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Abstract

The spectral duality theory of H.-E. Porst and M. B. Wischnewsky is examined in more generality,
and examples based on topological fields are described.
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Introduction

A spectral duality generated by "topological" algebras is generally taken to
mean a Gelfand-type duality between certain function-space algebras and their
corresponding spectral spaces. In recent times a general approach to such
dualities has been formulated by H.-E. Porst and M. B. Wischnewsky [8] and
some important examples of this theory have been supplied by S. S. Hong and
L. D. Nel [5]. This framework depends on the notion of a topological closed
category and this notion would seem to be fundamental from a practical point
of view.

However, it turns out that if the theory of T-enriched epireflective hulls is
used then a theory of spectral duality can be formulated over any complete
symmetric monoidal closed category °V; this we do in Section 1. While instances
of "non-topological" dualities may be less obvious (functor-category examples
do exist), the more general approach brings out the essence of the duality while
simplifying the formulation.

The examples produced in this article (in Sections 2, 3, and 4) are, in fact,
based on algebras of continuous functions into a topological ring K where K is,
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algebraically, a field. These yield generalisations of the Gelfand and Stone
dualities.

The unexplained notation and terminology of this article are reasonably
standard.

1. Spectral duality; a general theory

Let T = (%, /, <8>, [ - , - ] , . . . ) be a complete symmetric monoidal closed
base category and suppose that all categorical concepts introduced in this
section are relative to this T. As part of completeness, let T admit canonical
(epi; strong-mono)-factorisations and also the intersection of any class of strong
monomorphisms with a common codomain.

Let 6 be a category (enriched over T) which admits canonical (epi; strong-
mono)-factorisations, equalisers of pairs, and the intersection of any class of
strong monomorphisms with a common domain. Moreover, let K be a fixed
object of G such that all the cotensor powers (that is, exponents) of the form
[X, K], J f 6 % exist in G.

THEOREM 1.1. There exists a full reflective subcategory Q" of G such that K
strongly "f-cogenerates G".

PROOF. The category G" is simply the (T-enriched) epireflective hull of A" in
G', where G' is the (T-enriched) epireflective hull of K in G. The only difficulty
is with the existence of canonical (epi; strong-mono)-factorisations in C, but
this follows from G. M. Kelly [7, Proposition 4.5(b)] together with the complete-
ness hypotheses on G itself.

COROLLARY 1.2. The functor S: G" -> cVDp, which sends C to G(C, K), reflects
isomorphisms.

We next seek an isomorphism-reflecting adjoint to S. This adjoint will
essentially be given by suitably restricting the .fif-cotensoring functor T = [-, K\.

Firstly, suppose that |?|: G -» % is a functor, into a complete category <S>,
such that \[X, K]\ » [X, \K\] for all X G °V. An object X of °V" is said to be
K-spectral, with respect to this functor, if there exists an equaliser presentation
of the following form in T:

X-+®(B,\K\)zZ(&(B',\K\); B,B'&%.
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Let Spec denote the full subcategory of °V~ consisting of the AT-spectral objects
of CV, and let us call Q K-algebraic over ® if each object of the form Q(C, K),
C G 6, is ^-spectral.

THEOREM 1.3. If 6 is K-algebraic over % then there exists an induced

adjunction

(TJ, e): T^ S: G" -» Specop

in which T also reflects isomorphisms.

PROOF. It is clear that the functor H: Spec01* -> ®, which maps X to [X, \K\],
reflects isomorphisms since H has an adjoint L given by L(B) = %(B, \K\) and
the unit X -* $ ([X, \K\], \K\) of this adjunction is a strong monomorphism in
Spec:

X >®([X,\K\],\K\)

Thus, since H(X) = [X, \K\] a It^, AT]| = \TX\, we deduce that T reflects iso-
morphisms.

Now consider the triangle equalities for T->- S.
esc VTX

TX -»

COROLLARY 1.4. There exists a spectral duality Q" ^ Spec011 iff eS or i\T is an
epimorphism.

In the examples already constructed by E. Binz [1] and S. S. Hong and L. D.
Nel [5], the transformation e^ is verified to be an epimorphism for all X G T .
This, of course, is a much stronger hypothesis than is needed and leads to the
following result.

THEOREM 1.5. If ex is an epimorphism for all X G T then the inclusion
Spec c T is epireflective and Spec consists of the K-embeddable objects of CV.

Here, by a K-embeddable object of % we mean an object X of T which
admits a strong T-embedding into an object of the form %(B, \K\) for some
B G ®. If % is T-tensored then the category of ^f-embeddable objects has
many nice properties (see [5]).
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2. Pointwise convergence and A-algebras

Let 'V = (Top, 1, ®, [ - , - ] , . . . ) be the category of all topological spaces and
continuous maps with the structure of pointwise convergence on the hom-sets.
This well-known structure on Top will provide our base category.

Let "3J = °V~ and let Q be the category of topological unital A"-algebras where
AT is a topological ring which is algebraically a field and which contains an open
set not the whole of K. Since a A"-algebra can be viewed as an action of the form

where £2: N—»Top is defined in an obvious manner, we have a derived
pointwise action

which enables us to "Y-enrich Q by equalisers of the form:

S(C, D) -»[ C, D] z* [20(/t) ® (®n C), D].

Thus Q is A"-algebraic over T and is clearly T-cotensored relative to compo-
nentwise structure.

By a standard topological argument (see the first part of the proof of S.
Kaplan [6, Theorem 1]) we have that any (2-morphism/: [X, K] —> K gives rise
to the following situation

where A'Q denotes the discrete space on X and mis a continuous injection. In
order to deduce that the factorisation of/ as ge is such that g lifts along m, first
note that, by standard structure theory of algebras, the underlying algebra of C
is of the form K1 (/ finite). Thus m exhausts all projections Kl —* K and so g lifts
to a projection which is, of course, continuous.

The conclusion is that / i s an evaluation-at-x morphism for some x e J f s o e :
X —* Q([X, K], K) is a surjection for all topological spaces X. By the general
theory, this implies the existence of a duality between function-algebras of the
form [A', K] and spectral spaces, the latter being those topological spaces which
admit an embedding in some [B, \K\], B G Top.
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3. Finite discrete fields

Let °V = (%, 1, X, [ - , - ] , . . . ) be the cartesian closed category of all topo-
logical fc-spaces, and let % = T. Let K be a finite discrete field, and let 6 be
the category of unital /f-algebras in CV. It is shown directly that ex is a surjection
for all X G T; that is, each C-morphism/: [X, K]-> K is evaluation-at-x for
some point x G X.

Consider the following pushout diagram in the category of ordinary unital
rings, where Xo denotes the discrete space associated to X:

[X,K] • [*<,,#]

fi is

K 1 >P

Then b is an injection by W. H. Cornish [2, Theorem 1.6] since all the rings are
regular. Give P the quotient topology from [Xo, K], then g is an open mapping.
Let / = ker g and let Y C Xo denote the subset of Xo for which there is a
non-zero entry of / in the y G Y coordinate position of [Xo, K]. Then Y • K < /
< [ Y, K] where Y • K denotes the coproduct of Y copies of K. Let K denote the
complement of 0 in K and let A denote the complement of [ Y, K] in [ Y, K].
Then 0 e A C Y • K < I where A is open by Tychonoff, so [ Y, K]/I is discrete.
Thus P ^ ([ Y, K]/I) X [Xo — Y, K] is a non-zero product of copies of K since
Qy, K]/I) is a quotient AT-algebra of K" (n finite); see B. J. Day [3]. This means
that b splits, and this concludes the proof.

The final result is a duality somewhat analogous to the classical Stone duality
for K = Zj. Note that a similar argument can be used to give rise to dualities
over finite discrete fields in many "convenient" closed categories.

4. An application of the Gelfand-Naimark theorem

Let "V = (DC, 1, X, [ - , - ] , . . . ) be the cartesian closed category of compactly
generated limitspaces; a limitspace X is said to be compactly generated if there
exists a small set {PA;\G A) of compact Hausdorff spaces and a limitspace
quotient map 2 i \ ->* X. The main example of a DC-space is a locally compact
hausdorff space (see B. J. Day [4, Section 3]). It is also shown in [4] that there is
a cartesian closed DC-ification functor W: ® -> DC where % = (lim, 1, X,
(-, - ) , . . . ) is the cartesian closed category of all limitspaces and [X, Y] =
W(X, 7) for all*, Y G DC.
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Let K = C, the complex field, and let Q be the •& -category of all unital
C-algebras in %, regarded as a % -category under the action of W: 9> -> %.
Then Q, being monadic over 6J, is C-algebraic over 9> and Q is C-cotensored as
a % -category.

Suppose X G % and let 2 i \ -w X be a presentation of Ar. If/: [Z, C] ->• C is
a G-morphism then it can be extended along the resultant embedding [X, C] <
H[P\, C] by the proof of S. Kaplan [6, Theorem 1] coupled with the classical
Gelfand-Naimark theorem. In the process, it is seen that the canonical mor-
phism

coiimseA e([ a , c ] , c) -> e(nAeA[ px, c ] , c)

is a surjection, where A is the set of all finite subsets of A and Qg =
Thus we consider the diagram:

colime([es,C],C)
1

• e(n[/\,c],c)
l

e([x,c],q

Here the top arrow is a surjection by part of the classical Gelfand duality. Since
ê - is then a surjection for all X G %, we obtain a spectral duality between
function algebras [X, C], X E DC, and C-embeddable objects A' G OC for which
there is an inclusion X ^> W(B, Q, B G <&.

References

[1] E. Binz, Continuous convergence on C(X), Lecture Notes in Mathematics 469 (Springer-
Verlag, Berlin, Heidelberg, New York, 1975).

[2] W. H. Cornish, 'Amalgamating commutative regular rings', Comment. Math. Univ. Carolinae,
18-3 (1977), 423-436.

[3] B. J. Day, 'Note on duality of Kelleyspace products', Bull. Austral. Math. Soc. 19 (1978),
273-275.

[4] , 'An extension of Pontryagin duality', Bull. Austral. Math. Soc. 19 (1978), 445-456.
[5] S. S. Hong and L. D. Nel, 'Duality theorems for algebras in convenient categories', Math. Z.

166(1979), 131-136.
[6] S. Kaplan, 'Extensions of the Pontryagin duality II: Direct and inverse sequences', Duke

Math. J. 17 (1950), 419-435.

https://doi.org/10.1017/S1446788700024526 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024526


[7 ] Gelfand dualities over topological fields 177

[7] G. M. Kelly, 'Monomorphisms, epimorphisms, and pull-backs', / . Austral. Math. Soc. 9
(1969), 124-142.

[8] H.-E. Porst and M. B. Wischnewsky, 'Every topological category is convenient for Gelfand
duality', Manuscripta Math. 25 (1978), 169-204.

School of Mathematics and Physics
Macquarie University
North Ryde, NSW 2113
Australia

https://doi.org/10.1017/S1446788700024526 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024526

