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DIFFERENTIAL GAMES FOR STOCHASTIC PARTIAL

DIFFERENTIAL EQUATIONS

W.H. FLEMING AND M. NISIO

1. Introduction

In this paper we are concerned with zero-sum two-player finite horizon

games for stochastic partial differential equations (SPDE in short). The main aim

is to formulate the principle of dynamic programming for the upper (or lower)

value function and investigate the relationship between upper (or lower) value

function and viscocity solution of min-max (or max-min) equation on Hubert

space.

Let us consider SPDE (1.1), a so-called controlled Zakai-equation, arising

from zero-sum two-player stochastic differential game with partial information,

(1.1) dξ(x, f) = [ Σ - ^ (σiJ(x, Y(t), Z(t)) -^ ξ(x, t)

+ Σ ϊ\x, Yd), Z{t))^-ξ(x, t) - cξ(x, t)\ dt

m

+ Σf'(χ, Y(f), Z(0) ξ(x,t) dW,{t)
; = 1

with initial condition

ξ(x,0) =η(x).

The pay-off function / is defined by

(1 .2) J(t, η, Y, Z,g) = E f h(ξ(s), Y(s), Z(s)) ds + g(ξ(0), t < T,

where T is a given positive number and h{ , y, z) and g are functions on Hubert

space. Moreover, W — (Wv , Wm) is a standard m-dimensional Brownian

motion and Y and Z are admissible controls for player I and II respectively,

(Definition 2.1).
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7 6 W.H. FLEMING AND \ί. NISIO

According to W.H. Fleming and P.E. Souganidis [4], we introduce a strategy

(Definition 4.2) and formulate a notion of upper (or lower) value function (see

(6.2)). When h and g are tame functions, we can prove the principle of dynamic

programming (see (5.40) and Theorem 6.2)). This fact implies that the upper (or

lower) value function turns out to be a viscosity solution of the min-max (or

max-min) equation corresponding to (1.1) and (1.2).

Here we modify Lions' definition of viscosity solution [8, Part 2], which seems

suitable for our problems. If a viscosity solution is unique, then the Isaacs' condi-

tion yields the existence of value of game. The finite dimensional case, namely dif-

ferential game for stochastic differential equations, is investigated in [4] and W.H.

Fleming and P.E. Souganidis proved that the upper value function equals the

Elliott-Kalton value and turns out to be the unique viscosity solution of the

min-max equation. But, in our case, the uniqueness problem is still open and we

will consider a simple example and remark on its uniqueness problem in Section

8.

Recently H. Ishii [6] introduced a slightly different notion of viscosity solution

and proved the unique existence of solution for nonlinear second order partial dif-

ferential equations, including the min-max one. But it seems to be still open,

whether the upper value function satisfies the min-max equation in Ishii's sense.

In Section 2, we recall some results on SPDE for later use. In particular, the

continuity with respect to time will be studied in Section 3. Since the lower value

function is investigated in the same way as the upper one, we will only consider

the upper one. Applying semi-discretization arguments, we introduce τr-admissible

strategy (see Definition 4.2) and the upper value function Vπ. If the terminal func-

tion is tame, then {Vπ, π = partition of [0, T]} is compact (Theorem 4.1) and the

principle of dynamic programming will be proved in Section 6. We will show that

the upper value function turns out to be a viscosity solution of the min-max equa-

tion in Section 7.

2. Preliminaries

Let V and 2? be convex compact subsets of R and RQ respectively. W

denotes a standard m-dimensional Brownian motion, defined on a probability

space (Ω, SF, P). For simplicity, we assume m = 1. Put 2Ft = σ-field generated

by {W(s), s< t).

First we will define control and strategy, according to [4].
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DEFINITION 2.1. An admissible control process Y (resp. Z) for player I (resp.

II) is an ^-progressively measurable process taking values V (resp. fΓ). The set

of all admissible controls for player I (resp. II) is denoted by M (resp. JV).

We say that Y and Y ( ^ M) are the same on [t, s] and we write Y—Y

on [t, s], if

P ( F = F*a.e. on [t, s]) = 1.

A similar convention is assumed to hold for elements of JV.

DEFINITION 2.2. An admissible strategy a (resp. β) for player I (resp. II) is a

mapping a M —* M (resp. β M—> JV), such that ύZ — Z (resp. F = Γ ) on

[0, s] then α(Z) = α(Z*) (resp. β(Y) = β(Y*)) on [0, s] for any s e [0, T].

The set of all admissible strategies of player I (resp. II) is denoted by Γ (resp. Δ).

Let H be a Sobolev space of functions whose generalized derivatives up to

the order p belong to L (R ) . Denote its inner product and norm by ( , ) p and

|| 11̂  respectively, for p = 0, H = H, ( , ) 0 = ( , ) and || ||0 = || ||, for simplic-

ity.

For Y ^ M and Z e j\ft we consider SPDE (1.1) with m—1, namely

(2.1)

dξ(x, t) = (dt(συ(x, Y(t), Z(t)) dtξ(x, t))
+ γ(x, Y(t), Z(t)) d£(x, t) - cξ(x, t))dt
+ f(x, Y(f), Z(t)) ξ(x, t)dW(t), x e R\ t> 0,

where dt — ~β— and we employ the convention of summation over repeated in-

dices.

DEFINITION 2.3. We say that ^-progressively measurable process ξ is a

solution of (2.1), if

( i ) ξ E L\Ω x (0, T] Hι) Π L\Ω C([0, T] H))

and

(ii) for /" ̂  [0, T] and ζ ^ Cζ(Rn) ( = infinitely differentiable function

with compact support),

(?ω, o = (>7, o - f (σu
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+ Γ (γ'iYis), Z(s))d£(s) -cξ(s), ζ) ds

f (f(Y(s), Z(s))ξ(s), ζ)dW(s), with probability+

Namely we study the Zakai equation in the frame work of [7] and [10]. Since this

definition is consistent with a weak solution [1] of partial differential equation, we

can split (2.1) into two parts to obtain suitable evaluations (see (3.9)).

Hereafter we always assume the conditions (A1)~(A4) below.

(Al) σij( , y, z), γ( , y, z), /( , y, z) e C\Rn) and

(2.2) sup || g(., y, z) l U ^ < b < oot for g = σi3, γ , /

( A 2 ) L i p s h i t z c o n d i t i o n ; t h e r e i s a p o s i t i v e n u m b e r l—lg s u c h t h a t

g(x,y, z) - g(x', yf, zr) \

<l{\χ-χf\+\y-y'\ + \z-zf\)ίorg= σi}, γ\ f

where | | = Euclidian norm.

(A3) uniformly elliptic; (Jυ = on and there is a positive number λ0 such that, for

any (x, y, z) e Rn X V X 2Γ

Σ σ ί 7 ( x , z/, z ) ^ > l o | θ Γ , f o r ^ = ( θ l f . . . , θ n ) ^ R n

0=1

(A4) ί: is a non-negative constant.

First we recall Theorem 2.1, due to N.V. Krylov and B.L. Rozovskii [5] and E. Par-

doux [8], in our convenient form.

THEOREM 2.1. There exists a unique solution ζ — ζ( , f], F , 2) o/(2.1) and

the following properties hold

(2.3) E(sup\\ξ(t, η,Y,Z)f)<K\\ηf,
t<τ

(2.4) E(fJ\\ξ(t,η, Y,Z)\\Ut)<K\\ηf

(2.5) E(\\ξ(t,η,Y,Z)fι<K\\ηfι, for ί e [0,71, / = 2, 3, 4,

tf/i α constant K depending only on T, λ0 and the bound of coefficients.
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Since the linearlity of equation (2.1) yields, with probalility 1,

(2.6) ξit, η,Y,Z)~ ξit, η,Y,Z) = ξit, η - η, Y, Z) for t e [0, 7 ] ,

the solution depends on the initial data continuously.

Let us put

Liy, z)ζ - 9,(σ"( , y, z)d,ζ) + γ'i , y, z)d,ζ,

Lit, Y,Z)= L(Y(t), Z(t)), Lit, Y, β) = Lit, Y, β(Y)),

L(t,a,Z) =L(t,a(Z),Z),f(t, Y, Z) = /( , Y(t),Z(t)).

Then (A3) implies the coercive condition, namely there is λ0 > 0, such that

(2.7) - <ζ, Uy, z)ζ> + λ01 ζ f > 0, for ζ e / / 1 and (*/, z) e ^ x 2f,

where < , > = duality pairing between i/ and H under H = H {— dual space

of//).

Next we consider SPDE (2.8) below

(2.8)

dζ(d = (Lit, Y, Z)ζ(t) - cζ(t))dt + f(t, Y, Z)ζ(t)dW(t) + F(t)dt

+ G(f)dW(t), for ί > 0 ,

ζ(0) = 0,

where F and G are ^^-progressively measurable and satisfy

\\F(t) fdt) < oo and E[J || Git) ξ| ξdt) < oo.

Then, there is a unique solution ζ €= L2iΩ X [0,71 H1) Π L\Ω C([0,7Ί #))

and the following evaluations hold [7],

(2.9) £(sup || ζ(ί F, Z) f) < £ jΓ" £(|| Fit) f + || G(β t)dt

(2.10) ^( j^ Γ I ζ(ί Y, Z) \\l dt) <κfj Ei\\ Fit) |f + || Git) fjdt

with a constant K depending only on T, λ0 and the bound of coefficients.

Now we will recall the evaluation of negative norm || IL2(
=: II lijy-2) d u e to

P.L. Lions [8]. Let ζ ^ C°°(Rn) satisfy the following condition;

ζ = 0 on (| x I < | - ) , ζ = 1 on (\ x \ > 1) and 0 < ζCr) < 1 on Rn.
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Put ζRix) = ζ ( | r ) . Then we have

THEOREM 2.2 [8]. There exists a constant K , which is independent of Y and Z,

such that

E || ξ(t, (1 - ζR)η, Y, Z) |Γ_2 < K* || (1 - ζR)η f_2, for t e [0, T], R > 0.

Moreover, for any e ^ H ,

(2.12) E I (ξ(ί, I?, F, Z), rf I < ϋΓ* || (1 - ζR)η ||_21| ^ ||2 + (εR(e) +§)\\r] II

where εR(e) = / eίxΫdx.
J\x\>{R/2)

Later, we will see that (2.12) implies weakly sequential continuity of value

function.

Remark. Let ξ0 be a solution of (2.1) with c — 0. Then we can easily see

(2.13) ξ(t, η, Y, Z) = e-c'ξ0(t, η, Y,Z).

So, we employ ζ0 instead of ζ, when we stress c = 0.

3. Continuity with respect to time

In this section we study continuous dependency of a solution on time. Fixing

Fand Z, we set Lit, ω) = Lit, Yiώ), Ziω)). Suppose v Rn x Ω~> Rι satisfies

the condition,

(3.1) t Gr, ω) exp ( - r | x | 2 ) e ^ for all ω e β,

with a constant r > 0.

We consider the Cauchy problem

(3.2)
-gΓ = Lit, ώ)u for / > 5,

uis) = t (ω).

Since coefficients cr , 7 and / of Lit, α>) may not be continuous in £, we employ a

weak solution [1] of (3.2) and recall the following theorem, due to D.G. Aronson

https://doi.org/10.1017/S0027763000004554 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004554


STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 8 1

THEOREM 3.1. There exists a unique weak fundamental solution for L(ω), say

Γ(x, t, y, s ώ), and (3.3)~(3.6) hold.

(3.3) u(x, t ω) = I Γ(x, t, y, s ω)υ{y, ω) dy

is a unique solution of (3.2)

(3.4) f Γ(x, t,y,s;ω)dy=l

(3.5) u(x, t ω) = f Γ(x, t, y, θ ω)u(y, θ ω) dy, for θ e [s,i\.
JRn

(3.6) There exist positive numbers aly a2 and p, independent of ω, such that

P~lgι& - y , t - s) < Γ(x, t, yy s ω) < pg2(x - y, t - s)

where

gt{xy θ) = V(4τrfe,)"wexp(- \x\2/(4θat)), i= 1, 2.

It follows from (3.4) and (3.5) that

\\u(t,ω) -u(θ,ω)\f = f[fiXz, t,y, θ;ω)(u(y, θ,ω)-u(x, θ9ω))dy] dx

+ x, θ, ω) ~u(y, θ, ω)Ϋdydx

, θ, ω) - u( , θ, ω)fdx

and, denoting Δxu( ) = u( + x) — u(-),

(3.7) |Uα, ω) - u(θ, ω) f <pfg2(x, t- θ)\\Δxu(θ, ω)fdx.

Let us set ξo(t, ηy ω) = ξQ(t, η, Yy Zy ω) and G(t, ω) = f(Y(t, ω),

Z(t, ω))ξo(t, η,ω), for simplicity, and define X, and X2^ U(Ω \ C{[sJ] \ H))

as follows,

ίdX.it, ω) = Lit, ω)Xλ(t, ω) dt, for t > s
(3.8)

lA^ίs, ω) = ξQ(s, η, ω)

and
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\dX2(t) = Lit, Y, Z)X2(f) dt+ G(t)dW(f), ίor t> s
(3.9)

iX2(s) = 0.

Since ξo(s, η, ω) <Ξ H, (3.3) asserts

Xx(x, t, ω) = I Γ(x, ί, y ,s ω)ξo(y, s, η ω))dy.

Hence (3.7) implies

(3.10) | | ^ a , ω) ~ ξo(s, η, ω)f <p f g2(x, t - s)\\ Δxξ0(s, η, ω)f dx.

On the other hand, (2.7) yields

E\\X2(f)f <λ0 ΓE\\X2(θ)fdθ+ ΓE\\G(θ)fdθ.

Thus, using (2.3), we have

(3.11) £ | | Z 2 ( 0 | P < Γ e x p α o ( ί - θ))E\\G(θ)f dθ

<K\f\2Jη\f[expQ0(t-s))-l]λ-0\

and X(t) = Xt(t) + X2(t) satisfies SPDE (3.12) below,

(dX(t) = Lit, Y, Z)X(t) dt+f(t, Y, Z)X(t)dWit)
(3.12)

ix(s) =ξo(s,η, Y,Z).

Hence, by the uniqueness of solution, X coincides with ξ0,

(3.13) X(t) = ξo(t, η, Y, Z), t > s, with probability 1.

Noting ξo(t, η, Y, Z) - ξo(s, η,Y,Z)= X,(t) ~ X^s) + X2(t), we get

(3.14) E\\ξo(t,η, Y,Z) - ξo(s9 η, Y, Z) f

<2pfg2(x,t-s)E\\Δxξo(s,r), Y f Z)fdx + 2K\ f\l[exp(λo(t - s^λ^WηlW

Hereafter k{ stands for a constant independent of Y and Z. Let us evaluate ΔxξQ.

Putting qx(t) = Δxξ0(tf η, Y, Z), we can derive the equation (3.15) below,
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dqβ) = Lit, Y, Z)qx(t)dt+f(t, Y, Z)qx(t)dW(t)

[dt(Δxσ"(t, Y, Z))djX(f) + Δxγ'(t, Y, Z)diX(t)] dt
(3.15)

+ ΔJ{t, Y,Z)X{t)dW{t),

qβ) = Δxη,

where X(t) = ξo( + x, t, η, Y, Z). Applying the standard arguments, we get

Combining (3.16) with (3.14), we have

(3.17) E\\ξo(t,η, Y,Z)-ξo(s,η, Y, Z) f

< k2[fg2(x, t-s)\\ Δxη f dx+{t- s) 1 η f].

Since || Δxη || tends to 0, as x-> 0, the modulus of continuity in t is independent of

Y and Z, but depends on the initial data η. Applying the same arguments as [8,

part 2], we obtain

(3.18) E || £ 0 ( f , 7?, F , Z ) - ξ o ( s , η , Y, Z ) t , < k 3 \ t ~ s \ \ \ r ] f .

The above evaluation together with (2.13) yields the following proposition,

PROPOSITION 3.1. There is a constant Cι such that, for Y ̂  M, Z ^ N and

η e H

(3.19)

E\\ξ(t, η,Y,Z)~ ξ(s, η, Y, Z) ||2 < Cx(| ί - s\ \\η f + f g2(x, t~s) \\Δxη f dx)

(3.20) E || ξ ( t , η , Y , Z) - ξ ( s , η , Y, Z ) f_x < C x \ t - s \ \ \ η f

(3.21) E || ξ(t, η,Y,Z)- ξ(s, η, Y, Z) f < Cx \t ~ s \ \\η \\l for η e H1.

For Φ €= LUC(H) ( = uniformly continuous functions on H with linear

growth), we put

(3.22) Φ(ί, η;Y,Z)= EΦ(ξ(t, η, Y, Z) ) .

Then Proposition 3.1 implies the following one.
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PROPOSITION 3.2.

( i ) For ε > 0, there is r0 = ro(ε, η, Φ) > 0, such that for V e Λί

Φ(f, ry, F , Z) - Φ(s, η, Y, Z) I < ε, i / U - 5 I < r0.

(li) For ε > 0, there is δ0 = δo(ε, Φ) > 0, such that for Y^ M, Z ^ M and

t e [0, Γ]

I Φ(ί, 77, Y, Z) - Φ(ί, , ' , F , Z) I < ε, i / h - ^ || < 30.

PROPOSITION 3.3. Suppose that, for any bounded set B of H, Φw—• Φ

uniformly in 5 and supw s u p ζ e β | Φn(ζ) I < °°. Then, for any bounded set B c H,

Φw tends to Φ uniformly in [0, Γ] X δ X 1 X ^ .

/. Recalling (2.3), we have

P(\\ξ(t, η, Y, Z)\\> r) <K\\η\\2/r2.

Now taking r = r(ε, B) = X(diam J5)2ε"2 and ΛΓ = M e , B) such that

sup I Φn - Φ I < ε on {77 e # || 77 || < r } , we get
n>N

I Φw(/, 77, F , Z) - Φ(f, 77, F , Z) I

<ε + 2/3P(|| ξ(t, 77, F , Z) ||2> r) < ε + 2εβ

where sup | Φn(Q \ < β on β. This completes the proof.

Here we call ψ : H—+ R , a tame function, if φ is denoted by

(3.23) φ(η) = φ ( ( ^ , 77), , ( ^ , 77))

with suitable et^H and φ ^ C (RJ) whose first and second derivatives are

BUC ( = bounded and uniformly continuous function). So, ψ is Lipshitz continuous

and linear growth, say

(3.24) I φ(η) \ < kγ + k2 \\ η \\ with kt = k{(φ).

Putting φ(t, η,Y,Z)= Eφ(ξ(t, η, Y, Z)), we have

PROPOSITION 3.4. There is a constant C2(φ) such that

(3.25)

\φ(t, 77, F , Z) - φ(5, 77, F , Z ) | < C2(φ)||77
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Proof. l(φ) denotes Lipshitz constant of φ of (3.23).

I Eφ(ξ(t, η, Y, Z}) - Eφ(ξ(s, η, Y, Z)) \

ΣE\(ξ(t, η, Y,Z) - ξ(s, η, Y,Z),e,)
ί = l

< l(φ) Σ E || ξ(t, η,Y,Z)- ξ(s, η, Y, Z) \\_, II e, IL

So, Proposition 3.1 concludes the proof.

4. Tame terminal function

In this section, we deal with pay-off tame terminal function and show some

compactness of value functions, employing semi-discretization arguments.

Suppose h;Hx%/x^-^R is continuous and satisfies (A5),

(A5) h( ,y,z) is tame, say ,h(η, y, z) = ίj((r?, ^ ) , * ,(η, eq), y, z) and

I d$(x, y, z) I and | dtdfi(x, y, z) \ are bounded in (x, y, z) e Rq X y X %, Let

φ H-* R be a tame function, say

, eJr-Λv, ep)).

Since we may assume that {eif i — 1, ,/>} contains {̂ f, i = 1, * , q}, we will

drop .

Now we define pay-off/ and value Vjijf as follows.

J{t, η, Y, Z,φ)=E f h(ξ(θ, η, Y, Z), Y(θ),

(4.1)

Z(θ))dθ

+ φ(ξ(t, η, Y, Z))

iβit, η, φ) — inf sup/(^, η, Y, Z, φ) for M c M, Si a J\f.

Since | h(η, y, z)\ < m1 + m2 \\ η \\ with m1 and m2, which are independent of y

and 2, (2.3) derives

(4.2) I /(f, η,Y,Z,φ)\<rnιt+kι + K(m2 + k2) || 17

whenever | φ(τj) | < kλ + /c21| η ||.

Appealing to Proposition 3.4, Theorem 2.2 and (2.6), we can take a positive

numbers C3 = C3(φ) such that
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(4.3) •

, 77, Y,Z,φ)-J(s, ζ , Y,Z,φ)\

< C3 [ ( 1 + || η ||) y/\t ~ s I + \\η - ζ ||] for

> V, φ) - VM(s, ζ,φ)\< C 3 [ ( l + II η |

for 1 c J and Λ? c ΛA,

M and

\η - ζ||]

and, putting S(i?) = \\x\ > -771 and ε« = Σf=1 / e2Λx)dx, we have

(4.4) I 7jtf (/, r?, φ) - VM(s, ζ, <p) I

< C3[(l + I r? I) 4T=J] + II (1 - ζβ) (r? - ζ) |U + (εR+j~)\\η-ζ ||

with ζΛ of Theorem 2.2. Moreover (4.4) implies

(4.5) VM( , ψ) e C([0, T] x JΪJ

where Hw denotes the space H carrying the weak topology.

Let π — {0 = t0 < tλ < - - - < tN = T) be a partition on [0, T] and denote

II π II = max (/,- - t^) its mesh. We put #>0r) = {tif i = 0, ,iV}.

DEFINITION 4.1. Y^M (resp. Z ̂  J\ί) is called τr-admissible for player I

(resp. II), if

Y(t) = F(/y) (resp. Z(0 = Z(f,», for ί G [tj9 tJ+ι).

Mπ (resp. ^ π ) denotes the set of all ττ-admissible controls for player I (resp. II).

DEFINITION 4.2. a ^ Γ is, called a 7Γ-admissible strategy for player I, if a Af

—+ Mπ such that

( i ) a(Z) (s) = Z-independent for 5 < th

(li) a(Z)(tj) = a(2)(tj) a.e., if Z= Z a.e. on [0, ί;).

δ̂ G 4 is called a 7Γ-admissible strategy for player II, if β M —̂  ̂ ^. such that

( i ) iβdO (5) = F-independent for 5 < flf

(11) iSdOίίp = β(Ϋ)(tj) a.e., if F = Ϋa.e. on [0,^].

/^ (resp. Δπ) denotes the set of all ττ-admissible strategies for player I (resp. II).

Let us set

J(t,η, Y,β,ψ) =/(ί, 17, Y,β(Y),φ)

and the upper value function Vπ for π is defined by (4.6) below,

(4.6) Vx(t, η, φ) = inf sup/(ί, η, Y, β, φ).
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From (4.3) and (4.4), we can easily see

PROPOSITION 4.1. Vπ{ , φ) has π-independent continuity.

In particular, (4.4) implies compactness of upper value functions, namely, we have the

following theorem.

THEOREM 4.1. Let πm n — 1,2, * * , be a sequence of partitions on [0, T]. Then,

Vπ ( , φ), n — 1,2, * *, has a sequence which converges uniformly in any bounded

set of [0, T] X H.

For the proof, we will show the following lemma.

LEMMA. Let ε > 0 and B = {η e H || η \\ < r). Then we can take a finite set

D c [0, T] x B, such that for (t, η) e [0, T\ x B there is (s, ζ) e D satisfying

(4.7) I Vπ(t, η, φ) — Vπ(s, ζ, φ) \ < ε, for any partition π.

Proof Let us take a large number R = R(r, ε), such that

(4.8) C3(φ)(εR + Jt)(2r) < ε.

So we may assume R(r, ε) —• <*>, as ε —+ 0. Denote S = {x ^ Rn ;\ x\ < R) and

ζ = ζR of Theorem 2.2. Then supp (1 — ζ)η c S. Since i? is weakly compact in

i/, {(1 — ζ) 77, η <= 5} is compact in i/ (5). Hence we can take a finite set E c

5, such that {(1 - QT?, 77 e £} is ε(3C3(φ))~1-net in H~2(S).

Let θ be a finite (3C 3 (^)(1 + r))~Y-net in [0, Γ] . Then (4.4) asserts that,

for (t, η) e [0, Γ] x B, there is (5, ζ) e θ x £ such that

(4.9) I Vςα, η,φ)- Vx(s, ζ,φ)\< ε, for any TΓ.

This completes the proof of Lemma.

Proof of Theorem. Denote D of Lemma by D(r, ε) and put ® = U Dlr, TΓ).

Since | V^( , φ)\co<>mιT+ kx{φ) + K{m2 + k2(φ)) \\ η ||, some subsequence

Vπ (s, ζ, φ) converges for any (5, ζ) ^ ®. Now

Lemma implies Theorem.

Put V( , φ) = lim V^C , φ). Then Falso satisfies (4.3) and (4.4).
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5. Uniformly continuous terminal function with linear growth

Since an upper value function Vπ{ , φ) may not be tame, we will study

pay-off with continuous terminal function, in order to prove the principle of dyna-

mic programming in Section 6.

It is clear that J(t, , Y, Z, Φ) e LUC (H) whenever Φ e LUC OH).

Moreover we can easily see the following proposition.

PROPOSITION 5.1.

( i ) For ε > 0, there is δ0 = δo(ε, Φ) > 0, such that

(5.1) I J(t, η, Y, Z, Φ) - J(t, fj, Y , Z , Φ ) \ < ε

and

(5.2) I VM{t, η, Φ) ~ VM(t, η, Φ) I < ε

whenever || r\ — fj || < <50.

(ii) For ε > 0, there is δ0 = 50(ε, 0, η) > 0, such that

( 5 3) I Vjϋftt* *)> φ ) "" VMJΪ(S> Vf Φ)\ < ε> whenever \t — s\ < δ0.

Let us set

ίv(t, η,z, Φ) = s u p / ( ί , V, Y,z, Φ)

(5*4) \v(t, η, Φ) = inίlίt, η,z, Φ).

Then (5.2) implies that v(t, , z, Φ) G LUC(fl) and

(5.5) I v(t, η, z, Φ) - v(t, fj, z, Φ) I < ε for any (ί, z) e [0, T] x 3f,

whenever || 17 — fj \\ < δ0.

First we study the continuity of v with respect to z. Putting

t ω = ξ(t, η, Y, z) and ζ(/) = ξ(t, η, Y, z) - ξ(t)

we can see

\dζ(t) = ίUY(t), z) - cI\ζ(t)dt + f(Y(t), z)ζ(t)dWit) + F(t)dt + G(t)dW(t)

lζ<0) = 0

where F(f) = [L(Y(t, z)-L(Y(t), z)]ξ(f) and G(f) = [f(Y(t, z)-f(Y(f), z)]ξ(t).
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Employing the standard arguments, we obtain the following one.

PROPOSITION 5.2.

( i ) There is a constant C4 independent of F , z and rj such that

(5.6) £(sup | | ξ( f , η, Y, z) - £ ( * , ) ? , Y,z)f) < C41| i? ||2 \z - z \\
t<τ

(li) For ε > 0 and Λ, there is δk = <5fc(ε, Φ) > 0, such that

(5.7) | / α , r?, F , z, Φ) ~ / α , ry, F , f, Φ) \ < ε,

for / e [0, Π , F e Λf, ij e 5 a ) = {r? || < A},

whenever | z — z | < δk.

(m) y(ί, 77, z, Φ) satisfies (5.7).

Now we will prove the principle of dynamic programming, applying the simi-

lar arguments as [4]. Let $ ε ( = ?βεφ) = {&J} j = 1, 2, * •} be a Borel partition of

//, with diam<S>y < <50(ε, Φ) (see Proposition 5.1 for δ0). For simplicity, we may

assume 8j c B(j). Since 2f is compact, for any fixed y\j ^ 8jf v(t, ηjf , Φ) has a

minimum point Zj = z (t, ηjf Φ), namely

(5.8) v(t,vj9zf, Φ) = υ(t,ηjf Φ).

Taking an approximate maximum point F ; = F ; (t, ηjf Φ, ε) below,

(5.9) v(t, ηp z*, Φ)-ε< Jit, ηp Y*. z*, Φ) < v(t, η,, z*, Φ)

we have

(5.10) 0 < v(t, ηit Φ) - Jit, η,, Y*, z*, Φ) < ε.

Hence Proposition 5.2 asserts

(5.11) I v(t, η, Φ) - Jit, η, Y*, z*, Φ) \ < 3ε, for η e ^ .

Appealing to Jit, ηjt Y, z*, Φ) < υit, ηjt z*, Φ) for F e M, we get

(5.12) /(/ , η, Y, zf, Φ) < vit, η, Φ) + 2ε.

For π = {0 = t0 < tx < < tN = T) and τ& itp_v tp], we will define

vit) LUC(//) - * LUC(fl) and Φ,(= Φ]) as follows

(5.13) vit)Φ=vit, • , Φ)

Φp = Φ, Φt_x = viτ - tp^Φp, Φp_2 = visp.JΦp^, • , Φo = vis1)Φ1
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where Sj = tj — tj_v Appealing to (5.8), we will choose an approximately optimal

strategy βε ^ Δπ in the following way. Fixing Y^M and ηjtk e <S;.(e ^εφ/)

arbitrarily, βε(Y) is defined by

(5.14) βε(Y)(θ) = I[Oth)(θ) Σ Igj (η)z*(slf ηJtl, ΦJ

+ I[tvt2)(θ) Σ Igj (ζ(ί x, η))z*(s2, ηL2i Φ2) +

+ / W ) < 0 Σ /,, (ζ(f,_lf η))z*(τ - tp_v ηLP, Φp)

where IA = indicator function of A, Σ ( φ ) — Σ ^ e ^ φ and ζ(t, η) is a solution of

(2.1) for ( F , j8e(I0) with ζ(0) = η, namely,

ζ(ί, ?) = Σ ( Φ l , /^; (η)ξ(t, η, Y, z*(sv ηjΛ, ΦJ = ξ(ί, ry, F , &(Y)),

for ί < / l f

Hence βε(Y) on [ί l f ί2) is determined by (5.14) and ζ(0, 17) by ξ(0, 17, F ,

βε(Y)) for 0 ^ [0, ί2]. Repeating the same arguments, we can determine βε(Y) of

(5.14) and

(5.15) ζ(ί, 77) = ξ(ί, ij, F,i8 β(I0) f o r ^ e [0, T].

Since βε(Y)(θ) is ^^-measurable and F(0) is a Borel function of {W(t), t

< tp_J and {W(s) - W(tp_J, tp_x < s < 0}, putting ξ(f) = ξ(t, η, F , βε), we

have

(5.16) E(Γ h(ξ(θ), Y(θ),βε(Y)(θ))dθ+Φ(ξ(τ))/?t )

< v(τ - tp_v ξitp-t), Φ) + 2ε, a.s.

by virtue of (5.12). Thus, it follows that

(5.17) /(r, η, Y, βε, Φ)

lh(ξ(θ), Y(θ), β,(Y)(ff))dθ + v(τ-tp_1)

"hiξiθ), Y{θ), βε(Y)(θ))dθ + Φ^iξdp-i)) + 2ε].

Repeating the same arguments, we obtain

(5.18) J(τ, η, Y, βε, Φ) < v(s1)v(s2) •• υ{τ — tp^Φ{η) + 2pε.

Since Y is arbitrary, it follows that
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(5.19) s u p / ( r , η, Y, βe, Φ) < visjvisj •• -v(τ ~ tp^)Φ(η) + 2pε,

From the fact βε ^ Δπ, we see, letting ε —-• 0,

( 5 . 2 0 ) i n f s u p / ( r , η, Y,β, Φ) < v { s λ ) v { s 2 ) - υ ( τ - t p ^

Now we will choose nearly optimal aε €= Γ in the following way. Fix 77; £= 8j

^ ^Sεφ arbitrarily. Noting the compactness of 3f, let us denote $ ε ; φ = {Slf * ' ,Sm}

a finite partition of 2f, with diam St < δjt (see (5.7)). For any z{ ^ S ( £ ^εjφ, we

will take F * = Y*(t, ηJf zJ9 Φ) ^ M such that

(5.21) J(t, ηJf Y*, zt, Φ) > v(t, ηJf zt, Φ) - ε.

Then it follows from (5.1) and (5.7) that

(5.22) J(t, η, Y*, zίf Φ) > v(t, η, zv Φ) - 3ε for η e gj

and

(5.23) Jit, η, Y*, z, Φ) > v(t, η, z, Φ) - 5ε for η <= gj and z e S{.

When we stress the dependence on Brownian path w, we will denote Y(θ) by

Y(θ, w). Putting Y*jA = Y*(τ - tt_v ηJf z,, Φp) and Y*jt, = F * ( ί t - ίt_lf i?y,

z<f Φk) for r?y e «y e ^ and 2 , e S , e $ ^ t , A = /» - 1, ,0, we define

as(Z) as follows,

(5.24) α β (2) «9, w) = Imi)(θ)Σ*Φι) Iβ(η)ISι(Z(0, w)) Y*Λ(Θ, w)

2) Iβt(ζ(tlt η))ISi(Z(tlf w))Y2*,(θ - tu < )

piβ t(ζ(tp. ι t n))iSi(Z{tp.lt w))Y*jθ- tp.lf wtj,

where Σ ( φ ) = Σ ^ e ^ Σs,e^ φ , w* is a shifted path, namely w*(θ) = M;(/" + (9) —

, and ζ(ί, 17) = ξ(ί, η, aε(Z), Z). Applying the same arguments as (5.16)~

(5.18), we obtain

(5.25) / ( τ , η, aε, Z, Φ) > visjvisj υ(τ - tp_λ)Φ(η) - 5pε,

for Z G i / r

Thus it follows that

(5.26) inf J(τ, η, aε, Z, Φ) > visjυisz)- "v(τ ~ tp_
Z&Mπ

Since aε e Γ, letting ε —>• 0, we get
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(5.27) sup inf /(r, η, a, Z, Φ) > v(s1)v(s2) v(τ - tp_x)Φ(η).
a&Γ Z<ΞMπ

Combining with (5.20), we have Proposition 5.3 below,

PROPOSITION 5.3. Let Φ e LUCCfD, 9n = {tj9 j = 0, ,N} and T<Ξ (tp_lf tp].

For ε > 0, there exist aε ^ Γ and βε ^ Δπ such that, for Y e M and Z e Mπ,

(5.28) /(r, )7, F,iSβ, Φ) - ε

< /(r, 77, αe, Z, Φ) + ε, for η

Moreover, according to [4], we obtain

PROPOSITION 5.4.

(5.29) inf sup/(r, η, Y, β, Φ) = i?(i>(i 2 - 0 ϋ(r - t
βeΔπ YsM

= sup inf /(r, 17, α, Z, Φ).

For the proof, we will recall the following lemma.

LEMMA [4J. For any β ^ Δπ and a e Γ, there exist F * G M and Z*

(5.30) / ( r , r?, a, Z*, Φ) = / ( r , q, F * . j8, Φ).

Outline of proof. For any fixed z0 ε 2", let us define Yk ^ M and z t ε Λ π̂, as

follows.

F0(s) = α(zo)(s), Z0(s) = β(Y0)(s), YJs) = a(Z0)(s),

Z,(s) =β(Y1)(s), ,Yk(s) = a{Zk_dis),Zk(s)=β(Yk)(s), .

Then we have

(5.31) Yj+1 = Yj on [0, ίy] and Z ; + 1 = Zy on [0, ίy).

In fact, β(K)(s), 5 < ίx, is independent of F, since β ^ 4 π . Hence it follows that

j8(F0) = iSί^) = = j8(FΛ) on [0, ̂ ) , and

(5.32) Z o = Zx = = Zk on [0, ^ ) .

Now (ii) of Definition (4.2) yields
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(5.33) a(Z0) (tj = a{Zx) (t,) = = a(Zk) (tj

and

α(Z0) = a(Zλ) = = α(Z f c) on [0, ί^.

This asserts

F x = F 2 = ••• = F Λ + 1 on [0, ί j .

So jStyiXfi) = = i8(FJfc+1)(/1). Since j8 e 4*. we see

(5.34) i8(yi) = ••• =j8(F Λ + 1 ) on [ί l f t2).

From (5.32) and (5.34), we can see

Zγ = •• = Z A + 1 on [0, ί2).

Repeating the same arguments, we can conclude (5.31).

Putting Y = YN and Z = ZN_h we get

(5.35) a(Z*) = F* and β(Y*) = Z*.

Now the proof is completed.

Proof of Proposition 5.4. From (5.28), we can easily see

(5.36) inf s u p / ( τ , η, Y,β, Φ) < v(tt)v(t2- tj - υ(τ - tp^
β<=Δπ YeM

< sup inf /(τ, η, a, Z} Φ).

For ε > 0, we take β ̂  Δπ and ά £ Γ such that

sup/(r, η, Y,β,Φ)-ε< inf sup/(r, η, Y, β, Φ)

(5-37) \ i n f J{τ^ ^^ ά Z j φ ) + ε > s u p i n f / ( r > J ? > α > Z j φ ) #

Now it follows from Lemma that

(5.38)

J(τ,η, Y*,β,Φ) < s u p / ( τ , η, Y,β,Φ)

/(r, η, a, Z*, Φ) > inf J(τf η, a, Z, Φ)

l/(r, ί), Y*,β,Φ)=J(τ,η,ά,Z*,Φ)

holds for some F * e Jf and Z* e ^ f f . Thus, (5.37) and (5.38) complete the proof.

https://doi.org/10.1017/S0027763000004554 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004554


9 4 W.H. FLEMING AND M. NISIO

For 7Γ = {0 = t0 < < tN = T) and t e [fy, fy+1), we denote τr(£) = {0

< tj+1 - t < tj+2- t < < tN - t}. Putting

Vx(τ, η, Φ) = inf sup/(τ, η, Y, β, Φ),

(5.29) yields the principle of dynamic programming below,

(5.39) Vπ(τ, η, Φ) = 7 , ^ , η, Vπ(tj)(τ - tj9 , Φ)).

Namely, for 0 < 5 < T ~ tJt

(5.40) Vπ(s + tί9 η, Φ) = Vx(tj9 η, Vπ{tf)(s, , Φ))

holds.

6. Principle of dynamic programming

For partitions π and TΓ, we say π ^ TΓ if 9>

π c ^ -f where ^ ^ denotes the set

of division points of 7Γ (see Section 4).

PROPOSITION 6.1. Suppose πn < 7rn+1, n = 1,2 , and put

(6.1) V(τ, η, Φ) = inf s u p / ( r , η, F , β, Φ).

Then,

(6.2) VXn( , Φ) > VπnJ , Φ) and ^ ( r , η, Φ) — V(r, 77, Φ) for any r, )?.

Proof is easy.

In particular, Theorem 4.1 implies, for a tame function <p

(6.3) VπJL , <p)-*V( , φ) uniformly in any bounded set of [0, T] X H,

as n—> 00.

Moreover we will prove

THEOREM 6.1. Let πn < πn+ι and lim || πn \\ = 0. Then, V( , Φ) of (6.3) does

not depend on a sequence iπn}.

First we will prove the following lemma.

LEMMA. Let $>π = {tj9 j = 0, , M , 9χ = <3>n U {τ} and tp_x < τ < tp.

Then there is a constant k = k(φ), independent of π, such that
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(6.4) I Vπ(t, η, φ) ~ Vπ<t, η,φ)\< h/tp ~ tp_γ (1 + \\η ||) < M W Γ (1 + h i ) .

Proof of Lemma. For t ^ (f; _1, fy], j > p, we put

(6.5) Φ = v(tp+1 - tp)v(tp+2 - tp+1) vit-tj^φ.

Since it and 7? have the same division points on [tp, f), (5.29) implies

(6.6) Φ(η) = inf s u p / ( ί - tp, η, Y, β, φ) = inf s u p / ( ί - tp, η, Y, β, φ),
β<ΞΔπ Y^M βeΔ% Y&M

(6.7) v(tp ~ tp+ι)Φ(η) = inf s u p / ( ί - tp_v η, Y, β, φ), say Φ*(-η),
βΔ YM

and

(6.8) v(τ - tp+1)v(tp - τ)Φ(η) = inf s u p / ( / - tp_v η, Y, β, ψ), say Φ(η).

Therefore, we see, from (4.3),

(6.9) I Φ*(η) ~ Φ(η) \ < C3(φ) jtp - tp_x (1 + || η ||)

and

(6.10) I Φ(η) - Φ(η) \ <L C3(φ) 4hZZ~h^x (1 + I k ID

Again same arguments yield

(6.11) I Vπ(t, η, φ) -v(Q vit^ - tp_2)Φ(η) |

= I vitj • • υ{tp_x - tp_2) Φ*(η) - vitj • • v(tp_1 - tp_2)Φ(η) \

< sup E\ Φ^ξit^, n, Y, Z)) - Φ(ξ(tp_v η, Y, Z)) |

£ C3(φytp - /,_, (1 + s u p £ | | f (ί,.!, η, Y, Z) ||) < ίc(ψ)sjtp - t,., (1 + \\η ||)

with a constant k{φ) by (2.3), and similarly for it. This concludes the proof.

More generally, we obtain

(6.12) I Vx(t, η, φ) - Vπ~(t, η,φ)\< Λ * ( ^ ) 4 ^ r T ( l + || η ||)

with a constant k*(φ), if ?P£ = 9π U {r^ Γ2, ,τ9}.

Proo/ 0/ Theorem 6.1. Let TΓ V 7? be the partition with division points ^ π U

^ . Setting πntk = ππ V πk, {πn>k, k = 1,2, •} and {πn>k, n = 1,2, •} again

satisfy the condition of Theorem. Put V = lim Vw , V̂  = lim^^ Vπ , V = lim V$

and 7 n = lim^o. Vπny Then
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JLn,k
(6.13) Vk < Vπι

holds. Moreover, (6.12) implies

(6.14) I Vπβ, η, ψ) - VπJt, η , φ ) \ < Hφ)JΪΈJ(\ + II V ID-

Hence, letting n to oo, we get

(6.15) V=Vk,k = l,2, .

In the same way, we see

(6.16) V = Vn, n = l,2, •••.

Together with (6.13), we have

(6.17) V< Vπnk for any n, k.

As &-» oo, (6.16) and (6.17) imply

(6.18) V<Vn=V.

This completes the proof of Theorem 6.1, since we can see the converse inequality

in the same way.

Now we will verify the principle of dynamic programming for V with a tame

terminal function φ.

THEOREM 6.2. V satisfies the principle of dynamic programming, namely

(6.19) V(t+s, η, φ) = V(t, η, V(s, , φ)).

Proof. Suppose that πn < πn+1 and || πn ||—>• 0. Appealing to Theorem 6.1, we

may assume t e &π , n — 1,2, , for simplicity. Now the principle of dynamic

programming (5.29) yields

(6.20) Vn(t + s, η, φ) = Vn(t, η, VH(s, , φ))

where Vn= V- .

On the other hand Vn( , φ) is decreasing to V( ,φ) uniformly in any

bounded set of [0, T] x H. Thus, for any ε > 0 and r > 0, there is a large

N = N(ε, r), such that, for n> N,

(6.21) I Vπ(t, η, VH(s, , φ)) ~ Vκ(t, η, V(s, - , φ ) ) \

< s u p I J(t, η, Y, Z, VΛ(s, - , ? > ) ) - J(t, η, Y, Z, V(s, , φ)) \
Y,Z
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<supE\Vn(s,ξ(t,η, Y,Z),φ)-V(s,ξ(t,η, Y,Z),ψ)\
Y,Z

< ε + k a ( φ ) s u p E(l + || ξ(t, η, Y,Z)\\; || ξ(t, η, Y,Z)\\> r)
Y,Z

holds. So, as w—• oo , Vπ{ , Vn(s, , φ)) is decreasing to Vπ{ , V(s, , φ))

uniformly in any bounded set of [0, T] x H and partition π. This fact together

with (6.2), implies

(6.22) VH(t, η, VH(s, φ)) -^ V(t, η, Vis, , φ)) for any t and η.

Now we can conclude the proof by (6.20).

Remark We introduce the lower value function in the same way as the up-

per one, putting

Wπ(t, r], Φ) = sup inf / α , η, a, Z , Φ).

Under the same condition of Theorem 6.1, Wπ is increasing to W, defined by

W{t, η, Φ) = sup inf /(/, η, a, Z, Φ).

For a tame terminal function φ, Wit, ϊ), φ) is independent of a sequence {τrw} and

(6.19) holds.

When Vand ^coincide, we call it the value function.

7. Viscosity solution of min-max equation

We will study the Cauchy problem of min-max equation (7.1) arising in our

stochastic differential game.

4iuit, η) + FiD2uit, η), Duit, η), η) = 0 in (0, T) x H
(7.1) O l

uiO) — φ, (= tame function),

where D = Frechet derivative in H and

(7.2) FiS,p,η)

= - minmax hr iSfiy, z)η,fiy, z)η) + (p, iLiyy z) — cDφ + hiηy y, z)
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= m a x m i n ^ (— Sf(y, z)η, f(y, z)η) + </>, A(y, z)η) — h(η, y , z) j

where < , > = duality pairing between H and H under H—H and A(y, z) —

~ L(y, z) + cl

Now we will define a viscosity subsolution (resp. supersolution) of (7.1),

according to [2. part 4] and [8. part 2]. Since the min-max equation is more gener-

al than Bellman equation, our definition is slightly different from theirs. Let us set

® = {φ €= C12((0, T) X H) Π C([0, T] X H) weakly lower

semi-continuous (WLSC in short) and the following (7.3)~(7.5) hold,

(7.3) ~βΓ is Lipschitz continuous

(7.4) Dφ is Lipschitz continuous and a continuous mapping from (0, T) X H

into H2 with s u p f < r || Dφ(t, ) ||2 < °°

(7.5) (D φ(t, Qη, η) is uniformly continuous in any bounded set of (0, T)

x Hx H).

DEFINITION 7.1. u e UC l o c([0, Γ) x //) is called a viscosity subsolution of

(71) if

(7.6) w is WUSC (weakly upper semi-continuous) on (0, T) X H and linear

growth,

(7.7) for any λ > 0 and φ ^ ®, the following inequality holds at each global max-

imum point (f, ζ) 6= (0, T) x # o f u(θ, η) - 0(l9, η) - /ί h f,

, ζ) + F(Z) 2 0(ί , 0 + 2λIf Dψ(t, Q,0 <-2λ(c-λo)\\ζ |Γ

with λ0 of (2.7), and

(7.8) u(0) = φ.

DEFINITION 7.2. u e UC l o c([0, Γ) X H) is called a supersolution of (7.1), if

(7.9) u is WLSC on (0, T) X 7/ and linear growth,

(7.10) for any /ί > 0 and φ ^ ®, the following inequality holds at each global

minimum point (ί, ζ) e (0, 7) x fΓof «(β, rj) + 0(/9, η) + λ\\η IΓ,

- ^ (ί, ζ) + F(~ D2φ(t, 0 ~ 2λl, - Dφ(t, ζ), ζ) > 2 ^(c - λ0) || ζ |Γ

with λ0 of (2.7), and

https://doi.org/10.1017/S0027763000004554 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000004554


STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS 9 9

(7.11) M(0) = φ.

u is a viscosity solution, if it is both a viscosity subsolution and a viscosity

supersolution. Hereafter, we suppress viscosity, for simplicity, and call viscosity

sub- and super- solutions just sub- and super- solutions, respectively.

Now we state the following theorem.

THEOREM 7.1. The upper value function V( , ψ) is a viscosity solution of

min-max equation (7.1).

Proof Since V^ LUC([0, T] x H) Π C([0, Γ] X # J , 7( ) - λ || |Γ is

weakly USC and bounded above. Suppose that φ ^ ® and K(<9, 17) — 0(0, 77) —

λ 177 ||2 has a global maximum at (/, ζ) ^ (0, Γ) x H. Now let us assume that

(7.12) V( ) = V( ,<p) = Km V^ί , p) ,

recalling Theorem 6.1. Since V satisfies the principle of dynamic programming, we

have

(7.13) 0 - inf sup£ Γ *(ξ(r), ^ , iS)dr + V(t - 0, ξ(0)) ~ V(t, ζ)

< infsupE f\(ξ(τ), Y, β)dτ+ψ(t- θ, ξ(θ)) - Φ(t, ζ) + λ(\\ξ(θ) f - \\ ζ|f)

where ξ(τ) = ξ(τ, ζ, F, β). Thus, Itό's formula yields

(7.14) 0<infsup£[Γ h(ξ(τ), Y,β) - # (ί - r, £(r))
j8 F '-•'0 ^ ^

- (Dψ(t-τ,ξ(τ)),A(Y,β)ξ(τ)>

+ \ (D2φ(t - T, ξ(τ))(f(Y, β)ξ(τ)), f(Y, β)ξ(τ))

- 2λ <f(τ), A(Y, β)ξ(τ)> + \\f(Y, β)ξ(τ) fdτ\.

Using (7.3)~(7.5) and Proposition 3.1, we evaluate each term of (7.14), namely we

have (7.15) ~ (7.22) below, putting m = sup || Dφ(t, ) |L a = ^r(t, ζ),p =
t<,τ m

Dφ(t, ζ), S = D2φ(t, ζ) andM(r, ζ2) = r | | ζ f + J gz{x, τ) \\ Δxζ fdx.

dΨ(7.15) dt
(t - τ, ξ(τ)) - a ,( τ\+M(τ, ζ))
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(7.16) EI <Dψ(t - τ, ξ(τ)), A(Y, β) (ξ(τ) - ζ)> |

< E || Dφ{t - τ, ξ{τ) ||2 \\A(Y, β) (£(r) - ζ) ||_2

< k2mE\\ξ(τ) - ζ\\ < k3M(r, 0-

Since, for any ε > 0, there is 5 = δ(ε, t, ζ) > 0 such that || Dφ(t — τ, η) — p ||
< ε, whenever | τ \ < δ and || η — φ || < δ, we get

(7.17) E || <Dφ(t - τ, ξ(τ)) -pl<ε + 2mP(\\ ξ (r) - ζ ||> δ)

< ε + 2mM2(τ, ζ) /δ2.

Denoting the Lipschitz constant of Dφ by r, we see

(7.18) \(D2ψ(θ, ξ)η, η)\<r\\η\\2.

Since, for any ε > 0 and R > 0, there is <50 = <50(ε, R) > 0 such that

I (D2ψ(θ, ξ)η, η) - (D2φ(θ, i)τ?, φ\<ε

whenever \θ~θ\< δQ, \\ξ-ξ\\ < δjη -η\\< δ0, and \\ξ\\, | | | | , H I , H I <£ *,
we get

(7.19) E\ (D2φ(t- τ, ξ{τ)){f{Y, β)ζ),f(Y, β)Q - (S(f(Y, β)ζ,f(Y, β)Q |

< ε + 2r\ ft || ζ f(H|| f (r) || > J?) + P(|| ?(r) - ζ II > δj)

<ε + 2r|/ | l | |ζf((£| |ξ(τ) | | 2/i? 2) + (M2(τ, ζ)/δ\))

for a large i? > |/LI| ζ||.

(7.20) E\ (D2φ(t-τ, ξ(τ))(f(Y, β)ξ(τ)),f(Y, β)ξ(r))

- (D2ψ(t-τ, ξ(τ))(f(Y, β)ζ),f(Y, β)ζ) I

<r\f\ί(M2(τ, ζ ) + 2 | | ζ | | M ( r , ζ ) ) .

(7.21) -2λE<ξ(τ),A(Y,β)ξ(τ)>

= - 2/i£fc|| ξ(r) f - <$(r), L(Y, β)ξ(φ]

< 2λ(λ0 -c)E\\ ξ(τ) IΓ = 2λU0 - c) [|| ζ If + £(11 ξ(τ) f - || ζ ||2)]

< 2 ^ U 0 - c ) | | ζ f + kJζ\\M(τ, ζ).

(7.22) £| || f(Y, β)Oξ(τ) f - | | / (F, flζfl < A6|| ζ |M(r, ζ).
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Inserting above (7.15)~(7.22) into (7.14), we obtain

(7.23) 0<infsup£[Γ\(ζ, Y, β) - a - <p,A(Y,β)ζ>
β Y lJ0

+ \ as + 2λI)f(Y, j9)ζ, f(Y, β)ζ)dτ]

+ 2λ(λ0-c)\\ζfθ + o(θ).

Next we calculate the main term of (7.23), putting

(7.24) K { y , z) = h ( ζ , y , z ) - a - <p, A ( y , z ) Q

+ \aS + 2λI)f{y,z)ζ,f{y,z)Q.

Since ζ is fixed, K(y, z) is constant in H. So, it can be regarded as a tame func-

tion. Let us consider a differential game, using K instead of h. Putting

(7.25) Vπ(θ, η, φ) = inf sup E f* K(Y(s), β(Y)(s))ds + φ(ξ(θ, η, Y, β))
β<=Δπ YeM JQ

and 3>

π = {tp, p = 0, * , M , the principle of dynamic programming (5.39)

asserts

(7.26) Vπ(θ, η, ψ) = Vπ(t,, η, Vπ(tp)(θ - tp, , φ)).

Setting φ = 0, we have, for θ e [tp, tp+ι) and ζ e //

(7.27) V,. } (0 - ί,, ζ, 0) = min sup £ Γ # K(Y(s), z)ds.
ze<% Y^M J0

Noting

(7.28) sup E f K(Y(s), z)ds < f max X(F, z)ds = maxX(z/, ̂ )ί

= max E Γ /Sr(», z)d5 < sup E Γ K(Y(s), z)ds,

yey J0 YeM J0

we get

(7.29) Vx(tΛΘ-tp, ζ, 0) = min max K(y, z)(θ~tp) = μ(θ - tp)
p ze% γ^y

where μ = min max K(y, z). Again it follows from (5.39) that
ze% Y^V

(7.30) Vπ(tp, η, μ(θ - tp)) = Vπ(tp_u η, VxUt_ύ(tt - tp_u , μ(θ - tp)),
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and

~ tp)) = μt + μ(θ ~ tp).

Thus, we obtain

Vπ(θ, η, 0) = μθ.

Therefore

(7.31) inf s u p £ f K(Y(s), β(Y)(s))ds = lim Vπ (θ, 77, 0) = μθ,

β Y J0 »->oo M

holds. Now, (7.23) concludes

(7.32) - 2 ^ α o - c ) | | ζ | | 2 < ^ .

Recalling the definition of μ, (7.32) asserts that Fis a subsolution.

Since we can prove that V is a supersolution in the similar way, the proof is

completed.

In the finite dimensional case (see [3], [5]), a subsolution (resp. supersolution)

can be defined by super differential (resp. subdifferential) instead of test func-

tions. But, in our case, this equivalence is open. Here we remark on super differen-

tial J+u (resp. subdifferential J~u) for u e UCloc((0, T) X H). J+u is defined by

(7.33)

(7.33) J+u(t, ζ) = {(a, p, S) e= R1 x H2 x £

u(t + θ, ζ + η) < u(t, ζ) + aθ + (p, η) + \ (Sη, η) + o(\θ\ + \\η ||2)}

for (ί, ζ) e (0, T) x H,

where £ = space of all continuous linear operators from H to H (= H) (J~(u)

is defined by (7.33) with the opposite inequality).

Remark. Let u G UCloc([0, 7) X //) be weakly USC and bounded above, say

M = sup u(θ, η). Suppose
Θ,T)

(7.34) sup u(θ, η) —• — °°, as || 77 ||—* 00.

Let us fix (ί, ζ) e (0, 7) x fl" and δ > 0 arbitrarily. Then, for any a >

(M-u(t, ζ) + l ) / δ ,

(7.35) «(β, r?) - a(\\ η - ζ t , + | θ - t\2)< u(t, ζ) - 1
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holds, whenever || η — ζ ||_x + | θ — t | > 5. On the other hand, it follows from

(7.34) that there is a positive number m, such that

(7.36) u(θ, η) < u(t, ζ) - 1, if \\η \\ > m.

But, || ||_! is WLSC, because || η ||_i = sup{(?7, e) e ^ Hx and IUII — 1). Hence

u — α( | | — ζ IL-L+ \ * — t\) has a global maximum point (θ, ζ), such that

(7.37) || ζ || < m and || ζ - ζ I, + \ θ - t\2 < δ.

Therefore, setting B — (/ — Δ)~ , where Δ = Laplacian operator,

u(θ+θ, ζ + ϊ)) <u(θ, ζ) +2a(θ-t)θ + 2a(B(ζ-Q, η) +a(Bη, η) + aθ2

holds. Noting B(ζ - ζ) e H2 and B e £ W e get

(7.38) (2a(θ- t), 2aB(ζ- ζ), oB) e J+u(θ, ζ).

Since /, ζ and δ are arbitrary, (7.37) and (7.38) yield that {(θ, η) e (0, Γ) x H

r̂ ) ^ 0} is dense in i? X if" -topology.

8. Example

In this section, we will deal with a simple example, where the upper value

function is a unique viscosity solution in a class of finite dimensional functions on

H.

Setting d{ = -g^-, let us consider SPDE (8.1) below,

n

(8.1) dξ(x, t) = Σ σ'(Y(t), Z(t))(d, - (x;/4))ξ(x, t) dt
i-ί

+ f(Y(t),Z(t))ξ(x,t)dW(t),

with initial condition

ξCr, 0) = η(x).

Although SPDE (8.1) does not satisfy the condition; c = constant, we can easily

see the same results, using an Hermite base of H. Let us assume (al)—(a3) below,

(al) o\y, z) and/(z/, z) are Lipschitz continuous in V X 3f,

(a2) there is a positive number λ such that

σ\y, z) > λ for any y and z,

(a3) h( , y, z) and an initial function (̂  are tame functions of Hermite base eκ
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and bounded.

Here the Hermite base is defined as follows. For a multi-index k = (klf- * , kn),

k{ > 0.

(8.2) ek(x) = Π ek(Xi) for x = (xlf - ,xn) e Rn,
ί = l

where eo(x) = (2τr)~1/4expί — ^jr-J for x G 7?1, and

^ ^ ) for x e i?1, m = 1,2, * .

Appealing to the following fact,

we have, for η = Σ c!Lek ^ H,

(8.3) 9,-7? = I ( Σ ck_ {k^FΪ ek+Ii - Σ chek_,)

where k±It= (ku • , k, ± 1, • • , kn). Therefore dtη e H, if and only if

Σ ck k{ < °°. Repeating this argument, we see

PROPOSITION 8.1.

If Σ c\ I k \" < oo, then η <aHP,p = 0,1,2,

Moreover, em satisfies the following equation

(8.4) e"m- (x2/4:)em=-(m + ^)em, « = 0,l,2, .

Hence, employing the formal expantion of £(ί), say

(8.5)

we have SDE

(8.6)
ϊk(0) = (η,ek).

(8.6) has a unique solution with continuous path and
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(8.7) E I Xk{t) |2 < I Xk(0) |2 exp(- 2λ*(\ k \ + f + \f\l)t)

holds, where | k \ = Σk{ and I / L = sup^ \f(y, z) |.
Now for ξ of (8.5), we can easily see that ξ <= L 2 ( β x (0, 7) # 2 ) Π L2{Ω

C([0, Γ] H)) and £ provides a unique solution of (8.1). Moreover, the evaluation

(2.3) ~ (2.5) and Proposition 3.1 hold. Therefore the upper value function V( , φ)

is a viscosity solution of the min-max equation (8.8) below.

(8.8)

(t, η) — minmax [^

^ u(0, η) = φ(η)f

, z) \2(D2u(t, η)η, η)

+ <Du(t, η), L(y, z)η> + h(η, y, z)] = 0

where

(8.9) L(y, z) = Σϊ^σ'iy, z)(d* - (

By (a3), h and φ can be written by

h(η, y, z) = h((η, ^ ) , ,(i?, eN), y, z)

and

where e ; = ek for k = k}= (k[, * * ,kJ

n). Let us set P — orthogonal projection onto

the linear space generated by (ev * * ,eN). Then, (8.6) derives that V(t, η, φ)

depends only on ((η, eλ), * , (η, eN)), namely

(8.10) V(t, η, φ) = V(t, Pη, φ).

Define v by

(8.11) v ( t , b v - - , b N ) = V ( t , b 1 e 1 + ••• + b N e N ; φ ) .

Again (8.6) implies that v is a unique viscosity solution of the following finite

dimensional min-max equation (8.12), and bounded by (a3),

(8.12)

-^r (ί, 6) — minmax VKJ {y> z) laij=ι ^h ^h (ί, Wδ^;oi z y iΔ ' σOjϋOj

Σ ; = 1 Σ ί = 1 σ (y, z)[ki + ^ ) bj^j- (t, b) + h(b, y, z)\ = 0
\ ^ / C/ί/y J

. ι;(0, 6) = φib).

From (8.10), we see V(t, η, φ) = v(t, (η, ej,- ,̂ eN)).
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THEOREM 8.1. Suppose that W^ BUC([0, T] x H) is a viscosity solution of

(8.8) and W(t, η) = Wit, Pη). Then W = V.

Proof. Suppose that φ ^ C ((0, T) X R ) has the two properties below,

( i ) -jjjr is Lipschitz continuous

and

^ A ° Φ U A A

^ a n d a ^ a r e b o u n d e d

P u t 0 ( ί , η) = 0(ί, (TJ, €!),•••,(>?, €?„)). Then 0 e ® by (i) and (ii).

The function w, defined by

wit, b19-",bN) = Wit\ b&Λ- h bNeN)

is continuous, since W is weakly continuous, and

(8.13) Wit, η) = f8(f, (17, e 1), ,(τ7, eN))

holds.

Soppose that w — φ has a unique maximum at (f, b) e (0, Γ) x if , and

W(f, η) — φit, η) — λ II η f has a global maximum at (^, ηλ). Appealing to

IIP? II ̂ 1 1 ? II, we have

(8.14) Wit, η) ~ φit, η)-λ\\η f < Witλ, Pηλ) - φ(tλ, Pηλ) - λ II Pηλ f.

So, we may assume Pηλ = ηλ. Therefore, as λ —* 0, ^ and (77̂ , e ; ) tend to t and ir-

respectively and tλ > 0 for small Λ. Fixing >ί arbitrarily and putting tλ = s,

iηλ, €j) = βj and 8̂ = iβv * , ^ ) f we can easily see

(8.15) | £ (s, i© -

Σ Σ σ'(», z)(*ί + y) ft Wfa β) + h(β, y, z)]

Tending λ to 0, (8.15) imllies that w is a subsolution of (8.12).

By the same argument, we can show that w is a super solution. Hence we get

w — v. Recalling (8.13), we conclude the proof.
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