# MOORE $G$-SPACES WHICH ARE NOT CO-HOPF $G$-SPACES 

BY<br>RYSZARD DOMAN


#### Abstract

Let $G$ be a finite group. By a Moore $G$-space we mean a $G$-space $X$ such that for each subgroup $H$ of $G$ the fixed point space $X^{H}$ is a simply connected Moore space of type $\left(M_{H}, n\right)$, where $M_{H}$ is an abelian group depending on $H$, and $n$ is a fixed integer. By a co-Hopf $G$-space we mean a $G$-space with a $G$-equivariant comultiplication. In this note it is shown that, in contrast to the non-equivariant case, there exist Moore $G$-spaces which are not co-Hopf $G$-spaces.


1. Introduction. Let $G$ be a finite group. $G$-spaces, $G$-actions, $G$-maps, and $G$ homotopies considered in this paper will be pointed. We shall work in the category of $G$-spaces having the $G$-homotopy type of a $G$-CW-complex [1], and we make tacit use of the standard strategies for keeping our constructions within this category.

Definition 1.1. A co-Hopf $G$-space is a co-H-space $X$ on which $G$ acts in such a way that the comultiplication $\sigma: X \rightarrow X \vee X$ is an equivariant map, and the composition $X \xrightarrow{\sigma} X \vee X \subset X \times X$ is $G$-homotopic to the diagonal map $\Delta: X \rightarrow X \times X$.

Let $O_{G}$ be the category of canonical orbits of $G$. The objects of $O_{G}$ are the quotient spaces $G / H$, where $H$ is a subgroup of $G$, and the morphisms are the $G$-maps between them, where $G$ acts on $G / H$ by left multiplication. A coefficient system for $G$ is a contravariant functor from $O_{G}$ into the category of abelian groups. A coefficient system will be called rational if its range is the category of $\mathbf{Q}$-vector spaces. For a $G$-space $X$, coefficient systems $\underline{\pi}_{n}(X)$ and $\underline{\tilde{H}}_{n}(X)$ can be defined by $\underline{\pi}_{n}(X)(G / H)=\pi_{n}\left(X^{H}\right)$, $\underline{\tilde{H}}_{n}(X)(G / H)=\tilde{H}_{n}\left(X^{H}\right)$, where $\tilde{H}_{n}()$ denotes the reduced singular homology group with $\mathbf{Z}$-coefficients.

Let $M$ be a coefficient system for $G$ and $n \geqq 2$ an integer.
Defintion 1.2. A Moore $G$-space of type $(M, n)$ is a $G$-space $X$ such that each fixed point space $X^{H}, H$ a subgroup of $G$, is simply connected and

$$
\underline{\tilde{H}}_{q}(X)= \begin{cases}M & \text { if } q=n \\ 0 & \text { otherwise }\end{cases}
$$

Coefficient systems for $G$ and their natural transformations form an abelian category with sufficiently many projectives and injectives [1]. The same holds for rational coefficient systems. By a result of P. J. Kahn [4], if $M$ is a rational coefficient system for
$G, n \geqq 2$ an integer, and proj. $\operatorname{dim} M<n$, then, up to $G$-equivalence ( $=G$-homotopy equivalence), there exists exactly one Moore $G$-space of type $(M, n)$. Uniqueness, however, does not hold in general for Moore $G$-spaces. In [4] there is given an example of a rational coefficient system $M$ and two Moore $G$-spaces $L_{1}, L_{2}$ of type $(M, 2)$ which are not $G$-equivalent. In [2] we have shown, by methods completely different from that of [4], that for the system $M$ there exist infinitely many non $G$-equivalent Moore $G$-spaces of type ( $M, 2$ ).

The aim of this note is to show that all but one of the Moore $G$-spaces of type $(M, 2)$ constructed in [2] are not co-Hopf $G$-spaces. Thus, we show that the well known result that every simply connected Moore space is a co-H-space does not hold in the $G$-equivariant context.
2. Constructing Moore $G$-spaces. Let $G=\mathbf{Z}_{2} \times \mathbf{Z}_{2}$, where $\mathbf{Z}_{2}$ denotes the cyclic group of order 2. A typical coefficient system for $G$ can be represented as follows

$$
M(G / G) \xrightarrow{ }
$$

where $H_{1}, H_{2}, H_{3}$ are the proper subgroups of $G$.
Henceforth, we shall assume that $G=\mathbf{Z}_{2} \times \mathbf{Z}_{2}$ and $M$ will denote a rational coefficient system for $G$ given by the diagram

in which the action on $\mathbf{Q}=M(G / e)$ is trivial.
We shall use the following property of the system $M$.
Proposition 2.1. [4, 5.3.2] Let Ext ${ }^{i}$ denote the $i$-th right derived functor of Hom in the category of rational coefficient systems. Then

$$
\operatorname{Ext}^{i}(M, M)= \begin{cases}\mathbf{Q} \oplus \mathbf{Q} & \text { if } i=0,2 \\ 0 & \text { otherwise }\end{cases}
$$

We have observed in [2] that each Moore $G$-space of type $(M, 2)$ has only two non-trivial systems of homotopy groups: $\underline{\pi}_{2}(X)=\underline{\pi}_{3}(X)=M$ and that this implies that it is determined, up to $G$-homotopy type, by its equivariant $k$-invariant $k(X)$ which lies in the Bredon cohomology group $\tilde{H}_{G}^{4}(K(M, 2), M)$ [5]. Here $K(M, 2)$ denotes an Eilenberg-MacLane $G$-space of type ( $M, 2$ ) [1].

Let $i_{1}, i_{2} \in \tilde{H}_{G}^{2}(K(M, 2), M)$ be the classes corresponding to $(1,0),(0,1)$, respectively, under the identification $\tilde{H}_{G}^{2}(K(M, 2), M)=[K(M, 2), K(M, 2)]_{G}=$
$\operatorname{Hom}(M, M)=\operatorname{Hom}(M(G / G), M(G / G)) \oplus \operatorname{Hom}(M(G / e), M(G / e))=\mathbf{Q} \oplus \mathbf{Q}$. Let us denote $i_{k}^{2}=i_{k} \cup i_{k}, k=1,2$, where $\cup: \tilde{H}_{G}^{2}(K(M, 2), M) \otimes \tilde{H}_{G}^{2}(K(M, 2), M) \rightarrow$ $\tilde{H}_{G}^{4}(K(M, 2), M)$ is the cup-product in Bredon cohomology.

We shall use the following facts proved in [2].
Proposition 2.2. There is a functorial short exact sequence of $\mathbf{Q}$-vector spaces

$$
0 \rightarrow \operatorname{Ext}^{2}\left(\underline { \tilde { H } } _ { 2 } ( K ( M , 2 ) , M ) \rightarrow \tilde { H } _ { G } ^ { 4 } ( K ( M , 2 ) , M ) \rightarrow \operatorname { H o m } \left(\underline{\tilde{H}}_{4}(K(M, 2), M) \rightarrow 0\right.\right.
$$

Proposition 2.3. For each element $u \in \operatorname{Ext}^{2}\left(\tilde{H}_{2}(K(M, 2), M) \subset \tilde{H}_{G}^{4}(K(M, 2), M)\right.$ the $G$-space determined by the equivariant $k$-invariant $u+i_{1}^{2}+i_{2}^{2}$ is a Moore $G$-space of type ( $M, 2$ ).

## 3. Non-existence of co-Hopf $G$-structures.

Proposition 3.1. Let $X$ be a Moore $G$-space of type $(M, 2)$ and $p: X \rightarrow K(M, 2)$ the equivariant Postnikov deomposition of $X$ [5]. Then $\tilde{H}_{G}^{4}(X, M)=\operatorname{Ext}^{2}\left(\tilde{H}_{2}(X), M\right)$ and the homomorphism $p^{*}: \tilde{H}_{G}^{4}(K(M, 2), M) \rightarrow \tilde{H}_{G}^{4}(X, M)$ induced by $p$ restricts to an isomorphism $\operatorname{Ext}^{2}\left(\underline{\tilde{H}}_{2}(K(M, 2), M) \rightarrow \tilde{H}_{G}^{4}(X, M)\right.$, where $\operatorname{Ext}^{2}\left(\underline{\tilde{H}}_{2}(K(M, 2), M) \subset\right.$ $\tilde{H}_{G}^{4}(K(M, 2), M)$ (see Proposition 2.2).

Proof. The map $p: X \rightarrow K(M, 2)$ is a 2 - $G$-equivalence. Thus, $p_{*}: \underline{\tilde{H}}_{2}(X) \rightarrow$ $\underline{\tilde{H}}_{2}(K(M, 2))$ is an isomorphism. Clearly, a universal coefficient spectral sequence [1], gives for $X$ an isomorphism $\operatorname{Ext}^{2}\left(\underline{\tilde{H}}_{2}(X), M\right) \stackrel{\cong}{\rightrightarrows} \tilde{H}_{G}^{4}(X, M)$. Hence, the result follows from Proposition 2.2 and naturality of the spectral sequence.

Theorem 3.2. Let $u \in \operatorname{Ext}^{2}\left(\tilde{\tilde{H}}_{2}(K(M, 2), M) \subset \tilde{H}_{G}^{4}(K(M, 2), 2)\right.$ be any non-zero element. Then the Moore $G$-space of type $(M, 2)$ determined by the equivariant $k$ invariant $u+i_{1}^{2}+i_{2}^{2}$ is not a co-Hopf G-space.

Proof. Let $X$ be a Moore $G$-space of type $(M, 2)$ determined by the equivariant $K$-invariant $u+i_{1}^{2}+i_{2}^{2}$, $u$ a non-zero element of $\operatorname{Ext}^{2}\left(\tilde{H}_{2}(K(M, 2), M)\right.$. In the same way as in the non-equivariant case [6, p. 423], we can show that $p^{*}\left(u+i_{1}^{2}+i_{2}^{2}\right)=0$ in $\tilde{H}_{G}^{4}(X, M)$. It follows from Proposition 3.1 that $p^{*}(u) \neq 0$. Thus, $\left(p^{*}\left(i_{1}\right)\right)^{2}+\left(p^{*}\left(i_{2}\right)\right)^{2}=$ $p^{*}\left(i_{1}^{2}+i_{2}^{2}\right) \neq 0$. Hence, there are non-trivial cup-products in $\tilde{H}_{G}(X, M)$. Thus it follows, by the same arguments as in the non-equivariant case [3, p. 188], that $X$ can not be a co-Hopf $G$-space.

Remark 3.3. We have shown in [2] that, varying $u$ all over the group $\operatorname{Ext}^{2}\left(\tilde{\underline{H}}_{2}(K(M, 2), M)\right.$, we can obtain infinitely many non $G$-equivalent Moore $G$ spaces of type ( $M, 2$ ). Thus, it follows that there exist infinitely many non $G$-equivalent Moore $G$-spaces of type $(M, 2)$ which are not co-Hopf $G$-spaces.

Acknowledgement. The author wishes to thank the University of Heidelberg for its hospitality and financial support.

## References

1. G. E. Bredon, Equivariant Cohomology Theories, Lecture Notes in Math. vol. 34, Springer-Verlag, Berlin-Heidelberg-New York, 1967.
2. R. Doman, Non G-equivalent Moore G-spaces of the same type, Proc. Amer. Math. Soc. 103 (1988), pp. 1317-1321.
3. P. Hilton, Homotopy Theory and Duality, Gordon and Breach, New York, 1965.
4. P. J. Kahn, Rational Moore G-spaces, Trans. Amer. Math. Soc. 298 (1986), pp. 245-271.
5. G. V. Triantafillou, Equivariant minimal models, Trans. Amer. Math. Soc. 274 (1982), pp. 509-532.
6. G. W. Whitehead, Elements of Homotopy Theory, Springer-Verlag, New York-Heidelberg-Berlin, 1978.

Institute of Mathematics<br>A. Mickiewicz University<br>Matejki $48 / 49$<br>60-769 Poznań, Poland

