Finite Sectionally Complemented Lattices

G. Grätzer and E. T. Schmidt

Abstract

The congruences of a finite sectionally complemented lattice L are not necessarily uniform (any two congruence classes of a congruence are of the same size). To measure how far a congruence Θ of L is from being uniform, we introduce Spec Θ, the spectrum of Θ, the family of cardinalities of the congruence classes of Θ. A typical result of this paper characterizes the spectrum $S=\left(m_{j} \mid j<n\right)$ of a nontrivial congruence Θ with the following two properties:

$\left(S_{1}\right) \quad 2 \leq n$ and $n \neq 3$.
$\left(S_{2}\right) \quad 2 \leq m_{j}$ and $m_{j} \neq 3$, for all $j<n$.

1 Introduction

1.1 Generalizing N_{6}

The classical result of R. P. Dilworth (see G. Grätzer and E. T. Schmidt [2] and G. Grätzer [1, Section II.3]) states that every finite distributive lattice D can be represented as the congruence lattice of a finite lattice A. In fact, the G. Grätzer and E. T. Schmidt [2] version claims that A can be constructed as a finite sectionally complemented lattice.

Figure 1: The lattices N_{6}.

The basic building stone of this lattice A is the lattice N_{6} of Figure 1. This lattice has some crucial properties:

[^0](i) $\quad N_{6}$ is sectionally complemented.
(ii) N_{6} has exactly one nontrivial congruence Θ.
(iii) Θ has exactly two congruence classes: the prime ideal $\left\{0, q_{1}, q_{2}, q\right\}$ and the dual prime ideal $\{p, 1\}$.
(iv) $p \equiv 0(\Phi)$ implies that $q \equiv 0(\Phi)$, for every congruence Φ of N_{6}.

We can associate with Θ the pair $\langle 4,2\rangle$ measuring the size of the two congruence classes. We started with the following question: Which pairs $\left\langle t_{1}, t_{2}\right\rangle$ can substitute for $\langle 4,2\rangle$? In other words, for which pairs of integers $\left\langle t_{1}, t_{2}\right\rangle$ is there a finite lattice L such that
(1) L is sectionally complemented.
(2) L has exactly one nontrivial congruence Θ.
(3) Θ has exactly two congruence classes: the prime ideal P and the dual prime ideal Q satisfying that $|P|=t_{1}$ and $|Q|=t_{2}$.
(We did not add the fourth property from above since it follows from the three we have stated.)

This question is answered as follows:

Theorem 1 Let $\left\langle t_{1}, t_{2}\right\rangle$ be a pair of natural numbers. Then there is a finite lattice L with properties (1)-(3) iff $\left\langle t_{1}, t_{2}\right\rangle$ satisfies the following three conditions:
$\left(P_{1}\right) \quad 2 \leq t_{1}$ and $t_{1} \neq 3$.
$\left(P_{2}\right) 2 \leq t_{2}$ and $t_{2} \neq 3$.
$\left(P_{3}\right) t_{1}>t_{2}$.
Figure 2 illustrates the lattice we obtain for $\langle 5,4\rangle$.

Figure 2: A lattice representing $\langle 5,4\rangle$.

1.2 Spectrum

The question answered by Theorem 1 is a very special case of a more general problem: What can we say about the cardinalities of the congruence classes of a nontrivial congruence in a finite sectionally complemented lattice?

Let L be a finite lattice, and let Θ be a congruence of L. We denote by Spec Θ the spectrum of Θ, that is, the family of cardinalities of the congruence classes of Θ. So Spec Θ has $|L / \Theta|$ elements, and each element is an integer ≥ 1.

It is clear that if S is a family of integers ≥ 1, then it is the spectrum of some congruence (take L as an appropriate chain). We are interested in the following problem: Characterize the spectra of nontrivial congruences of finite sectionally complemented lattices.

This problem is completely solved by the following result:
Theorem 2 Let $S=\left(m_{j} \mid j<n\right)$ be a family of natural numbers, $n \geq 1$. Then there is a finite sectionally complemented lattice L with more than one element and a nontrivial congruence Θ of L such that S is the spectrum of Θ iff S satisfies the following conditions:
$\left(S_{1}\right) \quad 2 \leq n$ and $n \neq 3$.
$\left(S_{2}\right) \quad 2 \leq m_{j}$ and $m_{j} \neq 3$, for all $j<n$.
Figure 3 illustrates the lattice we obtain for $S=(4,4,2,2,2)$.

Figure 3: A lattice representing $S=(4,4,2,2,2)$.

This result is not a direct generalization of Theorem 1, since we did not assume that Θ is the only nontrivial congruence of K. This additional condition is easy to accommodate:
Corollary Let $S=\left(m_{j} \mid j<n\right)$ be a family of natural numbers, $n>1$. Then there is a finite sectionally complemented lattice L with more than one element with a unique
nontrivial congruence Θ of L such that S is the spectrum of Θ iff S satisfies $\left(S_{1}\right)$ and $\left(S_{2}\right)$, and additionally:
$\left(S_{3}\right) S$ is not constant, that is, there are $j, j^{\prime}<n$ satisfying that $m_{j} \neq m_{j^{\prime}}$. $\left(S_{4}\right) \quad n \neq 4$.

1.3 Valuation

There is a more sophisticated way of looking at spectra. Let L be a finite lattice, and let Θ be a congruence of L. Then there is a natural map $v: L / \Theta \rightarrow \mathbb{N}$ (where \mathbb{N} is the set of natural numbers) defined as follows: Let $a \in L / \Theta$; then a is a congruence class of Θ, so we can define $v(a)=|a|$. We call v a valuation on L / Θ.

Now if L is a finite sectionally complemented lattice and Θ is a nontrivial congruence of L, then we obtain the finite sectionally complemented lattice $K=L / \Theta$ and the valuation v on K. The question is the following: Given a finite sectionally complemented lattice K and a map $v: K \rightarrow \mathbb{N}$, when is v a valuation?

Theorem 3 Let K be a finite sectionally complemented lattice with more than one element, and let $v: K \rightarrow \mathbb{N}$. Then there exists a finite sectionally complemented lattice L and a nontrivial congruence Θ of L, such that there is an isomorphism $\varphi: K \rightarrow L / \Theta$ satisfying

$$
v(a)=|\varphi(a)|, \quad \text { for all } a \in K
$$

iff v satisfies the following conditions:
$\left(V_{1}\right) v$ is anti-isotone, that is, if $a \leq b$ in K, then $v(a) \geq v(b)$ in \mathbb{N}. $\left(V_{2}\right) 2 \leq v(a)$ and $v(a) \neq 3$, for all $a \in K$.

As a very small example, let us start with $K=M_{3}$ with the valuation illustrated on Figure 4. The lattice L we construct from this valuation is the one shown in Figure 3.

Figure 4: A valuation on M_{3}.

Again, we can ask about valuations induced by a finite sectionally complemented lattice L and the unique nontrivial congruence Θ of L.
Corollary Let K be a finite sectionally complemented lattice with more than one element, and let $v: K \rightarrow \mathbb{N}$. Then there exists a finite sectionally complemented lattice L and a unique nontrivial congruence Θ of L, such that there is an isomorphism

$$
\varphi: K \rightarrow L / \Theta \text { satisfying }
$$

$$
v(a)=|\varphi(a)|, \quad \text { for all } a \in K
$$

iff v satisfies the conditions $\left(V_{1}\right)$ and $\left(V_{2}\right)$, and additionally, v satisfies the following two conditions:
$\left(V_{3}\right) v$ is not a constant function.
$\left(V_{4}\right) K$ is simple.

1.4 Uniformity and Regularity

Let L be a lattice, and let Θ be a congruence on L. The congruence Θ is called regular if any congruence class determines Θ; it is called uniform if any two congruence classes are of the same size. A lattice L is called regular if any congruence of L is regular; a lattice L is called uniform if any congruence of L is uniform.

Sectionally complemented lattices are regular, however, in general, they are not uniform as witnessed by N_{6}. When are finite, sectionally complemented lattices uniform?

Theorem 4 Let L be a finite sectionally complemented lattice. Then L is uniform iff L is a direct product of simple sectionally complemented lattices.

Finite relatively complemented lattices are not very interesting from the point of view of congruence lattices; they all have Boolean congruence lattices. The following, however, holds:

Theorem 5 A finite relatively complemented lattice is uniform. In fact, it is isoform.
Isoform lattices were introduced in G. Grätzer and E. T. Schmidt [4]. Let L be a lattice, and let Θ be a congruence on L. The congruence Θ is called isoform if any two congruence classes of Θ are isomorphic as lattices. A lattice L is called isoform if any congruence of L is isoform.

Theorems 4 and 5 are quite easy to prove; they may even be folklore. Note that Theorems 5 implies that a finite, relatively complemented lattice is a direct product of simple relatively complemented lattices.

1.5 Outline

In Section 2, we prove a few useful lemmas on congruences of sectionally complemented finite lattices to lay the foundation for later proofs. We also prove Theorems 4 and 5. In Section 3, we present the basic lattice construction, and verify the relevant properties of the lattice constructed. In Section 4, we prove Theorem 3. This is easy, most of the work is done in Section 3. Most of this section is the proof of the Corollary of Theorem 3. Theorems 1 and 2 are proved in Section 5; they are easy consequences of Theorem 3. Finally, in Section 6, we list some open problems.

1.6 Acknowledgement

We would like to thank Bob Quackenbush and John Wedgewood for useful discussions on these topics.

2 Congruence Classes

We now prove a few lemmas that will be useful in proving the theorems of this paper.
In this section, let L be a finite sectionally complemented lattice with bounds 0_{L} and 1_{L}. Let Θ be a nontrivial congruence of L. We set $I=\left[0_{L}\right] \Theta$ (the congruence class containing 0_{L}). For any congruence class A of Θ, we set $A=\left[o_{A}, i_{A}\right]$.

Lemma 1 The map $\varphi_{A}: x \mapsto x \vee o_{A}$ is a join-homomorphism of I onto A.

Proof φ_{A} is obviously a join-homomorphism. Let $x \in A$. Let x^{\prime} be a sectional complement of o_{A} in $\left[0_{L}, x\right]$. Then $x^{\prime} \in I$ and $\varphi_{A}\left(x^{\prime}\right)=x$, so φ_{A} is onto.

Corollary $|A| \leq|I|$.

Lemma 2 Let A and B be congruence classes of Θ. If $A \leq B$ in L / Θ, then $|B| \leq|A|$.

Proof Define a join-homomorphism $\varphi_{A, B}$ of A into B by $\varphi_{A, B}: x \mapsto x \vee o_{B}$. Obviously, $\varphi_{A} \circ \varphi_{A, B}=\varphi_{B}$. By Lemma $1 \varphi_{B}$ is onto; therefore, so is $\varphi_{A, B}$. It follows that $|B| \leq|A|$.

Lemma 3 Let us assume that Θ is uniform. Then $L \cong I \times L / \Theta$.

Proof Let A be a congruence class of Θ. Then by Lemma $1, \varphi_{A}$ is a join-homomorphism of I onto A. However, by the uniformity of Θ, it follows that $|I|=|A|$. Therefore, $\varphi_{A}: I \rightarrow A$ is an isomorphism. For $x \in A$, let $x^{\prime} \in I$ be the unique element with $\varphi_{A}\left(x^{\prime}\right)=x$. It is clear that

$$
x \mapsto\left\langle x^{\prime}, A\right\rangle
$$

establishes the required isomorphism $L \cong I \times L / \Theta$.

Note that Lemma 3 utilizes only that Θ is a standard congruence (see [1, Section III.2]).

As a side result, we obtained:

Lemma 4 A uniform congruence of a finite sectionally complemented lattice is also isoform.

Now the results of Section 1.4 easily follow.

Proof of Theorem 4 Let L be a finite sectionally complemented lattice. We proceed by induction on $|L|$. If L is simple, then we are done. If L is not simple, then L has a nontrivial congruence Θ. By Lemma 3, we have the isomorphism $L \cong I \times L / \Theta$. Since $|I|$ and $|L / \Theta|<|L|$, the theorem follows by induction.

Proof of Theorem 5 Let L be a finite relatively complemented lattice. Let A be a congruence class of Θ. By Lemma $1,|I| \geq|A|$. The dual of L is also sectionally complemented. Applying Lemma 1 again, we get that $|I| \leq|A|$. Hence Θ is uniform. We conclude from Lemma 4 that Θ is isoform. Therefore, so is L.

3 A Lattice Construction

3.1 The Construction

Let K be a finite sectionally complemented lattice with more than one element, with bounds 0 and 1 . Let $v: K \rightarrow \mathbb{N}$ satisfy conditions $\left(V_{1}\right)$ and $\left(V_{2}\right)$ of Theorem 3.

Now we construct the lattice $L=L(K, v)$. Let $n=v(0)-2$ and $M=M_{n}$ with bounds o and i, and atoms p_{1}, \ldots, p_{n}. By $\left(V_{2}\right), n \geq 0$. If $v(0)=2$, then $n=0$; in this case, M_{0} stands for the two-element lattice.

We form the direct product $K \times M$ and define $L=L(K, v)$ as a subset of $K \times M$. Let $\langle k, m\rangle \in K \times M$; then $\langle k, m\rangle \in L$ iff one of the following three conditions hold:
(i) $m=o$;
(ii) $m=i$;
(iii) $m=p_{j}$ and $j \leq v(k)-2$.

3.2 The Closure Operator

We define a map $\varrho: K \times M \rightarrow K \times M$. Let $\langle k, m\rangle \in K \times M$; then

$$
\varrho(\langle k, m\rangle)= \begin{cases}\langle k, m\rangle, & \text { if }\langle k, m\rangle \in L ; \\ \langle k, i\rangle, & \text { if }\langle k, m\rangle \notin L .\end{cases}
$$

Now recall that $\langle k, m\rangle \notin L$ means that $m=p_{j}$ and $j>v(k)-2$.
We claim that ϱ is a closure operator on $K \times M$, that is
(a) $x \leq \varrho(x)$, for $x \in K \times M$.
(b) $\varrho(\varrho(x))=\varrho(x)$, for $x \in K \times M$.
(c) $\varrho(x) \leq \varrho(y)$, if $x \leq y$ in $K \times M$.
(a) and (b) are clear by the definition of ϱ. Now let $x \leq y$ in $K \times M$. If $x \in L$, then $\varrho(x)=x$, so $\varrho(x) \leq \varrho(y)$ follows from (a). If $x \notin L$, then $x=\left\langle k, p_{j}\right\rangle$ and $j>v(k)-2$. Let $y=\langle l, m\rangle$. Since $x \leq y$, it follows that $k \leq l$ in K and $p_{j} \leq m$ in M. By $\left(V_{1}\right), v(k) \geq v(l)$, so $\left\langle l, p_{j}\right\rangle \notin L$. It follows that $\varrho(x)=\langle k, i\rangle$ and $\varrho(y)=\langle l, i\rangle$, so $\varrho(x) \leq \varrho(y)$, verifying (c).

3.3 L is a Lattice

A closure operator is always a meet-homomorphism, so L is a zero-preserving meethomomorphic image of $K \times M$; hence, L is a meet-semilattice with unit, and therefore, a lattice.

Let Λ_{\times}and \vee_{\times}denote the lattice operations in $K \times M$. Then the the lattice operations \wedge and \vee in L are described as follows. For $x, y \in L$, we have $x \wedge y=x \wedge \times y$, while $x \vee y=\varrho\left(x \vee_{\times} y\right)$.

3.4 L is Sectionally Complemented

Take $\langle k, m\rangle,\left\langle k^{\prime}, m^{\prime}\right\rangle \in L$ and let $\langle k, m\rangle<\left\langle k^{\prime}, m^{\prime}\right\rangle$. We have to find $\left\langle k^{\prime \prime}, m^{\prime \prime}\right\rangle \in L$ satisfying

$$
\begin{gather*}
\langle k, m\rangle \wedge\left\langle k^{\prime \prime}, m^{\prime \prime}\right\rangle=\langle 0, o\rangle \tag{1}\\
\langle k, m\rangle \vee\left\langle k^{\prime \prime}, m^{\prime \prime}\right\rangle=\left\langle k^{\prime}, m^{\prime}\right\rangle \tag{2}
\end{gather*}
$$

Since $\langle k, m\rangle<\left\langle k^{\prime}, m^{\prime}\right\rangle$, it follows that $k=k^{\prime}$ or $k<k^{\prime}$. We deal separately with these two cases.

First Case: $k=k^{\prime}$. Let $m^{\prime \prime}$ be a sectional complement of m in $\left[o, m^{\prime}\right]$ in M. Since $v(k) \neq 1,3$ by $\left(V_{2}\right)$, we can choose $m^{\prime \prime}$ so that $\left\langle k, m^{\prime \prime}\right\rangle \in L$. It follows that $\left\langle 0, m^{\prime \prime}\right\rangle \in$ L. It is now clear that we can choose $\left\langle 0, m^{\prime \prime}\right\rangle$ as the required sectional complement since (1) is obvious, and (2) holds in the stronger form

$$
\langle k, m\rangle \vee_{\times}\left\langle k^{\prime \prime}, m^{\prime \prime}\right\rangle=\left\langle k^{\prime}, m^{\prime}\right\rangle
$$

Second Case: $k<k^{\prime}$. Let $k^{\prime \prime}$ be a sectional complement of k in $\left[0, k^{\prime}\right]$ in K.
If $v\left(k^{\prime \prime}\right)=2$, then by $\left(V_{1}\right)$ and $\left(V_{2}\right)$, we also have that $v\left(k^{\prime}\right)=2$, so we can choose $m^{\prime \prime}=o$.

If $v\left(k^{\prime \prime}\right) \neq 2$, then by $\left(V_{2}\right)$, we have that $v\left(k^{\prime \prime}\right) \geq 4$. Again, only the case $m=p_{j}$ is interesting. Now if $\left\langle k^{\prime}, p_{j}\right\rangle \in L$, then by $\left(V_{1}\right),\left\langle k^{\prime \prime}, p_{j}\right\rangle \in L$. So we can choose a sectional complement $m^{\prime \prime}$ of m in $\left[o, m^{\prime}\right]$ in M so that $\left\langle k^{\prime \prime}, m^{\prime \prime}\right\rangle \in L$. Obviously, $\left\langle k^{\prime \prime}, m^{\prime \prime}\right\rangle$ is the required sectional complement. If $\left\langle k^{\prime}, p_{j}\right\rangle \notin L$, then $\left\langle k^{\prime \prime}, o\right\rangle$ is the required sectional complement.

3.5 The Congruence Θ

Let Φ be the congruence kernel of the first projection map of $K \times M$, that is, let $\langle k, m\rangle \equiv\left\langle k^{\prime}, m^{\prime}\right\rangle(\Phi)$ iff $k=k^{\prime}$. Let Θ be the restriction of Φ to L. Since Φ is a congruence of $K \times M$ with the property that $x \equiv \varrho(x)(\Phi)$, for all $x \in K \times M$, it follows from the description of the operations in L in Section 3.3 that Θ is a congruence of L.

3.6 The Valuation \bar{v} on L

The congruence Θ defines a valuation \bar{v} on K. It is clear from the construction that $v=\bar{v}$.

4 Proving Theorem 3

Necessity Let K be a finite sectionally complemented lattice with more than one element, with bounds 0 and 1 , and let $v: K \rightarrow \mathbb{N}$. Let us assume that there exists a finite sectionally complemented lattice L, with bounds 0_{L} and 1_{L}, and a nontrivial congruence Θ of L, such that there is an isomorphism $\varphi: K \rightarrow L / \Theta$ satisfying

$$
v(a)=|\varphi(a)|, \quad \text { for all } a \in K
$$

We have to verify $\left(V_{1}\right)$ and $\left(V_{2}\right)$ for v.
$\left(V_{1}\right)$. This was proved in Lemma 2.
$\left(V_{2}\right)$. We have to prove that $v(a) \neq 1,3$. Indeed, if $v(a)=1$, then the Θ congruence class $\varphi(a)$ of L is a singleton; this contradicts that Θ is a nontrivial regular congruence (because L is sectionally complemented).

Now let $v(a)=3$. Let $\varphi(a)=\left[o_{a}, i_{a}\right]$, an interval of L. There is a unique $x \in L$ satisfying $o_{a}<x<i_{a}$. Since L is sectionally complemented, o_{a} has a sectional complement y in $\left[0_{L}, x\right]$. There is also a sectional complement z of y in $\left[0_{L}, i_{a}\right]$. Since $x \equiv o_{a}(\Theta)$, it follows that $y \equiv 0_{L}(\Theta)$, and so $z \equiv i_{a}(\Theta)$, that is, $z \in\left[o_{a}, i_{a}\right]$. Since $\left|\left[o_{a}, i_{a}\right]\right|=3$, therefore, $z \leq x$ or $z=i_{a}$. The first would imply that $z \vee y \leq$ x, contradicting that $z \vee y=i_{a}$, while the second would imply that $z \wedge y=y$, contradicting that $z \wedge y=0_{L}$.

Sufficiency Let K be a finite sectionally complemented lattice with more than one element, and let $v: K \rightarrow \mathbb{N}$ satisfy $\left(V_{1}\right)$ and $\left(V_{2}\right)$. Let $L=L(K, v)$ be the lattice with the congruence Θ constructed in Section 3. All the required properties of L and Θ were proved in Section 3.

Proof of the Corollary of Theorem 3 Let K be a finite sectionally complemented lattice with more than one element, and let $v: K \rightarrow \mathbb{N}$ satisfy $\left(V_{1}\right)$ and $\left(V_{2}\right)$. By Theorem 3, there exists a finite sectionally complemented lattice L and nontrivial congruence Θ of L, such that there is an isomorphism $\varphi: K \rightarrow L / \Theta$ satisfying

$$
v(a)=|\varphi(a)|, \quad \text { for all } a \in K
$$

We take for L and Θ the lattice and the congruence constructed in Section 3, respectively. We show that $\left(V_{3}\right)$ and $\left(V_{4}\right)$ are necessary and sufficient for Θ to be the unique nontrivial congruence Θ of L.

Necessity Let us assume that Θ is the unique nontrivial congruence of L.
To verify $\left(V_{3}\right)$, assume to the contrary that v is constant. Then Θ is uniform. By Lemma 3, then $L \cong I \times L / \Theta$, which contradicts that Θ is the unique nontrivial congruence of L.

To verify $\left(V_{4}\right)$, assume to the contrary that K is not simple; let Ψ be a nontrivial congruence of K. Then the inverse image Ψ^{\prime} of Ψ under the natural homomorphism $L \rightarrow L / \Theta$ is a nontrivial congruence of L different from Θ, a contradiction.

Sufficiency Let us now assume that conditions $\left(V_{3}\right)$ and $\left(V_{4}\right)$ hold. We shall prove that Θ is the unique nontrivial congruence of L.

We shall use the notation $\varphi(a)=\left[o_{a}, i_{a}\right]$, an interval of L, for $a \in K$. Equivalently,

$$
\left[o_{a}, i_{a}\right]=\{\langle a, m\rangle \in L \mid m \in M\}
$$

Let $x / y \nearrow u / v$ be shorthand for $x \wedge v=y$ and $x \vee v=u$, see Section III. 1 of [1].
The following statement is trivial:
Claim 1 For any $a, b \in K$, with $a \leq b$, we have $i_{a} / o_{a} \nearrow i_{b} / o_{b}$.
Let Ψ be a nontrivial congruence of L.
We continue with the following claim:
Claim $2 \quad \Theta \leq \Psi$.
Proof Let $x<x^{\prime}$ in L and let $x \equiv x^{\prime}(\Psi)$. Let $x=\langle k, m\rangle$ and $x^{\prime}=\left\langle k^{\prime}, m^{\prime}\right\rangle$. Since L is sectionally complemented, we can assume that $x=0_{L}\left(=o_{0}\right)$.

Now we distinguish two cases: $k^{\prime}=0$ and $k^{\prime}>0$.
First Case: $k^{\prime}=0$. In this case, $o_{0}=\langle 0, o\rangle \equiv\left\langle 0, m^{\prime}\right\rangle(\Psi)$, for some $m^{\prime}>o$ in M.
We distinguish two subcases: $v(0)=4$ and $v(0) \neq 4$.
First Subcase: $v(0)=4$. By $\left(V_{1}\right)$ and $\left(V_{2}\right)$, it follows that $v(a)=2$ or 4 , for all $a \in K$. Since $\langle 0, o\rangle \equiv\left\langle 0, m^{\prime}\right\rangle(\Psi)$, for some $m^{\prime}>o$ in M, we can assume that $m^{\prime}=p_{1}$ or $m^{\prime}=p_{2}$.

Since $v(a)=2$ or 4 , for all $a \in K$, but by $\left(V_{3}\right), v$ is not constant, there is a $u \in K$ with $v(u)=2$. Joining the congruence $\langle 0, o\rangle \equiv\left\langle 0, m^{\prime}\right\rangle(\Psi)$ (where $m^{\prime}=p_{1}$ or $m^{\prime}=p_{2}$) with o_{u}, we obtain that $o_{u} \equiv i_{u}(\Psi)$. Meeting with i_{0}, by Claim 1 we get that $o_{0} \equiv i_{0}(\Psi)$, and finally, for an arbitrary $a \in K$, joining with o_{a}, we conclude that

$$
o_{a} \equiv i_{a} \quad(\Psi)
$$

proving that $\Theta \leq \Phi$.
Second Subcase: $v(0) \neq 4$. Observe that in this case $v(0) \geq 5$. Indeed, if not, then by $\left(V_{2}\right)$, we have that $v(0)=2$. By $\left(V_{1}\right)$ and $\left(V_{2}\right)$, it follows that $v(a)=2$, for all $a \in K$, contradicting $\left(V_{3}\right)$. Since $v(0) \geq 5$, it follows that M is a simple lattice. Therefore, $o_{0} \equiv i_{0}(\Psi)$. This implies that $o_{a} \equiv i_{a}(\Psi)$, for an arbitrary $a \in K$, proving that $\Theta \leq \Phi$.

Second case: $k^{\prime}>0$. We can assume that $m^{\prime}=o$; otherwise, joining the congruence with $o_{k^{\prime}}$ and taking a sectional complement, we are back to the first case. So we start with the congruence $o_{0} \equiv o_{k^{\prime}}(\Psi)$, that is, with

$$
\langle 0, o\rangle \equiv\left\langle k^{\prime}, o\right\rangle \quad(\Psi)
$$

and join it with $o_{a_{1}}=\left\langle a_{1}, o\right\rangle$, we get

$$
\left\langle a_{1}, o\right\rangle \equiv\left\langle k^{\prime} \vee a_{1}, o\right\rangle \quad(\Psi)
$$

meeting this with $o_{b_{1}}=\left\langle b_{1}, o\right\rangle$, we obtain that

$$
\left\langle a_{1} \wedge b_{1}, o\right\rangle \equiv\left\langle\left(k^{\prime} \vee a_{1}\right) \wedge b_{1}, o\right\rangle
$$

In general, if $p(x)$ is a unary algebraic function on K (that is, a polynomial with constants from K), then

$$
o_{p(0)} \equiv o_{p\left(k^{\prime}\right)}
$$

Since K is simple, for any $a \prec b$ in K, there is an algebraic function $p(x)$ such that $p(0)=a$ and $p\left(k^{\prime}\right)=b$ (see Section III. 1 of [1]). This implies the congruence

$$
o_{a} \equiv o_{b} \quad(\Psi)
$$

By transitivity, this congruence holds for arbitrary a, b in K.
Since by $\left(V_{3}\right)$ the function v is not constant, we can choose $a<b$ in K with $v(a)>$ $v(b)$. This means that $\left\langle a, p_{v(a)-2}\right\rangle \in L$ but $\left\langle b, p_{v(a)-2}\right\rangle \notin L$. Join the congruence $o_{a} \equiv o_{b}(\Psi)$ with $\left\langle a, p_{v(a)-2}\right\rangle$ and observe that $o_{b} \vee\left\langle a, p_{v(a)-2}\right\rangle=i_{b}$, so we obtain the congruence

$$
\left\langle a, p_{v(a)-2}\right\rangle \equiv i_{b} \quad(\Psi)
$$

and meeting with i_{a}, we conclude that

$$
\left\langle a, p_{v(a)-2}\right\rangle \equiv i_{a}
$$

By taking the sectional complement x of $\left\langle a, p_{v(a)-2}\right\rangle$ in $\left[o_{0}, i_{a}\right.$], we get $x \equiv o_{0}(\Psi)$, where $x \in\left[o_{0}, i_{0}\right]$ and $x>o_{0}$, reducing the second case to the first case.

Note that in this second case, we have proved that $\Psi=\iota$, the largest congruence. Indeed, we verified that

$$
o_{a} \equiv o_{b} \quad(\Psi)
$$

holds for arbitrary a, b in K, and also the conclusion of the first case holds, namely, that

$$
o_{a} \equiv i_{a} \quad(\Psi)
$$

for arbitrary a, b in K. The last two displayed congruences imply that $\Psi=\iota$.

Continuing the proof of the sufficiency, let Ψ be a nontrivial congruence of L satisfying $\Psi \neq \Theta$. So there exist $x<x^{\prime}$ in L such that $x \equiv x^{\prime}(\Psi)$ but $x \not \equiv x^{\prime}(\Theta)$. Let $x=\langle k, m\rangle$ and $x^{\prime}=\left\langle k^{\prime}, m^{\prime}\right\rangle$. Since L is sectionally complemented, we can assume that $x=o_{0}$, the zero of L.

Now we cannot have $k^{\prime}=0$, because then $x=o_{0} \equiv x^{\prime}=\left\langle 0, m^{\prime}\right\rangle(\Theta)$. So $k^{\prime}>0$, the second case in Claim 2. However, in the second case we concluded that $\Psi=\iota$. So $\Psi=\iota$ holds, concluding the proof of the sufficiency.

5 Proving Theorems 1 and 2

We start by proving Theorem 2.
Let $S=\left(m_{j} \mid j<n\right)$ be a family of natural numbers, $n \geq 1$.
Necessity Let us assume that there is a finite sectionally complemented lattice L with more than one element and a nontrivial congruence Θ of L such that S is the spectrum of Θ. We have to verify that conditions $\left(S_{1}\right)$ and $\left(S_{2}\right)$ hold.

If $\left(S_{1}\right)$ fails, then $n=1$ or $n=3$. But $n=1$ contradicts that L has more than one element, and $n=3$ is impossible because there is no sectionally complemented lattice with three elements. So $\left(S_{1}\right)$ holds.
$\left(S_{2}\right)$ follows from $\left(V_{2}\right)$ of Theorem 3 applied to L / Θ.
Sufficiency Let us assume that conditions $\left(S_{1}\right)$ and $\left(S_{2}\right)$ hold. The valuation v on L / Θ satisfies $\left(V_{2}\right)$, so the spectrum satisfies $\left(S_{2}\right)$. Define $\max S=\max \left(m_{j} \mid j<n\right)$ and $\min S=\min \left(m_{j} \mid j<n\right)$. Let $K=M_{n-2}$, with bounds 0 and 1 . We define a valuation v on K as follows:

$$
\begin{aligned}
& v(0)=\max S, \\
& v(1)=\min S,
\end{aligned}
$$

and we arbitrarily assign the remaining $n-2$ elements of S as v-values to the atoms of K. Then v satisfies $\left(V_{1}\right)$ and $\left(V_{2}\right)$ because of $\left(S_{1}\right)$ and $\left(S_{2}\right)$ and the way we defined v. So Theorem 3 provides us with a finite sectionally complemented lattice L and a nontrivial congruence Θ of L realizing v. Obviously, S is the spectrum of Θ.

Moreover, it is clear that S is not constant iff the valuation v we have constructed from S is not constant. Observe that there is no four-element simple sectionally complemented lattice, so $\left(S_{4}\right)$ is necessary. And in the presence of $\left(S_{4}\right)$, the lattice K we constructed for S is always simple. So the Corollary of Theorem 2 follows from the Corollary of Theorem 3.

Finally, Theorem 1 is the special case of the Corollary of Theorem 2: $n=2$ and $S=\left(t_{1}, t_{2}\right)$. Condition $\left(S_{1}\right)$ then corresponds to $\left(P_{1}\right),\left(S_{2}\right)$ to $\left(P_{2}\right)$, and $\left(S_{3}\right)$ to $\left(P_{3}\right)$; $\left(S_{4}\right)$ is trivially satisfied since $n=2$.

6 Problems

6.1 Spectra

We only know that the congruence lattice Con L of the lattice L we construct in Theorem 2 has three or more elements. Can we prescribe its structure?

Problem 1 Let D be a finite distributive lattice. Can we construct the lattice L of Theorem 2 that represents the given $S=\left(m_{j} \mid j<n\right)$ as the spectrum of a nontrivial congruence Θ so that L also satisfies $D \cong \operatorname{Con} L$?

The following form is even harder:

Problem 2 Let D be a finite distributive lattice, and let $a \in D, a \neq 0,1$. Can we construct the lattice L of Theorem 2 that represents the given $S=\left(m_{j} \mid j<n\right)$ as the spectrum of a nontrivial congruence Θ so that L also satisfies $D \cong \operatorname{Con} L$ and under this isomorphism the element a of D maps to the congruence Θ of L ?

Note that the Corollary of Theorem 2 solves this problem for $D=C_{3}$, the threeelement chain.

6.2 Valuations

We can state Problems 1 and 2 also for valuations.

Problem 3 Let D be a finite distributive lattice. Can we prove Theorem 3 with the additional condition: Con $K \cong D$?

Problem 4 Let D be a finite distributive lattice, and let $a \in D, a \neq 0,1$. Can we prove Theorem 3 with Con $K \cong D$ so that under this isomorphism a maps to Θ ?

Note that the Corollary of Theorem 3 solves this problem for $D=C_{3}$, the threeelement chain.

6.3 Infinite Relatively Complemented Lattices

Does Theorem 5 extend to the infinite case?

Problem 5 Are infinite relatively complemented lattices uniform?
They are not isoform. For an example, take an infinite set X, and let L be the lattice of all finite and cofinite subsets of X. Let Θ be the congruence under which $a \equiv b(\Theta)$ iff $(a-b) \cup(b-a)$ is finite. Then Θ has two congruence classes, an ideal P and a dual ideal Q. Obviously, L is relatively complemented, but $P \not \approx Q$.

6.4 Congruence Preserving Extensions

Let L be a lattice. A lattice L^{\prime} is a congruence-preserving extension of L, if L^{\prime} is an extension and every congruence Θ of L has exactly one extension Θ^{\prime} to L^{\prime}. Of course, then the congruence lattice of L is isomorphic to the congruence lattice of L^{\prime}.

There is a large body of results on congruence-preserving extensions with special properties. See Appendix C of [1] for a survey of this field; the following example from G. Grätzer and E. T. Schmidt [3] is typical:

Theorem Every finite lattice has a congruence-preserving extension to a finite sectionally complemented lattice.

Problem 6 Let L be a finite lattice and let Θ be a nontrivial congruence of L with spectrum v on $K=L / \Theta$. Let $v^{\prime}: K \rightarrow \mathbb{N}$ satisfy $\left(V_{1}\right)$ and $\left(V_{2}\right)$. If $v \leq v^{\prime}$ (i.e., $v(a) \leq v^{\prime}(a)$, for all $\left.a \in K\right)$, then does there exist a finite congruence-preserving extension L^{\prime} of L such that the spectrum on $L^{\prime} / \Theta^{\prime}$ is v^{\prime} ?

6.5 Chopped Lattices

We need a few concepts.
Let M be a finite poset such that $\inf \{a, b\}$ exists in M, for all $a, b \in M$. We define in M :

$$
\begin{array}{ll}
a \wedge b=\inf \{a, b\}, & \text { for all } a, b \in M \\
a \vee b=\sup \{a, b\}, & \text { whenever } \sup \{a, b\} \text { exists. }
\end{array}
$$

This makes M into a finite chopped lattice.
An equivalence relation Θ on the chopped lattice M is a congruence relation iff for all $a_{0}, a_{1}, b_{0}, b_{1} \in M, a_{0} \equiv b_{0}(\Theta)$ and $a_{1} \equiv b_{1}(\Theta)$ imply that $a_{0} \wedge a_{1} \equiv b_{0} \wedge b_{1}(\Theta)$ provided that $a_{0} \wedge a_{1}$ and $b_{0} \wedge b_{1}$ both exist, and $a_{0} \vee a_{1} \equiv b_{0} \vee b_{1}(\Theta)$, provided that $a_{0} \vee a_{1}$ and $b_{0} \vee b_{1}$ both exist.

The set Con M of all congruence relations of M is a lattice.
An ideal I of a finite chopped lattice M is a non-empty subset $I \subseteq M$ such that $i \wedge a \in I$, for $i \in I$ and $a \in M$; and $i \vee j \in I$, for $i, j \in I$, provided that $i \vee j$ exists in M. The ideals of the finite chopped lattice M form the finite lattice Id M.

The following lemma was published in G. Grätzer [1].
Lemma (G. Grätzer and H. Lakser) Let M be a finite chopped lattice. Then for every congruence relation Θ of M, there exists exactly one congruence relation $\bar{\Theta}$ of Id M such that, for $a, b \in M$,

$$
(a] \equiv(b](\bar{\Theta}) \quad \text { iff } \quad a \equiv b(\Theta)
$$

In particular, $\operatorname{Con} M \cong \operatorname{Con}(\operatorname{Id} M)$.
From the point of view of this paper, the significance of this lemma is that many finite sectionally complemented lattices with a given congruence lattice were constructed using this approach: We construct a finite sectionally complemented chopped lattice M, and then Id M is the desired lattice, see, for instance, [2] and [3]. Unfortunately, we do not know under what conditions Id M inherits from M the property of being sectionally complemented.

Problem 7 When is the ideal lattice of a finite sectionally complemented chopped lattice a sectionally complemented lattice?

References

[1] G. Grätzer, General Lattice Theory, Second edition: New appendices by the author with B. A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H. A. Priestley, H. Rose, E. T. Schmidt, S. E. Schmidt, F. Wehrung, and R. Wille. Birkhäuser Verlag, Basel, 1998.
[2] G. Grätzer and E. T. Schmidt, On congruence lattices of lattices. Acta Math. Acad. Sci. Hungar. 13(1962), 179-185.
[3]
\longrightarrow, Congruence-preserving extensions of finite lattices into sectionally complemented lattices. Proc. Amer. Math. Soc. 127(1999), 1903-1915.
[4] ——, Finite lattices with isoform congruences. Tatra Mt. Math. Publ. 27(2003), 1-14.

Department of Mathematics
University of Manitoba
Winnipeg, MB
R3T 2N2
email: gratzer@ms.umanitoba.ca
http://www.math.umanitoba.ca/
homepages/gratzer/

Mathematical Institute of the Budapest
University of Technology and Economics
Múegyetem rkp. 3
H-1521 Budapest
Hungary
email: schmidt@math.bme.hu http://www.math.bme.hu/~schmidt/

[^0]: Received by the editors January 16, 2002; revised March 13, 2002.
 The research of the first author was supported by the NSERC of Canada. The research of the second author was supported by the Hungarian National Foundation for Scientific Research, under Grant No. T29525.

 AMS subject classification: Primary: 06B10; secondary: 06B15.
 Keywords: congruence lattice, congruence-preserving extension.
 (C)Canadian Mathematical Society 2004.

