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1.0. Introduction 

The physical aspects of radiative transfer processes that may be of importance in 
planetary nebulae are discussed, and recent work on these problems is summarized. 

2.0. The Continuum Photo-ionization-Recombination Problems 

The fundamental radiative transfer problem in planetary nebulae is that of the 
hydrogen Lyman continuum, which also serves as the prototype for continuum 
transfer problems involving other elements. In the simplest form of this problem, in 
which only hydrogen is present, extremely dilute Lyman-continuum radiation from 
the central star falls on the inner boundary of the nebula, photo-ionizing the hydrogen. 
A certain fraction of the ionizations are followed by recombinations to the ground 
state, with the production of'diffuse' Lyman-continuum photons. Because the diffuse 
field is roughly isotropic and has sources within the nebula, while the stellar field is 
radial and satisfies a simple transfer equation, it is convenient to maintain this division 
of the total continuum radiation field. There are two cardinal facts relating to the 
ionization-recombination process in planetary nebulae: 

(1) The probability that a Lyman-continuum photon will be emitted in a recom­
bination is approximately 0-4. 

(2) The spectral distribution of the diffuse Lyman-continuum photons is con­
centrated very strongly to the immediate short-wave side of the Lyman limit, while the 
original distribution is much wider. 

The importance of the first point, which was recognized by Ambartsumian (1932), 
is that the absorption of a typical Lyman-continuum photon will be followed by only 
a few photo-ionization-recombination cycles before all of the photon energy is 
degraded into line radiation. If we visualize this process as the repeated absorption 
and emission of a photon, we can say that a diffuse photon can move only a few free 
paths from its point of creation. This diffuse photon will, of course, change its fre­
quency at each scattering because of the 'reshuffling' of the continuum states, a 
process first treated in this context by Baker et al. (1939). The second point indicates 
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that diffuse photons see the maximum photo-ionization cross-section, i.e. their free 
paths are as short as possible. 

Zanstra (1951a), recognizing that these points together imply that a diffuse photon 
does not travel very far before being converted into line photons, introduced a very 
useful approximation: that the diffuse photons are degraded at the point where they 
are created. This so-called on-the-spot (OS) approximation reduces the transfer 
problem to the evaluation of simple integrals, which have been tabulated by De Jong 
(1951) and Hummer and Seaton (1963) for hydrogen, and by Hummer and Seaton 
(1964) for ionized helium. In particular, the OS approximation is much easier to apply 
than is the method used by Aller et al. (1939), in which an integro-differential equation 
for the diffuse radiation field is solved approximately by iteration. The OS approxi­
mation can also be applied to the ionization-recombination problem for other ele­
ments. Necessary conditions for its validity are 

(1) The probability per recombination that a continuum photon, as opposed to 
line photons, is produced must be small, and 

(2) The electron temperature must be low enough for kTe to be small in comparison 
to the ionization energy. 

A further condition for the validity of the OS approximation may be obtained by 
estimating the Lyman-limit optical distance between the point where a typical diffuse 
photon is created and the point where it finally is degraded into line photons. We refer 
to this distance as the 'break-up length' and represent it by A. Obviously photons 
created within an optical distance A of a boundary will most likely escape before 
being degraded, so the OS approximation fails there. If the optical thickness of the nebula 
is of the same order as A, the OS approximation fails everywhere. Thus a third condition 
for the validity of the OS approximation is that the optical thickness be larger than A. 

Van Blerkom and Hummer (1967), in analogy with an unpublished expression 
derived by Rybicki for line scattering, have obtained the result 

Here f(v) is the photo-ionization cross-section normalized to unity at the Lyman 
limit v x ; and a t and a t o t are, respectively, the recombination coefficients to the ground 
state and to all states. Using Kramers' approximation, f=(v/vl)~3, we have 

A = l//s, 
where 

oo 00 

and 
e = 1 - ( a J O . 
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If the nebula is sufficiently thin, the diffuse radiation is much weaker than the direct 
stellar radiation and the ionization balance is reasonably accurate, even if the OS 
approximation is not. Because of the evidence given by Harman and Seaton (1966), 
that planetary nebulae are not completely opaque in the Lyman continuum for a 
substantial fraction of their lives, Van Blerkom and Hummer (1967) have derived a 
modified OS approximation which makes some allowance for the boundaries and can 
be used for all optical thicknesses. Comparison with accurate numerical solutions 
indicates that, for the conditions of planetary nebulae, the error in the radiation field 
in the improved approximation is less than 10%. This approximation turns out to 
coincide with that obtained by bringing the source function through the integral sign 
in the integral form of the transfer equation, an approximation used earlier by Biber-
man (1948) and by Sobolev (1957) for line transfer problems (a rather unreliable pro­
cedure) and by Biberman et al. (1965) for continuum problems. This work has also 
confirmed that diffuse radiation entering the nebula from the opposite hemisphere is 
generally unimportant. 

For nebulae sufficiently thick so that all Lyman-continuum radiation is absorbed, 
the OS approximation is considerably more accurate than the well-known formula 
developed by Stromgren (1939). Although the radius of the ionized region agrees with 
Stromgren's estimate, the very sharp transition region is smoothed out because the 
stellar photons with high energies see a comparatively small photo-ionization cross-
section and also because of the diffuse radiation. A further point, which has recently 
emerged, is that the size of the ionized region and the degree of ionization depend 
primarily on the total number of ionizing photons entering the nebula and only weakly 
on the spectral distribution. 

The effects of electron collisions on the ionization and thermal equilibrium and on 
the distribution of excited states have been considered by a number of authors, the 
most recent being Chamberlain (1953), Hummer (1963a), and Parker (1964). When 
the nebula is excited by a central star, then collisional excitations and ionization are 
unimportant compared to photo-ionization and recombination, except perhaps in the 
thermal balance of the outermost regions. In situations where the primary excitation 
mechanism is collisional, collisions from the ground state determine the state of excita­
tion and ionization in optically thin nebulae. However, Van Blerkom (1968) has shown 
that diffuse radiation becomes important in populating excited states if the nebula is 
thick. 

2 . 1 . Models including Helium and Heavy Elements 

The picture becomes considerably more complicated when helium and heavier ele­
ments are added to the hydrogen. In the first place, the ionization continua of the 
different elements overlap, so that in many spectral regions two or more elements are 
competing for the same radiation. The second problem is that radiation emitted in the 
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recombination and cascade of highly ionized systems can ionize species in lower stages 
of ionization, the most important example of which is the ionization of hydrogen and 
helium by Hen Ly-a. From a technical point of view, both of these effects lead to 
severely non-linear transfer problems. Additional complications arise from fluorescent 
mechanisms, such as that discovered by Bowen, caused by the coincidence of lines of 
different elements. 

The first solution for a combined hydrogen-helium model was obtained by Eberlein 
(1955, 1957), who used a differential formulation of the Stromgren theory with a mean 
absorption coefficient to determine the ionization balance between H e + and H e + + , 
along with that for hydrogen. He obtained the radii of the ionization zones and the 
X 4686 A/H/? ratio as a function of the relative abundance of helium. Osaki (1962) also 
discussed a multi-component model, but as he was interested primarily in the thermal 
balance rather than the ionization balance, he used rather crude estimates for the ion 
densities. 

Hummer and Seaton (1964) gave an extensive, though approximate, discussion of 
the hydrogen-helium problem. The H e + - H e + + balance was solved using the OS approx­
imation. Because of the fortunate circumstance that the Ly-a line, the two-quantum 
continuum, and the Balmer continuum of Hen were sufficiently strong to keep the 
hydrogen in the H e + + - z o n e fully ionized, the stellar radiation with v<4v1 could, to 
a first approximation, be regarded as passing through this zone unimpeded. Although 
the spectral distribution would be altered somewhat, the number of photons available 
for the ionization of H and He beyond the H e + + zone would be correct. Beyond the 
H e + + zone, the ionization equilibria involving neutral hydrogen and neutral helium 
in this radiation field were solved using a differential formulation of the OS approxi­
mation (capable of handling any number of elements and stages of ionization). Prob­
ably the most important result of this investigation was that for star temperatures 
below about 50000°K the helium spectrum reflects the stellar temperature, while at 
higher temperatures the helium spectrum depends only on the helium abundance. 

The most complete treatment published to date is that of Goodson (1967), who 
solved the combined ionization and thermal balance problems, including H, He, C, 
N, O and Ne, using the stellar fluxes computed by Bohm and Deinzer (1965, 1966). 
Goodson used the OS approximation as an initial estimate for an iterative procedure, 
although the results of the iterative calculation did not differ greatly from the OS 
results. Probably the least satisfactory aspect of Goodson's work is his treatment of 
He II Ly-a, which he assumes to be absorbed on the spot by hydrogen alone. This 
assumption considerably overestimates the rate of ionization of hydrogen in the H e + + 

region and underestimates it elsewhere. It is possible that Hen Ly-a diffuses out of 
the region where it is created and is absorbed mainly in ionizing helium and hydrogen 
at the places where they are becoming neutral, thereby altering the conditions in the 
transition zone. Goodson's neglect of the ionization of helium by Hen Ly-a is proba­
bly also unjustified, since for Hen Ly-a the helium photo-ionization cross-section is 
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about five times that of hydrogen, compensating for the lower abundance of helium. 
For both of these reasons, Goodson overestimates the energy of the free electrons in 
the H e + + region at the expense of the electrons elsewhere. Although Goodson's tem­
peratures are probably somewhat in error, the ionization equilibria are probably quite 
good, in the sense that they represent the stellar fluxes assumed. 

More recent calculations of ionization equilibria are reported in these Proceedings 
by Flower and by Williams. Ionization equilibria including heavy atoms have been 
computed for dynamical models of H I I regions by Hjellming (1966), who employed 
the OS approximation. 

3.0. Lyman-a Lines 

The most important of the resonance-line transfer problems are those of Hi, Hei 
and Hen Ly-a. It is convenient to regard the hydrogen line as the prototype, if only 
because it has received the most attention. These lines are distinguished by their large 
optical thickness and by the very strong sources feeding energy into them. This com­
bination of factors leads to the possibility of very large intensities. For example, the 
line centre optical thickness of a planetary nebula in Hi Ly-a is about 10 4 times that 
at the Lyman limit (assuming T e = 10 4 °K) and, in the simplest picture, the line receives 
about f of the photons in the stellar Lyman continuum. 

Generally, the intensity of radiation in a line is determined by the relative rates at 
which photons enter and leave the line. While the rate at which photons are fed into 
these lines is given simply by recombination theory, the rate at which they leave 
depends on many factors. The most obvious method is to escape through the boundary 
of the nebula. However, if the optical thickness of the nebula in the line is very large, 
the number of scatterings necessary to escape can be extremely large, so that processes 
with a small probability per scattering of destroying photons can become important. 

3.1.0. E S C A P E M E C H A N I S M S 

The rate at which photons escape from the nebula is determined mainly by four 
factors: noncoherent scattering, velocity gradients, thermal gradients, and blanketing 
by interstellar hydrogen. 

3.1.1. N O N C O H E R E N T S C A T T E R I N G 

Henyey (1941) first pointed out that when a photon is scattered by a moving atom, 
its initial and final frequencies as seen by a stationary observer will in general differ 
because the change in the photon's direction will cause the Doppler shift to vary. 
This so-called noncoherence was recognized by Sobolev (1944,1947) (in a paper written 
in 1941) and independently by Zanstra (1949, 1951a) as being of primary importance 
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for the Ly-a problem, since it allows photons created in the very opaque line core to 
be scattered into the relatively transparent wings where they can more readily 
escape. A general discussion of noncoherent scattering is given by Hummer 
(1962). 

Two forms of noncoherent scattering are encountered in planetary nebulae. At a 
kinetic temperature of 1 0 4 o K (assumed equal to the electron temperature), the ratio 
of the natural width to the Doppler width is 3-7 x 10" 4 for Hi Ly-a and 3-8 x 10~ 3 

for Hen Ly-a. Within the core of the line, out to some three Doppler half-widths, 
the absorption coefficient is dominated by Doppler broadening, and the emission 
coefficient is approximately proportional to the absorption coefficient, i.e. there is no 
correlation between the absorption and emission frequencies. In the line wings, which 
are dominated by natural broadening, the scattering has a strong coherent compo­
nent, because photons lying far from the line centre are scattered mainly by atoms 
in the low-velocity part of the Maxwellian distribution. These two cases are referred 
to as complete and partial redistribution, respectively. If the line-centre optical thick­
ness is not too large, less than e.g. about 10 4 for Hi Ly-a, then the line becomes opti­
cally thin at frequencies which are still within the Doppler core and complete redistri­
bution can safely be assumed for the entire line. 

Complete solutions of the radiative transfer problems can be obtained only by 
numerical methods; a very comprehensive review of these techniques is given by 
Hummer and Rybicki (1967). The first accurate numerical solution for complete 
redistribution was obtained by Koelbloed (1956) for isothermal plane-parallel nebulae 
with line-centre optical thickness as large as 2 x 10 4 . When partial redistribution must be 
taken into account, the computational problem is much more difficult. The earliest 
attempts were too crude to yield anything but a qualitative picture of the radiation 
field. Unno (1951, 1955) obtained the first solutions for Hi and Hen Ly-a which were 
essentially correct, although not very accurate, because of the number of approxima­
tions he was forced to make. His results demonstrated clearly that while the mean 
intensity in the line core was quite large the flux was large only in the far wings. 
Hearn (1964) and Hummer (1968) have obtained accurate numerical solutions using a 
Cebysev expansion technique and a generalized discrete-ordinate method, respectively, 
although these solutions were not obtained in the context of the nebular line problem. 
Auer (1968) has employed a Monte-Carlo technique specifically to study the Ly-a line 
in planetary nebulae. 

For many problems it is sufficient to know the average number of scatterings 
experienced by a photon before leaving the nebula, or alternatively, the mean probabil­
ity of escape. When complete redistribution obtains, a simple argument given by 
Zanstra (1949) may be used. The basic assumption is that a photon will escape if its 
monochromatic optical distance from the nearest surface is less than unity and that 
it will be re-scattered otherwise. If 0(v) is the normalized emission coefficient, equal 
by assumption to the normalized absorption coefficient, the probability of escape 
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from a point with line-centre optical depth T 0 is 
00 

P(*o) = 2 J*0(v)dv, 
V c 

where v c is defined by 

For Doppler scattering, 0(v) = exp( — (v — v0/A)2)IA y/n and 
0 0 

2 f 
P( T o) = , « * dx , T 0 > 1 . 

Strictly speaking, this argument applies only to a one-dimensional nebula, since the 
relevant quantity is the monochromatic optical depth measured along the photon's 
direction of flight and not, as assumed above, the optical depth normal to the surface. 
Obviously, to obtain the mean escape probability, p ( T 0 ) should be multiplied by the 
depth distribution of emission and the quantity averaged over depth. The objections 
are partially overcome by Hummer (1964), and very recently Sobolev (1967) has ob­
tained rigorous bounds and asymptotic formulae for the mean number of scatterings. 
Capriotti (1965) has applied Zanstra's argument to a uniform spherical nebula expand­
ing with a constant velocity gradient and has given a number of approximate expres­
sions for mean escape probabilities. 

When partial redistribution is important, calculation of escape probabilities or the 
mean number of scatterings is much harder. Osterbrock (1962), in a very important 
paper, has taken advantage of the fact that a typical Ly-a photon does not move very 
far from its point of creation to the point where it experiences its last scattering before 
escaping, i.e. the photon remains at roughly the same depth while undergoing enough 
frequency changes to get it into the wing from which it escapes. Osterbrock also 
assumes that no photons escape in the line core, which he takes as extending 3-25 
Doppler half-widths on either side of the line centre. Photons arriving in the wing 
escape with a certain probability, otherwise scattering back into the core. By following 
the history of each photon on the basis of an approximate frequency-diffusion theory, 
Osterbrock is able to calculate the mean number of scatterings experienced by a 
photon created at a depth T 0 . His results differ at most by a factor of 3 from Zanstra's 
conclusion that <AT>~T 0 y/n lnr 0 . 

It would appear that Osterbrock's estimates are probably larger than the exact 
values. In the first place, Auer (1968) finds that approximately % of the escaping pho­
tons have frequencies in the core. If the number of scatterings is large, a core photon 
can diffuse a considerable distance, especially at frequencies near the somewhat arti-
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ficial division between core and wing. The outward decrease of the kinetic temperature 
in real nebulae also provides a bias towards preferential outward scattering. Some 
error also arises from Osterbrock's assumption that all photons are created at depth 
T 0 , which he takes to be the optical thickness of the nebular shell. If the nebula is 
optically thick in the Lyman continuum, then most of the Ly-a photons are produced 
near the inner boundary and identifying T 0 with the optical thickness is correct. How­
ever, if the Lyman continuum is optically thin, then Ly-a photons are created more or 
less uniformly throughout the shell, so that Osterbrock's (and Zanstra's) estimates 
should be averaged over the shell. 

The time development of the Ly-a line in a very thick shell has been studied in a 
very general manner by Field ( 1 9 5 9 ) and by Ivanov ( 1 9 6 7 ) , on the basis of partial and 
complete redistribution, respectively. Ivanov has shown that the leading term in the 
asymptotic solutions for long times is identical for both kinds of redistribution. 

3 . 1 . 2 . V E L O C I T Y G R A D I E N T S 

If a nebula is expanding with a velocity gradient, the line opacity will be shifted in 
frequency by increasing amounts as one proceeds outwards through the nebula. After 
Ambartsumian's ( 1 9 3 2 , 1 9 3 3 ) and Chandrasekhar's ( 1 9 3 5 ) pioneering investigations 
of the Ly-a radiation field in static and uniformly expanding nebulae led to catastrophic 
radiation pressure arising from the unrealistic assumption of coherent scattering, 
Zanstra ( 1 9 3 4 , 1 9 3 6 ) introduced the effects of velocity gradients. He also assumed 
coherent scattering and found a drastic reduction in the radiation pressure. Sobolev 
( 1 9 4 7 ) treated this problem in a more general and practical way and found that 
Zanstra's treatment was in error. 

Sobolev's original investigation included the effects of both velocity gradients and 
noncoherent scattering, but was based on the rather unsatisfactory assumption of a 
rectangular absorption profile. However, in a later paper, which does not seem to have 
attracted the attention it deserves, Sobolev ( 1 9 5 7 ) generalized his treatment to include 
an arbitrary absorption coefficient, with complete redistribution, and allowing for an 
arbitrary distribution of expansion velocities with depth. Most of Sobolev's results are 
presented for a constant velocity gradient. 

Unfortunately, no numerical results are given in Sobolev's paper. It is easy to see, 
however, that for typical expansion velocities of two or three times the mean thermal 
velocity, the magnitude of the average internal radiation field will not be seriously 
affected, although the detailed frequency dependence will be modified. For example, 
if the expansion velocity increases linearly with optical depth from the inner boundary 
and becomes three times the mean thermal velocity at the outer boundary, then roughly 
speaking, the optical thickness at any frequency in the line cannot be less than ^of its 
value in a static nebula, assuming Doppler broadening. Since the scattering is, in fact, 
noncoherent, the mean number of scatterings and therefore the average radiation 
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field, is reduced by about the same factor. On the other hand, if the scattering were 
coherent, then this reduction would be by roughly a factor of 9, which shows why 
velocity gradients appeared to be so important in the early studies. Capriotti (1965) 
has estimated that the mean probability of escape from a nebula with a line-centre 
optical thickness 10 4 increases by only 50% as the expansion velocity at the outside 
increases from zero to three times the mean thermal velocity. 

If one adopts an isothermal model of a planetary nebula and ignores the natural 
line width, the conclusion is that velocity gradients of the magnitude observed do not 
seriously alter the physical conditions within the nebula, although the details of the 
radiation field are affected. 

Note added in proof. The accurate numerical solutions of the line transfer pro­
blem in eluding arbitrary velocity gradients recently obtained by Hummer and Rybicki 
(Astrophys. J., in press) verify the predictions of this section. Moreover, nebular shells 
expanding differentially towards the observer were found to cause red-shifted line 
profiles. This effect is probably that seen in Vaughan's observations of the X 10830 
line (these Proceedings and Astrophys. ./., in press). 

3.1.3. T H E R M A L G R A D I E N T S 

According to presently accepted ideas, the electron and kinetic temperatures de­
crease toward the outer edge of the nebula, slowly in the Hn region and very rapidly 
at the boundary between the Hn and Hi regions. The general effect of such a tempera­
ture gradient is to reduce the opacity in the wings, thereby increasing the rate at which 
photons escape from the nebula. The effects of thermal gradients on resonance line 
transfer have been studied in detail by Hummer and Rybicki (1966) and Rybicki and 
Hummer (1967), who present extensive numerical results. 

From an approximate solution of the nebular Ly-a problem with a thermal gradient, 
Pleskova (1962) found that such gradients as may plausibly exist in Hn regions have 
little influence on the Ly-a radiation field in planetary nebulae. Even when an Hi 
region is present, it can exert very little influence on the Ly-a radiation field, because 
the line opacity is concentrated strongly in the region of the line centre, while the 
radiation leaving the Hn region is appreciable only in the line wings. Although Ples­
kova ignores the natural broadening wings, her conclusion is still essentially correct, 
for the following reason: 

If we take the temperatures of the Hn and Hi regions to be 1 0 4 o K and 1 0 2 o K , 
respectively, then the Doppler width in the Hi region is 1/10 that in the Hn region, 
and the ratios of natural to Doppler width are a n = 3-7x 1 0 " 4 and aj = 3-7x 10~ 3 . 
Since the optical thickness in Ly-a of the Hn region is about 10 4 , most of the flux lies 
beyond three Doppler widths, measured in the Hu region, from the line centre and 
therefore beyond 30 Doppler widths, as measured in the Hi region. Using the asymp-
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totic form of the Voigt function, it is easy to show that the absorption coefficient for 
these frequencies is less than 2 x 10" 6 the line-centre value. Since there are no sources 
of Ly-a in the Hi region, we can conclude that the Hi region has very little influence 
on the Ly-a field in planetary nebulae. This fact is also important in assessing the 
effects of velocity gradients, for it is sometimes argued that because scattering in the 
Hi region, occurring as it does predominantly in the far wings, is coherent, velocity 
gradients in the Hi region have an important effect on the radiation field. However, 
since the line opacity in the relevant region is so small, this argument is irrelevant 
unless the extent of the Hi region is enormous, i.e. r0p 10 6 . Even the shift of the line-
centre opacity into the region of large flux by velocity gradients has little effect because 
the core in the Hi region is so narrow. 

3.1.4. I N T E R S T E L L A R H Y D R O G E N 

If the interstellar neutral-hydrogen density is much lower than that in the outermost 
region of the nebula, the free path of an escaping photon will be much larger than it 
would be in the nebula, and simple geometrical arguments show that the photon has 
little chance of re-entering the nebula. On the other hand, if the nebula is completely 
ionized, then the neutral-hydrogen density may be of the same order of magnitude, 
so that a substantial effect could arise from the 'blanketing' by interstellar hydrogen. 

3.2.0. A B S O R P T I O N M E C H A N I S M S FOR H I Ly-a 

The radiation field in a line varies inversely as the sum of the mean probabilities 
per scattering of absorption and of escape. Thus, if the optical thickness of the nebula 
in the line is increased indefinitely, it is the most probable absorption process that 
finally limits the intensity of radiation in the line. As was first pointed out by Thomas 
(1949) and later by Burgess (1958), the assumptions of Baker and Menzel's (1938) 
Case B are equivalent to setting both escape and absorption probabilities to zero, 
with the result that the populations of the n = 2 levels are infinite. Provided that one is 
a priori sure that no upwards transitions occur from A? = 2, then no harm results from 
these assumptions in calculating the populations of the higher levels. On the other 
hand, if one wishes to check this point theoretically it becomes necessary to include 
the dominant escape and absorption processes in calculating the population of the 
n = 2 levels. 

It is also clear that the condition for 'detailed radiative balance' to occur, i.e. for 
upwards and downwards radiative transitions to balance sufficiently well for them to 
be regarded as exactly cancelling, is that the mean escape probability be smaller than 
the mean absorption probability. For the purposes of this discussion, we shall here 
take as standard conditions T e = 1 0 4 o K and Ne= 1 0 4 o K . 
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3.2.1. M E C H A N I S M S D E S T R O Y I N G Ly-a IN S C A T T E R I N G 

Let us first examine possible mechanisms for depopulating the 2p level before the 
emission of a further Ly-a photon occurs, i.e. for destroying a photon during the act 
of scattering. Spitzer and Greenstein (1951) first pointed out that collisional transitions 
from the 2p to 2s states, followed by two-quantum decay, could be important in this 
respect (cf. Seaton, 1955). The probability per scattering is 

_ Ne q (2p 2s) A2q (2s 1 s) + Ne q (2s -> 1 s) 
P l " ~A{2p^~is)~' A2q(2s - Is) + N e (<T(2s ^ 1 s) + q (2s 2pjj ' 

where we have assumed N e = N + . Here the q's are collisional rate constants and the 
A's are Einstein coefficients, with the subscript 2q denoting two-quantum processes. 
Seaton (1955) gives #(2s->2p) = 3?(2p->2s)^5 x 10" 4 c m 3 sec" 1 for 1 ^ 1 0 " 4 T e ^ 2 . 
In the same temperature range, the expression given by Hummer (1963a) reduces to 
# ( 2 p - > l s ) ~ 8 x 10" 9 c m 3 sec" 1 and <7(ls-»2p)~2-4 x 10" 8 e x p ( - 11.8 x 10 4/TC) 
c m 3 sec ~ 1 . Using the values A (2p -> 1 s) = 6-26 x 10 8 sec " 1 and A 2 q (2s -> 1 s) = 8 -227 sec " 1 , 

W C f i n d 2 . 7 x l O - 1 3 7 V e 

pl ~ , , 1 ^ 10" 4 Te ^ 2 . 
F l l + 0 - 6 x l O " 4 N e 

At standard conditions, p{ ^ 2 x 10~ 9 . The failure of Yada (1955a, b) to obtain any 
reduction in the Ly-a flux by including this process in an approximate solution of the 
transfer problem for Lyman continuum optical thickness up to 10 is understandable, 
since the number of scatterings would have been at most 10 6 . 

Collisional de-excitation of the 2p level is also possible. The probability per scatter­
ing for this process is 

Ne q (2p -+ 1 s) . 7 . 

A (2s -> 2p) 

At standard conditions, /? 2 ^l-3 x 1 0 ~ 1 3 , which is negligible compared t o p { . 
Kipper and Tiit (1958) have shown that in addition to the allowed 2p-> Is transition 

there is also a small probability of two-quantum decay. They find, for the probability 
per scattering of a photon being destroyed in this way,/? 3 ^ 3 x 1 0 " 1 4 . Gurzadian (1961) 
has shown that Ly-a can be scattered in magnetic dipole ls->2s transitions, since the 
energy difference between the 2s and 2p states is less than the energy corresponding 
to a Doppler width. For the photon to be destroyed, two-photon decay must then 
occur. The probability per scattering for this mechanism isp4 ~ 5 x 1 0 " 1 5 . Gurzadian's 
original proposal involved a much larger decay rate for 2s, arising from a hypothetical 
electric dipole moment of the electron which was being discussed at the time. Subse­
quent experimental work has eliminated this possibility. 

Collisional and radiative transitions from the 2p to higher states are possible, al­
though an atom thus excited will emit a photon that will, with high probability be 
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degraded into another Ly-a photon, unless the nebula is very thin. The probability 
per scattering of collisional transitions from 2p to 3s and 3d is about 1 0 " 1 2 , and that 
for radiative excitation by black-body radiation at 2-5 x 10 5 °K and a dilution factor of 
1 0 " 1 4 is about a factor of 10 smaller. Another possibility is the absorption of Hi Ly-a 
in 2->4 transitions in He + . However, as the frequencies of the two lines differ by about 
10 hydrogen Doppler widths, the probability of this process is also extremely small. 

Kahn (1962) has suggested that since an Hi Ly-a photon loses 10" 8 of its energy, 
on the average, per scattering to atomic recoil, a photon could eventually diffuse out 
the red wing of the line. Under typical conditions, this would occur in about 10 4 scat­
terings. However, because of the Doppler redistribution, as soon as the red side of the 
line becomes more intense, the number of red-to-blue scatterings increases to balance 
out the net energy loss to zero. 

3.2.2. M E C H A N I S M S D E S T R O Y I N G Ly-a B E T W E E N S C A T T E R I N G S 

Ly-a photons will be destroyed between scatterings by photo-ionizing atoms in 
states having an ionization potential less than 1015eV. The highly populated metasta-
ble states of hydrogen and helium are the most likely to be important in this respect. 

If NA and Ns are the densities of absorbing and scattering atoms respectively, and 
RA(v) and i ? s ( v ) a r e t n e r a t e s P e r u r n t frequency of absorbing and scattering radiation 
of frequency v, we can write 

where av is the photo-ionization cross-section; 0 ( v ) is the line-scattering coefficient 
normalized to unity; B 1 2 is the Einstein coefficient for the scattering process; and J v 

is the mean intensity. For simplicity, assume that J v is constant over a frequency 
interval 25 and zero elsewhere. Then the total rates are 

RA (v) dv = AnNA av

 v dv, 
hv 

and 
K s (v)dv = JV s £ 1 2 0(v) J v dv 

and 

and the probability of absorption per scattering is 

PA = Rs hv0Bl2 Ns 
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The half-width S is typically 3 Doppler half-widths. Using the numerical values for 
Hi Ly-a, _ 0 = l-06x 1 0 1 1 s e c - 1 ; hv0Bl2 = 0-l4 cm 2 sec, we have 

pA = 5 x l O 1 3 ~Aa vO • 

The photo-ionization cross-sections at Ly-a of H(2s) and He(2 3 S) are approximately 
6 x 1 0 " 1 9 c m 2 (Seaton, 1960) and 1.5 x 1 0 " 1 8 cm 2 (Huang 1948), respectively. We can 
estimate the H(2s) population by balancing recombination against two-quantum decay 
and 2 s - _ p transitions, assuming N e = N + , 

$aBNe

2 = N(2s) [A2q(2s - Is) + Neq (2s - 2p)] , 

or using the numerical values given above, 

N(2s) = 
1 x 1 ( T 1 4 AL2 

1 + 0-6 x 1 0 ~ 4 AL 

As the population of He(2 3 S) is affected by a number of processes, we shall infer 
its value from O'Dell's (1965) measures of the ratio 7(10830)//(5876). Since the 2 3 P 
level is populated by collisional excitations from 2 3 S and by recombination, and de­
populated mainly by radiative transitions to 2 3 S, we have (cf. O'Dell, 1965) 

/ ( 1 0 8 3 0 y / ( 5 8 7 f i ) - — _ _ _ _ _ . 

Using the values given by Seaton (1968) for T e = 1 0 4 o K , ? ( 2 3 S - > 2 3 P ) ~ 2 x 1 (T 7 

c m 3 sec and <xefr(5876) = 5-2x 10 1 4 and taking ±aB= 1-3 x 1 0 ~ 1 4 , we have 

1 ' 
iV(2 3S) r . T 7(10830) 
- - - — - ^ = 2-6 x 10" 7 1-8 — r - 2 . 5 
Af (He ) L / (5876) 

O'Dell's values of 7(10830)//(5876) lie between 1-9 and 9-6, so that A^(2 3S)/A r(He + ) 
lie between 4 x 10" 6 and 2 x 10" 7 . In the region where the helium lines are formed 
A r ( H e + ) ~ i V H e ~ f / V H ~ 2 x 10 3 c m " 3 . Thus for the probabilities per scattering of ab­
sorption of Hi Ly-a by H(2s) and He(2 3 S), we have 

p A (H2s) = 2 x 1 0 - n / J V s , 
and 

3 x 10" 8 ^ N s p A ( H e 2 3 S ) ^ 6 x 1 0 ~ 7 . 

Since NS = N(H Is) is hardly smaller than 1 c m - 3 , absorption by H(2s) is unim­
portant, while absorption by He(2 3 S) appears to be the dominant loss mechanism, at 
least in regions where helium is mostly singly ionized and Af(H 1S)<;10 2 c m " 3 . 

Finally, there is the possibility of extinction by dust grains. Although there is at 
present no direct observational evidence for dust in planetary nebulae, quantities of dust 
otherwise unobservable could still play a role in destroying Ly-a because of the very 
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long paths of these photons in the nebula. If planetary nebulae do, in fact, evolve 
from red giants, then it is not surprising that dust should exist in at least the Hi 
regions of planetaries. Any energy absorbed by dust would be re-emitted in the in­
frared; whether or not the strong infrared continuum observed in N G C 7027 by Gillett 
et al. (1967) has its origin in this mechanism remains a matter of speculation.* 

3.2.3. A B S O R P T I O N M E C H A N I S M S FOR Hei A N D H e n Ly-a 

The Ly-a lines of both Hei and Hen are capable of ionizing hydrogen, and that of 
Hen can ionize helium. Using the formula for pA derived above, and the numerical 
values for He n Ly-a ;A =2-1 x 1 0 1 1 s e c " 1 , A v 0 5 1 2 = 0-14cm 2 sec~ 1 ;anda V o = 2-9x 1 0 " 1 9 

cm 2 , we obtain for the probability per scattering that a Hen Ly-a photon is absorbed 

b y h y d r 0 g C n ' , ^ 5 J V ( H l s ) 
pA(H) ~ 3-3 x 10" 5

 + \ . 
v ) JV(He + l s ) 

From Goodson's (1967) ionization equilibria we find values of Af(H ls)/7V(He + Is) 
on the order of 10 " 4 - 1 0 ~ 2 throughout the region of interest, so that pA(H)~ 1 0 ~ 9 - 1 0 - 7 . 
The probability per scattering of absorption of Hei Ly-a by hydrogen is similar. The 
probability that a Hen Ly-a photon is absorbed in a 2p 2 3 P 2 -»2p3d 3 P 2 (the initial 
transition in the Bowen mechanism) is difficult to estimate because it will depend on 
the details of the radiation field which can be obtained only by a solution of the transfer 
equation, but it could easily be important because of the resonant nature of the ab­
sorption. On the other hand, the probability per scattering of loss by 2p->2s transitions 
in H e + is about a factor of 70 smaller than for H (Hummer, 1963&). 

3.3.0. P O S S I B L E C O N S E Q U E N C E S OF LARGE Ly-a I N T E N S I T I E S 

Historically, the first important consequence of Ly-a intensity to be considered was 
the catastrophic radiation pressure. The calculations of Koelbloed (1956) and of 
Zanstra (1956) show that for a total thickness of 2 x 10 4 , the inclusion of noncoherent 
scattering reduces the radiation pressure by a factor between 40 and 500, depending 
on position, from the value with coherent scattering, with the result that Ly-a radia­
tion pressure is not of dynamical importance. Moreover, as we have argued above, 
any increase in the optical thickness in Ly-a beyond 10 4 must come from an Hi region, 
in which the hydrogen line is so narrow as to miss most of the radiation escaping from 
the Hn region. It would appear that Hi Ly-a radiation pressure is unimportant until 
the Ly-a optical thickness exceeds 10 7 . 

If the Ly-a radiation becomes very intense, the population of the 2p level may 
become sufficiently large so that absorption of the Balmer lines and collisional transi-

* Krishna Swamy and O'Dell (Astrophys. J., 151, L 6 1 , 1968) have presented impressive evi­
dence in support of this mechanism. 
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tionsfrom this level become important. H i Ly-a could also play a role in depopulating 
the 2 3 S state in Hei. 

3.3.1. A B S O R P T I O N IN THE B A L M E R LINES 

In his original investigations of the Ly-a radiation field, Ambartsumian (1932, 1933) 
found that the 2p population was large enough for the Balmer a and /? lines to be 
optically thick. Pottasch (1960a, b), who included in his calculations the effects of 
noncoherent scattering, obtained smaller excited state populations than Ambartsu­
mian, but concluded that self-absorption could occur in the early Balmer lines. How­
ever, because his frequency-quadrature scheme had artificially impaired the escape of 
Ly-a radiation, Pottasch obtained values of the 2p population considerably too large. 
Osterbrock's (1962) calculations showed that for typical nebulae self-absorption was 
probably negligible. Gershberg (1961) and Mathis (1962) reached the same conclusion 
from observational evidence. 

Capriotti (1964a, b) has calculated the Balmer decrement as a function of the optical 
thickness in the 2p-»3s, 3d transitions and the 2s-»3p transition. An examination of 
the observed Balmer a, /?, y ratios in the light of Capriotti's results indicates that self-
absorption in the Balmer lines is completely unimportant for the overwhelming major­
ity of nebulae for which we have observations. 

The effect of self-absorption on the triplet system of helium has been discussed 
most recently by Pottasch (1962) and by Osterbrock (1964), who give references to 
earlier work. It appears that self-absorption is important in some objects, although 
other mechanisms may also be operative. 

3.3.2. C O L L I S I O N A L PROCESSES FROM n = 2 

Jefferies and Pottasch (1959) and Pottasch (1960c) found that for optically thick 
nebulae the populations of the excited states of hydrogen are so large that collisional 
ionization from these states are comparable in number with ground state photo-ioniza-
tions. Consequently the generation of diffuse photons is increased substantially by the 
inclusion of these processes, and the ionized region is considerably larger than the 
Stromgren estimate. However, if this effect exists, it must arise primarily from the 
n = 2 level, since the populations of the higher states are much smaller, while their 
collisional ionization rate constants are not much larger than those for n — 2. An 
upper limit to the 2p population is obtained by setting the escape probability to zero 
and assuming that 2p->2s transitions followed by two-quantum decay are the dominant 
absorption mechanism, with a probability per scattering of 10" 9 (see Section 3.2.0). 
Then the maximum density of atoms in the 2p state is given approximately by (Oster­
brock, 1964) 

10" 9 / l ( 2 p - Is) N n l a x ( 2 p ) = NeN+iaB, 
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or assuming Ne =N + = 10 4 , 

N m a x ( 2 p ) ~ 2 x 1 0 " 5 c m - 3 . 

The 2s population is about 10" 6 (Section 3.2.2) in these conditions. Rudge and 
Schwartz (1966) give the ionization rate constant for 2s as 6-8 x 10~ 9 c m 3 s e c - 1 at 
Tc= 10 4 , and since Prasad (1966) has shown that the 2s and 2p ionization cross-sec­
tions are not very different at low energies, we see that the maximum collisional ioniza­
tion rate from n = 2 is about 1 0 ~ 9 s e c - 1 , while the photo-ionization rate from Is is 
about 10~ 5 sec" 1 . It would appear that collisional ionization from excited states is 
completely unimportant for planetary nebulae. 

Pottasch (1960a) has also investigated the possible role of collisional excitation from 
the n = 2 states and finds that it is negligible by several orders of magnitude, even 
using his overestimated n = 2 populations. 

3.3.3. P H O T O - I O N I Z A T I O N OF He 2 3 S BY H I Ly-a 

The photo-ionization of He(2 3 S) by Hi Ly-a has already been discussed (Section 
3.2.2) as a destruction mechanism for Ly-a. Munch has suggested that these processes 
could be important in controlling the population of He(2 3 S) . O'Dell (1965) has in­
vestigated this problem on the assumption that 2 3 S is populated by recombination 
(including cascade) and is depopulated by two-photon transitions to \lS, photo-
ionization by stellar radiation, collisional transitions to 2 ! S , and photo-ionization by 
Ly-a. From the observed intensity ratios of the lines Hei kl 10830 A and 3889 A to 
I 5876 A, O'Dell derives a measure of the distance traveled by a typical Ly-a photon 
in the nebula, much larger than would be estimated from Osterbrock's mean number 
of scatterings for the Hn zone. O'Dell suggests that this is evidence for an extensive 
neutral-hydrogen region blanketing the Hn region. However, O'Dell's 2 3 S->2 1 S col­
lision rate constant is too small by a factor of 5, and his value for the 2 3 S->2 3 P is too 
large by a factor of 1-7 (Seaton, 1968). He also neglected collisional transitions to 2 ! P 
and what is perhaps the most important mechanism,* photo-ionization by the entire 
Balmer spectrum of Hen. All of these factors tend to make O'Dell's estimate of the 
ionizing power of Hi Ly-a too large. 

3.3.4. E F F E C T S OF Hen Ly-a 

Probably the most important role played by this radiation is in ionizing hydrogen 
and helium. It is clear from Goodson's (1967) work that Hen Ly-a makes a major 
contribution to the energy balance, so that a careful solution of this transfer problem 

* Robbins (Astrophys. 1 5 1 , L 3 5 , 1968) has suggested that excitation of doublyexcited auto-
ionizing states in helium by ultraviolet lines of C m and N i v may be important in depopulating the 
2 3 S level of He i . 
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along with the ionization balance of H and He is important in determining the correct 
run of electron temperature with depth. In particular, it is important to know whether 
HeII Ly-a is absorbed in the He + 2 region, or whether it escapes and is absorbed in 
regions where the densities of H and He are larger. Since the electrons produced by the 
photo-ionization of H and He have energies of 27-2 and 16*2 eV respectively, 
which are much larger than the mean electron energy ( ~ 1 eV), their thermalization 
will occur much more slowly than would be expected from the estimates of Bohm and 
Aller (1947). If these electrons suffered inelastic collisions with atoms before being 
thermalized, a substantial part of their energy could escape as radiation and should 
not be included in the thermal balance. 

4.0. Transfer Effects and the Hydrogen Recombination Spectrum 

The Lyman lines beyond Ly-a have an entirely different character from Ly-a because 
their photons have a large probability per scattering (>0-5) of being degraded into 
photons in a lower Lyman line and a subordinate line. For this reason the population 
of the excited levels other than n = 2 varies little with optical thickness. 

Since the optical thicknesses of the Lyman lines have fixed ratios, the populations 
of the excited states should increase monotonically from their Case A to Case B 
values as the optical thickness is increased, assuming self-absorption in the Balmer 
line is negligible. Since, however, the level populations will increase at different rates, 
the ratios of Balmer line intensities need not necessarily lie between their Case A and 
Case B values. Capriotti (1966) has investigated the effect on the relative intensities 
of Balmer a, /?, y and d of allowing for the partial escape of Lyman photons. The 
escape probabilities was estimated by an extension of Zanstra's argument (Section 
3.1.1) to a nebula expanding with a constant velocity gradient. The line-intensity ratios, 
displaced by an arbitrary amount along the reddening curve, show better agreement 
with the observed ratios than do either the Case A or Case B values, although by no 
means all observed ratios lie within Capriotti's bounds. It is also not clear that argu­
ments based on averages of quantities that vary by orders of magnitude are an entirely 
reliable basis on which to discuss variations in line ratios on the order of 0-03 in the 
logarithm. Since upward transitions from excited states are negligible, each Lyman 
line transfer problem* can be solved successively, starting with a high, optically thin 
line, and working towards Ly-a. This is quite feasible with modern computing tech­
nique and a definite answer to this problem should be available. 

* Van Blerkom and Hummer {Astrophys. J., in press) have shown the importance of overlapping 
on the transfer problem of the higher Lyman lines and have developed a simple band model for the 
inclusion of these effects. 
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D I S C U S S I O N 

Bohm: I agree with Hummer's statement that in principal the treatment of the H e n resonance 
radiation in Goodson's paper is not satisfactory. On the other hand the numerical values calculated 
by G o o d s o n for the electron temperature in the core of the nebula lie between 2 x 10 4 and 2*2 x 10 4 

°K, and essentially agree with the numbers given by Flower. 
Seaton: The agreement between G o o d s o n and Flower is a consequence of their having made the 

same assumptions. 
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