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Abstract

This article examines how realized variances predict cryptocurrency returns in the cross
section using intraday data.We find that cryptocurrencieswith higher variances exhibit lower
returns in subsequent weeks. Decomposing total variances into signed jump and jump-robust
variances reveals that the negative predictability is attributable to positive jump and jump-
robust variances. The negative pricing effect is more pronounced for smaller cryptocurren-
cies with lower prices, less liquidity, more retail trading activities, and more positive senti-
ment. Our results suggest that cryptocurrencymarkets are unique because retail investors and
preferences for lottery-like payoffs play important roles in the partial variance effects.

I. Introduction

Cryptocurrencies have recently emerged as a nonnegligible asset class. The
aggregate market capitalization of cryptocurrencies exceeded 2 trillion U.S. dollars
(USD) in 2021.1 This remarkable growth has been accompanied by unusually large
price fluctuations with extreme returns.2 Our analyses corroborate these findings,
revealing that the annualized weekly volatility of cryptocurrencies frequently
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1Market capitalization data are from www.coinmarketcap.com. Participation in cryptocurrency
markets has become widespread. Surveys indicate that 22% of institutional investors already own
cryptocurrencies and that 11% of the American population holds Bitcoin (see https://cointelegraph.
com/news/hbus-survey-almost-12-of-us-cryptocurrency-holders-are-long-term-investors).

2Scaillet, Treccani, and Trevisan (2020) and Liu and Tsyvinski (2021) document high kurtosis (e.g.,
15–100 for daily data) and frequent jumps. In fact, Bitcoin prices collapsed, with a nearly 50% drop on
Mar. 12, 2020. On Apr. 30, 2020, Bitcoin prices increased by 18% within 24 hours.
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exceeds 100%. High volatility with extreme returns can arise because the equilib-
rium prices of cryptocurrencies reflect sunspots that drive high extrinsic volatility
even when fundamentals are constant (Biais, Bisiere, Bouvard, Casamatta, and
Menkveld (2023)). This high volatility raises a fundamental question in finance:
how do realized volatilities (or variances) play a role in cryptocurrency return
prediction in the cross section? Addressing this critical question is the primary
objective of our study because it has substantial implications for risk assessments,
investment strategies, and portfolio management in cryptocurrencies.

In light of the exceptionally wide ranges and heavy tails of cryptocurrency
return distributions, we take a comprehensive approach by considering not only the
traditional realized variance measure but also decomposed partial variances that
separately account for normal and nonnormal returns, including signed jumps. This
decomposition is motivated because cryptocurrency market participants may per-
ceive and evaluate uncertainty differently when they face extreme positive or
negative returns (Barberis and Xiong ((2009), (2012))). This consideration is
particularly relevant for cryptocurrency markets because of the lack of observable
fundamental information and the active participation of retail investors compared to
established financial markets. Furthermore, the directions of jumps have differen-
tial impacts on risk and returns (Patton and Sheppard (2015)).3 By employing the
decomposed variances, our analysis elucidates how realized partial variances affect
cryptocurrency return prediction.

Notably, in cryptocurrency markets, variances are dramatically time-varying.
Figure 1 illustrates this feature by depicting the 10th, 50th, and 90th percentiles for
the weekly realized variances of individual cryptocurrencies and Bitcoin. For
example, the weekly variances of Bitcoin range from 0.01 to 0.08 in 2017, with
three discernible peaks in 2018. This evidence emphasizes the critical importance of
frequently updating cryptocurrency return variances when identifying the effect
of variances on future returns. Therefore, we use intraday cryptocurrency data to
estimate variances. Leveraging recent advances in the financial econometrics lit-
erature, we sum the squared high-frequency returns from the different segments of
individual cryptocurrencies’ return distributions. Our study extends the literature by
addressing such distinctive characteristics of individual cryptocurrency markets
and uncovering novel evidence regarding the return predictability of decomposed
variances.4

We document that cryptocurrencies with high realized variances tend to
provide substantially lower excess returns in subsequent weeks than those with
low variances. In Figure 2, cryptocurrencies with the lowest (highest) variances
have an average excess return of 0.1% (�3.6%) in subsequent weeks. The weekly
return differential amounts to 3.7% (193% per annum), which is significant at the

3Using parts of the return distribution formeasuring risks is similar to using the lower partial moment
measures of Price, Price, and Nantell (1982), although our decomposition is driven by extreme returns.

4Borri and Santucci de Magistris (2022) use high-frequency data on Bitcoin to find that jumps
account for a large portion of the daily variation in Bitcoin returns and adopt a parametric estimation
method to show that the conditional skewness and kurtosis of Bitcoin returns are priced using daily data.
Our study differs in that we rely on high-frequency data of 100 cryptocurrencies to decompose individual
cryptocurrencies’ realized variances over time and discover the significant return predictability of
decomposed variances.
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FIGURE 1

Weekly Variance over Time

Figure 1 illustrates how weekly variances change during the sample period from Oct. 2015 to June 2023. Graph A shows the
10th, 50th, and 90th percentiles of individual cryptocurrency variances in the cross section. Graph B provides weekly
variances for bitcoin.
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FIGURE 2

Variances and Future Excess Returns

Figure 2 shows the effect of variances on excess returns in the subsequent week. At the end of every week, the cryptocur-
rencies are sorted on their variances, and tercile portfolios are constructed. For each sorted portfolio, we compute the equal-
weighted average of excess returns in the subsequent weeks. We compare the average excess returns of low-variance
portfolios with those of high-variance portfolios.
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1% level.5 This figure provides equal-weighted (EW) average returns, but value-
weighted (VW) averages yield consistent results.

To investigate the underlying drivers of this negative return predictability, we
decompose the total variance into variances associated with positive jumps, neg-
ative jumps, and non-jump returns. By using detected jumps and separated vari-
ances, we discover that positive jump and jump-robust variances are significantly
and negatively related to excess returns in subsequent weeks. The return prediction
of (total) variances stems from return components that are not associated with
negative jumps. These variance effects are robust to model specifications, the
common risk factors of Liu, Tsyvinski, andWu (2022), business cycles, and overall
market conditions and are not totally attributable to the skewness effect.

The negative relationship between variances and future returns contradicts the
traditional risk and return tradeoffs, which typically imply a positive relation in
classical asset pricing theories with rational investors. Instead, our finding is in line
with behavioral finance studies on speculative retail trading because more individ-
ual and retail investors participate in cryptocurrency markets than in other well-
established financial markets (Kogan, Makarov, Niessner, and Schoar (2023)).6

The substantial participation of retail investors allows asset prices to deviate from
fundamental values (De Long, Shleifer, Summers, and Waldmann (1990)) and can
increase volatility, as shown by Foucault, Sraer, and Thesmar (2011), Xiong and Yu
(2011), and Pedersen (2022). Retail investors prefer holding and trading highly
volatile securities and are willing to undertake risk that may yield low returns (Han
and Kumar (2013)). In fact, the key drivers of high volatility and extreme positive
returns are the important lottery features favored by investors.

Specifically, cryptocurrencies with high total and positive jump variances tend
to have smaller sizes, lower prices, and wider bid–ask spreads (BASs) than those
with low variances. Such cryptocurrencies have significantly larger trading vol-
umes than those with low variances, which suggests a significant disagreement
about the future prices of high-variance cryptocurrencies. The retail trading pro-
portion (RTP) and positive investor sentiment tend to be greater for high-variance
cryptocurrencies than for low-variance cryptocurrencies. Furthermore, our realized
variance measures effectively forecast the lottery properties of individual crypto-
currencies, which makes our findings consistent with the cumulative prospect
theory elaborated by Barberis and Huang (2008).7 Considering Xiong and Yu

5This significant spread remains intact after controlling for the cryptocurrency pricing factors of Liu,
Tsyvinski, and Wu (2022). Our variance estimation differs from that of Liu et al. (2022), who employ
daily returns. Estimation using lower-frequency return data requires an assumption that volatility is
stable over a longer estimation horizon. These authors indicate that return volatility is an insignificant
pricing factor (we obtain consistent results). Generally, the empirical relation between equity returns and
volatility has not been strong. However, Bollerslev, Li, and Zhao (2020) use high-frequency data and
identify significant relations.

6According to the financial statements of Coinbase, a cryptocurrency exchange platform company,
95% of the total transaction revenues came from retail investors’ trading in 2020. Many news articles
also support this idea. In addition, see, for example, https://www.wsj.com/articles/bitcoin-prices-pass-
50-000-for-first-time-since-may-11629729934 and https://www.bloomberg.com/news/articles/2021-
12-21/crypto-funds-explode-in-2021-led-by-proshares-bitcoin-strategy-etf-bito.

7Investors who prefer lottery-like returns are willing to pay higher prices for assets with lottery
features. Positive jumps represent lottery-like returns in that they are characterized by extremely large
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(2011), we test whether our results arise because of short-selling constraints.
However, we do not find supporting evidence.

Our article contributes to the literature on the relation between volatility and
future returns. The literature indicates that the negative relationship between vol-
atility and future returns can result from the preference for lottery features and that
many investors are not fully diversified (e.g., Fama and MacBeth (1973), Hou and
Moskowitz (2005), Ang, Hodrick, Xing, and Zhang (2006), Fu (2009), Huang,
Liu, Rhee, and Zhang (2010), and Hou and Loh (2016)). Specifically, our article
demonstrates that the negative return predictability is associated with both jump-
robust and positive jump variances but not with negative jump variances in crypto-
currency markets. Kilic and Shaliastovich (2019) examine the role of implied and
realized semivariances in aggregate stock and bond returns and support that our
inferencemethods can identify the nonlinear effect of unusually high uncertainty on
returns.

Our article extends the growing literature that examines cryptocurrencies as an
asset class.8 Liu et al. (2022) show that only the standard deviation of price volume
predicts future returns. Borri, Massacci, Rubin, and Ruzzi (2022) find that volatility
risk is positively priced, while Bianchi andBabiak (2021) show that their realized or
idiosyncratic volatility generates a significantly negative return. More broadly, our
study is related to studies that characterize return distributions and factor structures
in cryptocurrency markets. Our findings of high volatility and large jumps echo
those of Yermack (2015) and Scaillet et al. (2020), who study Bitcoin returns. Jia,
Liu, and Yan (2021) and Borri and Santucci de Magistris (2022) investigate the
effects of higher moments on cryptocurrency returns. Cong, Karolyi, Tang, and
Zhao (2022) provide a 5-factor model to consider additional value and network
adoption premiums.9 Sockin and Xiong (2023) present a model that supports the
empirical results in the literature.

Our study builds on the literature on realized return moments and jump risk
measures. Andersen, Bollerslev, Diebold, and Ebens (2001a) support the approach
of estimating realized variances with intraday data. Amaya, Jacobs, and Vasquez
(2015) investigate the relation between firm-level realized return moments and
subsequent returns. Bollerslev et al. (2020) examine the stock return predictability
of realized jump variance components. Lee and Wang (2019) demonstrate the
pricing of negative jumps in sovereign currency markets.10 Our study is the first

payoffs and a low probability. High volatility allows investors to anticipate a high probability of large
returns.

8Our article is broadly related to the literature on cryptocurrency markets, the economics of crypto-
currencies and blockchain technology, or valuation models for digital currencies. However, we focus on
discovering novel empirical evidence on risk and returns and discussing relevant pricing models.

9As additional references, Liu and Tsyvinski (2021) analyze the time-series features of return
distributions by using daily data on three cryptocurrencies. Shams (2020) studies return correlations.
Borri (2019) usesCoVar tomeasure the conditional tail risk of four cryptocurrencies by employing daily
data. Another strand of studies provides evidence of manipulation or dispersion in cryptocurrency prices
across exchanges (e.g., Griffin and Shams (2020), Makarov and Schoar (2020), Li, Shin, and Wang
(2021), and Borri and Shakhnov (2022)).

10Many studies document the important role of jumps in pricing equities, bonds, options, or
sovereign currencies (e.g., Merton (1976), Piazzesi (2005), and Chernov, Graveline, and Zviadadze
(2018)).
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to utilize cryptocurrency markets as a unique laboratory, documenting cryptocur-
rencies’ special characteristics.

Finally, our work contributes to the behavioral finance literature on specula-
tive trading in financial markets. For cryptocurrency markets, characterized by the
active participation of retail investors, we show that investor sentiment is important
and that investors’ lottery (or gambling) preference exists in these highly uncertain
markets. For other financial markets, Baker and Wurgler (2006) show that highly
volatile stocks are prone to fluctuations in sentiment. Han and Kumar (2013) show
low returns for volatile assets with lottery features such as low prices, high vari-
ances, and positive skewness. Boyer, Mitton, and Vorkink (2010) and Bali, Cakici,
and Whitelaw (2011) use expected idiosyncratic skewness and maximum returns
and find that these features are associated with low expected returns.

The remainder of this article is organized as follows: Section II explains
the variance decomposition with signed jumps and the estimation approaches.
Section III introduces the high-frequency data used for this study and the estimation
results. Section IV investigates how the decomposed variances predict future
cryptocurrency returns. Section V discusses potential explanations for our findings.
Section VI concludes the article.

II. Inference Methods

In this section, we describe our model of cryptocurrency price processes and
explain our inference methods for the total and decomposed variances of individual
cryptocurrencies. As cryptocurrencymarkets operate 24 hours a day in real time, we
assume that cryptocurrency prices follow a continuous-time model. We employ a
general asset pricing framework with diffusion and jump components to accom-
modate various forms of nonnormality, such as unusual volatility and heavy tails,
often observed in cryptocurrency return data. Specifically, the ith cryptocurrency
price is set to follow a generic jump-diffusion model that accommodates the
potential intraday volatility and jump patterns:

dci,t = μi,tdt + σi,tdBi,t + Y i,tdJ i,t,(1)

where dci,t is the instantaneous change in the natural logarithmic price ci,t of the ith
cryptocurrency at time t. The drift μi,t and diffusion σi,t are bounded processes, and
Bi,t is a standard Brownian motion. Y i,t and dJ i,t are the jump size and arrival
indicator, respectively.11 We denote the intraday logarithmic return between dis-
crete times t j�1ð Þ and t jð Þ by ri,t jð Þ = ci,t jð Þ �ci,t j�1ð Þ for cryptocurrency i.

We relate realized total variances and decomposed variances to returns in
subsequent weeks. Similar analyses can be performed at different frequencies
and return horizons. The total variance is defined as the sum of squared intraday
returns in week w,

11Our statistical inference is based on discrete samples over a time horizon of 0,T½ �. We assume that
there are n discrete observations for each cryptocurrency over the time horizon. In particular, we observe
the ith cryptocurrency price ci,t only at discrete times 0≤ t 0ð Þ < t 1ð Þ <…< t nð Þ≤ T , and for simplicity,
we assume that t j + 1ð Þ� t jð Þ =Δt for all js. The total number of weeks within 0,T½ � is set to be ~w, so that
0,T½ �=∪~w

w= 1Ww with the weekly time interval Ww for week w.
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Total variance : TV i,w =
X

tðjÞ∈Ww

r2i,tðjÞ:(2)

Andersen, Bollerslev, Diebold, and Labys (2001b) indicate that as the sampling
frequencygoes to infinity, this realized total varianceconverges to thequadraticvariation
composed of the integrated diffusive variance and jump components as follows:

TV i,w =
X

tðjÞ∈Ww

r2i,tðjÞ !
Z

s∈Ww

σ2i,sds+
X
τ ∈Ww

Y 2
i,τ:(3)

This total variance measure does not differentiate signed jump variances from
diffusive variances. In this article, we recommend decomposing realized total
variances into jump robust and signed jump variances by using jump detection
tests that identify the arrival times of individual cryptocurrency jumps. In particular,
we estimate the diffusive variance term

R
s∈Ww

σ2i,sds by using the jump-robust

variance estimator, while the jump variance term
P

τ ∈Ww
Y 2
i,τ (which can be decom-

posed into
P

τ ∈Ww,Y i,τ > 0
Y 2
i,τ and

P
τ ∈Ww,Y i,τ < 0

Y 2
i,τ) by using our signed jump var-

iance estimators JV +ð Þ
i,w and JV �ð Þ

i,w as follows:

Jump robust variance : JRV i,w =
P

tðjÞ∈Ww

r2i,tðjÞIðjTi,tðjÞj< ζ Þ,

Positive jump variance : JV ð+ Þ
i,w =

P
tðjÞ∈Ww

r2i,tðjÞIðjTi,tðjÞj> ζ Þ× Iðri,tðjÞ > 0Þ,

Negative jump variance : JV ð�Þ
i,w =

P
tðjÞ∈Ww

r2i,tðjÞIðjTi,tðjÞj> ζ Þ× Iðri,tðjÞ < 0Þ,

Jump variance : JV i,w = JV
ð+ Þ
i,w + JV ð�Þ

i,w =
P

tðjÞ∈Ww

r2i,tðjÞIðjTi,tðjÞj> ζ Þ,

(4)

where I að Þ is an indicator function that equals 1 if a is true. ζ is the rejection
criterion for the Lee andMykland (2008) jump test statistic Ti,t jð Þ for cryptocurrency
i at time t jð Þ.12 We use all intraday return data within a time horizon to approximate
the true latent diffusive and jump variances in that period.13 Our jump variance
measures are separated according to the signs of jumps to identify signed jumps’
exclusive impact on future returns.14

We apply the Lee and Mykland (2008) method or its variant because it is
important for us to distinguish individual jumps with different signs within a testing
interval. The basic intuition behind this method is to discriminate between diffusive
and jump returns by comparing instantaneous returns with the local volatility
estimated over the preestimation window of size K. If absolute returns are

12We use the standard Gumbel distribution for the rejection criteria, following Lee and Mykland
(2008). As cryptocurrency markets may exhibit time-of-day patterns in volatility, following Lee and
Wang (2020), we control for the intraday volatility pattern to mitigate concerns regarding the misclassi-
fication of jumps.

13Because our main analyses are performed at the weekly level, our notation is written with a weekly
interval. However, the notation can be generalized to other fixed time intervals.

14In this study, we do not separate systematic jumps from idiosyncratic jumps.
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significantly larger than the estimated local volatility, they are identified as jumps.15

To support our application for the purpose of this study, we assess the finite sample
performance of our jump variance estimators with simulation studies.16We find that
the estimation error of the proposed jump variance estimators decreases as we use
higher-frequency data. Moreover, jumps in volatility do not significantly affect the
power to detect extremely large jumps, which is our main interest for this study.

III. Data

We obtain intraday data fromKaiko, which has collected high-quality tick-by-
tick quotes and prices from liquid cryptocurrency exchanges since 2014.17 Many
studies (e.g., Makarov and Schoar (2020), Li et al. (2021)) also use Kaiko for
cryptocurrency prices.

To construct an unbiased sample with the largest cross section, we examine all
cryptocurrencies that have intraday data longer than nine months and are traded on
Coinbase, which is ranked as the top exchange in Kaiko’s overall evaluation (e.g.,
data quality and popularity).18 The minimum sample period of nine months is
chosen because our inference requires a sufficient estimation horizon for detecting
jumps and computing decomposed realized variances. Kaiko’s order book data
provide intraday bid and ask quotes (and volumes) for 198 cryptocurrencies. We
exclude stable coins (e.g., Tether). Adopting simple coin selection criteria, our
sample comprises 100 cryptocurrencies with various characteristics and includes
a delisted coin.19 Accordingly, survivorship bias is not critical. We also confirm the
minimal effect of delisting on our results by following Liu et al. (2022). Our results
are confirmed with data from other cryptocurrency exchanges, such as Bitfinex and
Bittrex.

The sample period is from Oct. 2015 to June 2023 and includes the failure
of large financial institutions such as the FTX or Terra-Luna crash and the crypto
winter.20 From these data, the first return appears in Oct. 2015 for BTC, which is

15Most other jump tests depend on the integrated quantities over an interval during which the jump
presence can be recognized but do not indicate the direction, arrival time, or size of each jump or the
number of jumps within the interval. The design of the tests proposed byAndersen et al. (2007) is similar
to ours except for the rejection criteria. Therefore, the results of the two tests are not expected to differ if
the rejection regions are chosen similarly. See Barndorff-Nielsen and Shephard (2006), Andersen et al.
(2007), Jiang and Oomen (2008), and Aït-Sahalia and Jacod (2009) for alternative approaches.

16The details of the simulation studies are reported in Appendix A of the Supplementary Material. A
theoretical justification for our variance decomposition based on asymptotic properties is available from
the authors.

17Trading volumes are also provided by Kaiko. See Makarov and Schoar (2020) for the details of
Kaiko.

18As indicated byMakarov and Schoar (2020), many nonintegrated cryptocurrency exchanges exist
in parallel across countries. The majority of these exchanges function like regulated equity markets, but
they lack provisions to ensure the best price for trading. Because this unusual feature increases price
deviations across cryptocurrency exchanges, the use of cryptocurrency price data from multiple
exchanges can result in contamination with frictions from different exchanges and thus is undesirable
for our study.

19The list of cryptocurrencies is provided in Appendix B of the Supplementary Material.
20The crypto winter refers to a bear market with significant declines in prices and market capital-

ization. Our results continue to hold with data from shorter sample periods and different exchanges.

8 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S002210902400022X  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S002210902400022X


the starting time of our sample period.21 These cryptocurrencies account for
approximately 80% of the total market capitalization of all cryptocurrencies as
of 2023.22

A. Intraday Cryptocurrency Returns and Jumps

We choose the 15-minute interval to compute intraday returns because of the
tradeoff between the following considerations. First, the accuracy of the price data
can suffer from measurement errors that result from microstructure noise in data
sampled too frequently. Second, a lower sampling frequency can hinder the con-
sistent estimation of realized moments.23 For each interval, we select the latest
observation to construct evenly spaced data. We remove quotes that do not change
for 3 consecutive intervals because these quotes might be inactive. We perform
this filtering process for bid and ask quotes and construct mid quotes
(i.e., mid = 0.5 × (bid+ask)).24 Using the mid quotes, we compute log returns.

Table 1 summarizes the 15-minute returns of the 25 selected sample crypto-
currencies.25 Bitcoin has the largest number of observations and the longest sample
period. Notably, cryptocurrency markets are extremely volatile. Standard devia-
tions range from 0.27% to 1.25%, which implies annualized standard deviations
greater than 100%. Interestingly, the skewness ranges from �1.34 to 1.71. The
dispersed skewness implies that some cryptocurrencies provide lottery-like returns,
while others have crash-like returns. The kurtosis is higher than 9, indicating that it
is important to analyze the tails of the return distributions.

We implement the variance decomposition and estimate weekly realized
measures using detected jumps.26 Table 2 summarizes the jump detection results
for the 25 selected sample cryptocurrencies.27 The average jump frequency is

21The order book data start in Apr. 2015, but observations in the early period are extremely sparse.
22We provide details about our sample construction and filtering procedure in Appendix C of the

Supplementary Material.
23Like sovereign currency markets, cryptocurrency markets allow 24-hour trading and have real-

time trading features. Therefore, we follow Lee and Wang ((2019), (2020)) in terms of the sampling
frequency.

24We follow the realized variance literature by using mid-quotes as the measures of true prices. Mid-
quotes are generally less noisy than transaction prices because they do not suffer from bid–ask bounce
effects. See Bandi andRussell (2006) for details. FollowingAndersen et al. (2001a) and Lee (2012), who
suggest the problems of bid–ask bounce effects, we filter out observations when large returns are
canceled out. We confirm the reliability of our data by comparing our mid-quotes with daily transaction
data on coinmarketcap.com.

25The summary statistics for the 100 cryptocurrencies are provided in Appendix B of the Supple-
mentary Material.

26The Lee and Mykland jump test requires setting a window size K to estimate the instantaneous
volatility using the first K�1. The window size K must be large enough to ensure that the jump effect
disappears for a consistent volatility estimation. In this study, we use K = 156 for our 15-minute
frequency, as recommended by Lee and Mykland (2008). We identify jumps with a 5% significance
level. Our results are robust when we use a 1% significance level and filter out small jumps by using a
10% false discovery rate.

27The jump detection results for the 100 cryptocurrencies are provided in Appendix B of the
Supplementary Material.
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0.55%, which intuitively implies that approximately one jump occurs every
two days. The jump frequency in cryptocurrencymarkets is similar to that in typical
sovereign currency markets. Interestingly, the sizes of cryptocurrency jumps are
relatively large. The average of the medians of positive (negative) jump sizes is
3.2% (�2.9%), which is more than 10 times larger than that in sovereign currency
markets.28 This comparison highlights the importance of jumps in cryptocurrency
returns. This large jump size is consistent with the findings of Liu and Tsyvinski
(2021), who show that cryptocurrencies tend to have extreme returns in their
distributions.

The frequencies and sizes of jumps are considerably dispersed across individ-
ual cryptocurrencies. The jump frequencies range from 0.22% (SUSHI) to 2.06%
(BTRST) of the available return observations, and the median positive jump sizes
range from 0.1% (RAI) to 4.9% (RGT). The ranges of the jump sizes are wider than
those of sovereign currency markets. These findings indicate that cross-sectional
differences in jump measures could play a role in cryptocurrency pricing. Overall,

TABLE 1

Summary Statistics

Table 1 shows the summary statistics of cryptocurrency data. Column Cryptocurrency lists the abbreviated names of the
cryptocurrencies in the sample. Column No. of obs shows the number of 15-minute return observations after data filtering.
Column Start indicates the months in which the earliest observations appear in the sample. Columns under 15-min return
provide the mean, standard deviation, skewness, and kurtosis of the 15-minute returns for the 25 selected cryptocurrencies.
Columns Market cap., Volume, Price, and BAS show the unconditional averages of market capitalization, daily trading
volumes (in billions of USD), prices per coin (in USD), and percentage BASs, respectively. Row Avg. 100 shows the
averages across the 100 sample cryptocurrencies.

Cryptocurrency
No. of
Obs. Start

15-Min Return

Market
Cap
($B)

Volume
($B) Price ($)

BAS
(%)

Mean
(%)

Std.
Dev.
(%) Skew Kurt

BTC 263,892 Oct. 2015 0.0023 0.3983 �0.188 19.076 270.99 17.82 15,517.00 0.011
ETH 229,770 July 2016 0.0022 0.5168 �0.068 15.162 100.31 8.96 1,003.27 0.030
LTC 216,697 Oct. 2016 0.0012 0.5936 0.016 15.027 4.67 1.55 91.74 0.067
BCH 190,108 Dec. 2017 �0.0003 0.5673 0.053 15.242 8.00 1.92 416.19 0.043
ETC 161,484 Aug. 2018 �0.0001 0.6249 0.069 16.790 2.10 0.80 19.88 0.092
ZRX 160,121 Oct. 2018 �0.0010 0.6995 0.071 24.108 0.39 0.06 0.50 0.136
XRP 64,229 Feb. 2019 0.0005 0.5197 �0.109 20.925 15.87 1.79 0.28 0.064
XLM 149,494 Mar. 2019 �0.0002 0.5553 �0.001 16.177 2.75 0.28 0.16 0.072
EOS 135,076 Apr. 2019 0.0014 0.5601 �0.095 14.771 3.33 1.43 3.09 0.138
REP 119,864 Apr. 2019 �0.0064 0.7078 0.188 20.966 0.20 0.02 16.54 0.292
LINK 139,040 June 2019 0.0010 0.6488 0.015 11.856 3.74 0.68 12.20 0.079
XTZ 129,846 Aug. 2019 0.0003 0.6640 0.023 11.500 1.80 0.14 2.60 0.146
ALGO 132,270 Aug. 2019 �0.0007 0.7436 0.002 23.743 2.54 0.20 0.60 0.090
DASH 131,336 Sept. 2019 �0.0010 0.5870 �0.016 13.990 1.14 0.26 102.48 0.120
OXT 111,485 Dec. 2019 �0.0065 0.8280 0.489 17.496 0.12 0.03 0.26 0.146
ATOM 119,789 Jan. 2020 0.0004 0.6997 0.022 11.126 2.97 0.40 13.87 0.083
KNC 116,027 Feb. 2020 �0.0003 0.7623 0.103 13.128 0.17 0.03 1.46 0.115
OMG 94,855 May. 2020 0.0002 0.7718 0.182 11.982 0.56 0.19 4.30 0.142
MKR 106,360 June 2020 �0.0007 0.6037 0.048 12.437 1.06 0.08 1,528.35 0.071
COMP 104,874 June 2020 �0.0012 0.6993 �0.107 11.129 0.98 0.13 187.46 0.076
LRC 96,365 Sept. 2020 �0.0024 0.8149 0.276 14.184 0.40 0.08 0.56 0.087
ZEC 88,913 Dec. 2020 0.0000 0.6522 0.002 12.724 0.84 0.26 102.28 0.076
ADA 78,975 Mar. 2021 �0.0014 0.5473 0.036 12.444 15.03 1.05 0.95 0.031
DOGE 71,844 June 2021 �0.0041 0.5537 0.071 15.383 5.67 0.67 0.13 0.048
ZEN 59,632 Sept. 2021 �0.0049 0.5999 �0.160 12.542 0.23 0.02 30.28 0.147
Avg. 100 81,626 �0.0052 0.7370 0.187 16.443 5.44 0.49 773.57 0.192

28Lee and Wang (2019) report that the median positive (negative) jump size ranges from ±0.1% to
±0.3%, with an average of ±0.24%.
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the numbers of positive and negative jumps are similar, and the distributions of
positive and negative jump sizes are not discernibly different. These symmetries are
also observed in other financial markets.

B. Weekly Realized Variances

We use the intraday return and detected jump data summarized in the previous
subsection to compute the weekly decomposed variances and return measures. To
construct weekly spans, we follow the approach of Liu et al. (2022). Our choice of
weekly analyses is also consistent with that of Amaya et al. (2015) and Bollerslev
et al. (2020), who aggregate intraday data to construct realized risk measures over
longer horizons and examine how these measures are related to subsequent equity
returns in the cross section.

We describe our weekly realized variances, which are estimated as explained
in Section II. Panel A of Table 3 shows the summary statistics of theweekly realized
variances. The mean weekly realized total variance is 0.146, which corresponds to
an annualized standard deviation of 138%. To put this into perspective, this annu-
alized realized volatility can be compared with that of other financial asset markets.
For example, the annualized realized volatility in sovereign currency markets
ranges from 5.3% to 19.2%, with a mean of 12.25% (Lee and Wang (2019)).

TABLE 2

Summary Statistics of Cryptocurrency Jumps

Table 2 summarizes the results of jump detection tests in cryptocurrencymarkets. To identify jumps, we apply the approach of
Lee and Mykland (2008) and adjust the intraday volatility patterns of individual cryptocurrencies, following Lee and Wang
(2020). Column Cryptocurrency lists the currency codes of the 25 sample cryptocurrencies. For each cryptocurrency, we
provide the number of filtered jumps and the jump frequencies relative to the available observations (% jp). For signed jumps,
we report the 25th, 50th, and 75th percentiles of positive and negative jump sizes in the last 6 columns. The numbers in
columns % jp, positive jump size, and negative jump size are in percentage terms. Row Avg. 100 shows the averages across
the 100 sample cryptocurrencies.

Cryptocurrency

Jump Frequency Positive Jump Size (%) Negative Jump Size (%)

Total Positive Negative % jp 25p 50p 75p 25p 50p 75p

BTC 2,180 1,037 1143 0.826 0.0083 0.0129 0.0192 �0.0212 �0.0141 �0.0094
ETH 1,318 639 679 0.574 0.0125 0.0185 0.0262 �0.0263 �0.0197 �0.0138
LTC 1,091 526 565 0.503 0.0171 0.0235 0.0325 �0.0327 �0.0235 �0.0176
BCH 1,025 517 508 0.539 0.0170 0.0229 0.0320 �0.0306 �0.0221 �0.0164
ETC 968 466 502 0.599 0.0175 0.0252 0.0342 �0.0341 �0.0244 �0.0165
ZRX 840 364 476 0.525 0.0188 0.0278 0.0431 �0.0392 �0.0255 �0.0183
XRP 380 203 177 0.592 0.0133 0.0186 0.0261 �0.0295 �0.0208 �0.0130
XLM 594 248 346 0.397 0.0156 0.0207 0.0276 �0.0286 �0.0191 �0.0144
EOS 675 307 368 0.500 0.0175 0.0228 0.0312 �0.0314 �0.0231 �0.0162
REP 1,048 532 516 0.874 0.0224 0.0320 0.0441 �0.0399 �0.0283 �0.0204
LINK 366 151 215 0.263 0.0191 0.0258 0.0351 �0.0366 �0.0259 �0.0176
XTZ 444 197 247 0.342 0.0205 0.0283 0.0399 �0.0333 �0.0260 �0.0180
ALGO 451 183 268 0.341 0.0232 0.0362 0.0535 �0.0431 �0.0295 �0.0211
DASH 462 205 257 0.352 0.0180 0.0264 0.0365 �0.0338 �0.0249 �0.0177
OXT 843 493 350 0.756 0.0220 0.0331 0.0476 �0.0426 �0.0281 �0.0198
ATOM 311 128 183 0.260 0.0217 0.0285 0.0409 �0.0373 �0.0263 �0.0193
KNC 416 190 226 0.359 0.0228 0.0335 0.0444 �0.0384 �0.0266 �0.0188
OMG 314 154 160 0.331 0.0235 0.0322 0.0460 �0.0393 �0.0275 �0.0175
MKR 387 180 207 0.364 0.0169 0.0247 0.0332 �0.0311 �0.0239 �0.0172
COMP 273 95 178 0.260 0.0253 0.0362 0.0438 �0.0407 �0.0305 �0.0235
LRC 365 178 187 0.379 0.0254 0.0383 0.0545 �0.0422 �0.0333 �0.0228
ZEC 261 92 169 0.294 0.0195 0.0270 0.0412 �0.0344 �0.0251 �0.0180
ADA 291 131 160 0.368 0.0171 0.0228 0.0310 �0.0280 �0.0204 �0.0139
DOGE 425 193 232 0.592 0.0184 0.0241 0.0338 �0.0288 �0.0218 �0.0164
ZEN 221 85 136 0.371 0.0197 0.0264 0.0367 �0.0365 �0.0264 �0.0202
Avg. 100 420 206 214 0.550 0.0228 0.0320 0.0446 �0.0395 �0.0285 �0.0205
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In addition, regarding U.S. stock markets, Andersen et al. (2001a) indicate that the
mean of the annualized standard deviation is 28%, and Amaya et al. (2015) show
that the median of annualized realized volatility is approximately 45%. This com-
parison suggests unusually high volatility in cryptocurrency markets.

Because cryptocurrency returns have substantial jump components, the mean
of the jump-robust variances drops to 0.127. The mean jump variances appear
relatively small because jumps are rare events; thus, jump variances often take a
value of 0. However, when jumps occur, the jump variances dominantly contribute
to the total variances. Symmetric jumps allow positive and negative jump variances
to have similar distributions.

Panel B of Table 3 shows the correlations of these weekly realized variances.
The jump-robust variances are highly correlated with the total variances because
jump returns are rare. The correlation coefficient of these 2 variances is 0.98, which
implies that they carry similar information. The positive and negative jump vari-
ances are positively correlated, with a correlation coefficient of 0.64, indicating that
positive jumps are occasionally accompanied by negative jumps. Because jumps
tend to be detected during volatile periods, total variances are positively correlated
with jump variances (i.e., the correlation coefficients are greater than 0.33). How-
ever, the relatively low correlation coefficients imply that signed jump variances
capture information that differs from that captured by total and jump robust
variances.

To examine how our weekly realized variance measures change over time and
to assess whether there are cross-sectional differences in thesemeasures, we plot the
10th, 50th, and 90th percentiles of the weekly realized variances. We provide the

TABLE 3

Summary Statistics of Weekly Realized Variances

Table 3 reports the summary statistics of the decomposed variances estimated with intraday data. The variance is defined as
the sum of squared 15-minute returns and is estimated from the previous month of observations. The positive (negative) jump
variance is defined as the sum of squared positive (negative) jump sizes and is estimated from the previous month of
observations. The total jump variance is the sum of the positive and negative jump variances. The jump-robust variance is
estimated from observations without a jump. Panel A reports the first 4 central moments (Mean, Stdev, Skew, and Kurt), 25th
percentile (25p), median (Median), and 75th percentile (75p). Panel B shows the pairwise correlations between these
measures.

Panel A. Distributional Characteristics

Jump Variance

Jump-Robust VarianceTotal Variance Positive Negative Total

Mean 0.146 0.010 0.008 0.018 0.127
Std. dev. 0.161 0.015 0.010 0.024 0.154
Skew 6.031 3.671 5.073 3.736 6.752
Kurt 91.738 25.338 67.674 24.953 110.573
25p 0.058 0.002 0.003 0.006 0.047
Median 0.103 0.005 0.005 0.010 0.087
75p 0.179 0.012 0.010 0.021 0.155

Panel B. Correlation Matrix

Total Variance

Jump Variance

Positive Negative Total

Positive jump variance 0.420
Negative jump variance 0.339 0.640
Total jump variance 0.425 0.934 0.873
Jump–robust variance 0.981 0.248 0.175 0.239
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time-series plots for the total, positive jump, negative jump, and jump-robust
variances in Graphs A–D of Figure 3, respectively. The percentiles for realized
decomposed variances are clearly time-varying within relatively short horizons
compared to those observable in stock markets. The total variances peak in 2018
because of turbulence in cryptocurrency markets.29 The positive and negative jump
variances are relatively high in 2018 and after 2021, and multiple peaks with large
cross-sectional variations occurred in 2016, as bullish cryptocurrency markets
attracted major market players, setting the stage for their growth.30 Bullish and
bearish markets consecutively occurred in the 2020s, which widened the
cross-sectional variations in jump variances. Because the total and jump-robust
variances are estimated with almost the same observations except for rare jumps,
they yield similar patterns (Graphs A and D). Overall, all variance measures
dynamically change over time with discernible cross-sectional dispersion. There-
fore, it is important to frequently update these risk measures for cryptocurrency
markets to capture the time-varying features and pricing effects.

IV. Return Prediction with Variances

In this section, we investigate cryptocurrency return predictability, showing
significantly negative spreads in returns to variance-sorted portfolios. Sorting
analyses enable us to assess return predictability with selected variance measures
and show the economicmagnitudes of predictable returns. Then, we further support
our findings by using cross-sectional predictability regressions that simultaneously
control for multiple variance measures.

A. Sorting Analyses

In this subsection, we compare the returns of total variance-sorted portfolios.
At the end of every week (week w), we sort individual cryptocurrencies on total
variances and construct tercile portfolios. The total variancemeasures are estimated
with intraday observations from week w�3 to w. Then, we compute equal-
weighted (EW) and value-weighted (VW) returns in the subsequent week for each
portfolio. We consider a long-short portfolio that purchases cryptocurrencies in the
top tercile and sells cryptocurrencies in the bottom tercile.31

In Panel A of Table 4, we report the weekly returns of the total variance-sorted
portfolios. The rows labeled “Excess return” show the clear negative relation
between the realized total variances and the average subsequent returns. The
portfolios with the highest total variances (High portfolios) provide significantly

29After substantial attention was given to cryptocurrencymarkets in 2017, there were hacking events
(Corbet, Cumming, Lucey, Peat, and Vigne (2020)), and many governments (e.g., Korea, Japan, and the
U.S.) announced the strengthening of regulations on cryptocurrency markets.

30For example, Standard Chartered initiated investments in cryptocurrency markets.
31Although we use long-short portfolios for comparison purposes, there is a potential concern that

some cryptocurrencies are difficult to short-sell. Therefore, following Liu et al. (2022), we assume that
Bitcoin is shorted and confirm that our results are robust.
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FIGURE 3

Time-Series of Weekly Realized Variances

Figure 3 illustrates how the weekly decomposed variances change during the sample period from Oct. 2015 to June 2023.
Graphs A–D are for the total, positive jump, negative jump, and jump-robust variances, respectively. These decomposed
variancemeasures are estimated from the previousmonth of observations. In each panel, we provide the 10th, 50th, and 90th
percentiles of decomposed variances in the cross section.
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lower excess returns in subsequent weeks than those with the lowest total variances
(Low portfolios). Specifically, the differentials between the weekly excess returns
of High and Low portfolios are �3.7% and � 3.0% for EW and VW portfolios,
respectively, which are statistically significant at the 1% level. Unlike excess
returns, the standard deviations of High and Low portfolios are similar.

TABLE 4

Excess Returns of Cryptocurrencies Sorted by Decomposed Variances

Table 4 shows the relationship between thedecomposed variances and subsequent excess returns. At the endof everyweek,
we sort the 100 sample cryptocurrencies on the estimated (total) variance, positive and negative jump variances, or jump-
robust variance and then construct tercile portfolios. We estimate the total and decomposed variance measures by using the
previous month of observations. For each sorted portfolio, we compute excess returns in the subsequent week. The portfolios
are constructed with equal-weights (EW) and value-weights (VW). In Panels A–D, we report the results for the portfolios sorted
by the total, positive jump, negative jump, and jump-robust variances. In each panel, we report the average excess returns,
standard deviation, andSharpe ratio for the excess returns. In addition, weprovide the alphas of the time-series regressions of
the portfolio returns on the 3-factor model of Liu, Tsyvinski, and Wu (2022). Column Low (High) concerns portfolios with the
lowest (highest) sorting measures. Column H–L shows the differences between the values of High and Low portfolios (the
standard deviations and Sharpe ratios in this column are for longing High portfolios and shorting Low portfolios). ***, **, and *
denote statistical significance at the 1%, 5%, and 10% levels, respectively.

Low Mid High H–L

Panel A. Total Variance

Total variance 0.021 0.034 0.052 0.031***
Excess return (EW) 0.001 �0.007 �0.036 �0.037***
Standard deviation 0.108 0.130 0.128 0.063
Sharpe ratio 0.009 �0.052 �0.285 �0.589
Alpha 0.013 0.010 �0.012 �0.024***

Excess return (VW) 0.008 0.000 �0.022 �0.030***
Standard deviation 0.098 0.132 0.146 0.093
Sharpe ratio 0.084 �0.001 �0.147 �0.321
Alpha 0.021 0.003 �0.006 �0.027***

Panel B. Positive Jump Variance

Positive jump variance 0.001 0.002 0.004 0.003***
Excess return (EW) �0.001 �0.004 �0.037 �0.036***
Standard deviation 0.119 0.117 0.127 0.054
Sharpe ratio �0.007 �0.036 �0.291 �0.672
Alpha 0.010 0.011 �0.011 �0.021***

Excess return (VW) 0.007 0.007 �0.016 �0.023***
Standard deviation 0.103 0.107 0.137 0.078
Sharpe ratio 0.066 0.061 �0.117 �0.291
Alpha 0.017 0.016 �0.009 �0.026***

Panel C. Negative Jump Variance

Negative jump variance 0.001 0.002 0.003 0.002***
Excess return (EW) �0.005 �0.004 �0.032 �0.027***
Standard deviation 0.118 0.124 0.121 0.051
Sharpe ratio �0.044 �0.035 �0.267 �0.531
Alpha 0.006 0.013 �0.008 �0.014***

Excess return (VW) 0.011 0.000 �0.012 �0.023***
Standard deviation 0.103 0.116 0.130 0.079
Sharpe ratio 0.106 0.002 �0.093 �0.292
Alpha 0.017 0.016 �0.003 �0.020***

Panel D. Jump-Robust Variance

Jump–robust variance 0.019 0.030 0.046 0.027***
Excess return (EW) �0.001 �0.008 �0.033 �0.032***
Standard deviation 0.110 0.127 0.129 0.063
Sharpe ratio �0.010 �0.062 �0.258 �0.512
Alpha 0.011 0.007 �0.008 �0.020***

Excess return (VW) 0.008 �0.001 �0.017 �0.026***
Standard deviation 0.098 0.129 0.143 0.090
Sharpe ratio 0.086 �0.006 �0.121 �0.286
Alpha 0.021 0.004 0.001 �0.020***
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To investigate whether these return differences result from exposure to sys-
tematic risk factors, we compute alphas by regressing weekly excess returns on the
three factors of Liu et al. (2022). The differentials between the alphas of High and
Low portfolios remain negative and significant for both the EWandVWportfolios.
Therefore, the negative relation between the total variances and subsequent returns
cannot be explained solely by systematic factors.

Our results are partly inconsistent with those of Liu et al. (2022) in that these
authors show insignificantly negative return differentials in subsequent weeks for
volatility-sorted portfolios. These different results arise because these authors use
daily data for variance/volatility estimations, while we employ intraday data. In
fact, using the daily data of our sample coins, we obtain consistent results. By using
higher-frequency observations for variance estimations, we can measure variances
more precisely and better capture variances’ time-varying features because the
variance estimates are more frequently updated with recent data over shorter
horizons and are less vulnerable to the smoothing effect of older data. As noted
in Section III, variances in cryptocurrency markets are clearly time-varying, and
their cross-sectional variations change dramatically over short horizons. We incor-
porate this fact with high-frequency data and clearly demonstrate the significant
role of realized variances in cryptocurrency return prediction, which has not been
studied in the literature.

To examine which types of variances contribute to the return prediction, we
perform additional sorting analyses by using positive jump, negative jump, and
jump-robust variances. This variance decomposition with signed jump and non-
jump returns differentiates the impact of extreme variations from nonnormal return
distributions.32 The sorting analysis results using these decomposed variances are
reported in Panels B–D of Table 4.

In Panel B of Table 4, High positive jump variance portfolios have 3.6%
(2.3%) lower excess returns for EW (VW) portfolios than do Low positive jump
variance portfolios. The alphas for High positive jump variance portfolios are also
significantly lower than those for Low positive jump variance portfolios. These
results indicate that positive jump variances significantly contribute to the negative
return predictability of total variances.

Panel C of Table 4 shows the results for negative jump variance-sorted
portfolios, which are similar to those for positive jump variance-sorted portfo-
lios in Panel B. The similarity results from the positive correlation of positive
and negative jump variances. Our regression analyses in the next sub-
section clarify the exclusive effects of these variables with simultaneous con-
trols. Finally, Panel D presents the results for jump-robust variance-sorted
portfolios. The overall results in Panel D are similar to those presented in Panel
A because the total and jump robust variances are similar, except for occasional
jump arrivals.

32Bollerslev, Medeiros, Patton, and Quaedvlieg (2021) propose a similar variance decomposition
with partial (co)variance measures, which enables the multiple decompositions of realized variances.
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B. Cross-Sectional Regression Analyses

The sorting analyses could ignore the potential confounding effects of various
independent variables. In this subsection, we address this concern by conducting a
series of standard Fama and MacBeth (FMB) (1973) cross-sectional regressions
with individual cryptocurrencies. These analyses expand our findings and simul-
taneously control for multiple factors and cryptocurrency characteristics. Our
choice of regression models is motivated by Amaya et al. (2015), who use FMB
regressions to identify the relationship between weekly realized central moments
and stock returns in subsequent weeks. Our regression models are also consistent
with those of Bali et al. (2011), who adopt FMB regressions to investigate the
relationship between maximum daily returns and subsequent monthly returns.33

We first test the effect of the total variance measure on subsequent returns.
Specifically, for each week in our sample, we run the following cross-sectional
regression:

rxi,w + 1 = γ0,w + γ1,wTV i,w + c
0
wX i,w + εi,w + 1,(5)

where rxi,w+ 1 is the excess return of cryptocurrency i over week w + 1. The first
variable of interest TV i,w and the vector of control variablesX i,w aremeasured at the
end of week w. After estimating the slope coefficients for each week in the sample,
we take the time-series averages of the coefficient estimates to check whether the
independent variables can significantly predict excess returns in the
subsequent week.

Table 5 shows the related estimates and corresponding t-statistics.34 As shown
in column 1, the coefficients of realized total variances are significantly negative.
To compare our intraday data-based measure with the daily return-based volatility
measure of Liu et al. (2022), we use the standard deviations of daily returns as
independent variables in column 2. Consistent with the result of Liu et al. (2022),
the volatilities estimated with daily data provide insignificantly negative coeffi-
cients. This comparison elucidates the importance of using intraday data for cap-
turing volatility effects in cryptocurrency markets. Column 3 shows that the
negative relationship between total variances and future returns is robust to
cryptocurrency-specific control variables such as lagged returns and cryptocur-
rency sizes. These controls are employed because of themomentum and size factors
of Liu et al. (2022).35

Then, we use multiple independent variables to test the effect of the decom-
posed variances on subsequent returns. Specifically, we conduct the following
cross-sectional regression:

33Bali et al. (2011) employ daily data, while we use intraday data, similar to Amaya et al. (2015). The
regression frequency of Bali et al. (2011) is monthly, while ours is weekly, as is that of Amaya et al.
(2015).

34That is, we report bγl = 1=~wð ÞP~w
w= 1bγl,w with l = 0,1 or l = 0,1,2,3, where ~w is the total number of

weeks. We use the Newey–West standard errors. Our results are robust to lag length selection.
35Our results indicate that the lagged return effects differ across return horizons or sample periods.

For example, columns 3 and 4 of Table 6 show that 1-month and 1-quarter lagged returns are significant,
while 1-week lagged returns are insignificant in Table 7, which also shows that the lagged return effects
are sensitive to sample periods.
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rxi,w+ 1 = γ0,w + γ1,wJV
ð+ Þ
i,w + γ2,wJV

ð�Þ
i,w + γ3,wJRV i,w + c

0
wX i,w + εi,w + 1,(6)

where JV ð+ Þ
i,w , JV ð�Þ

i,w , and JRV i,w are the positive jump, negative jump, and jump
robust variances, respectively, as defined in Section II. These decomposed vari-
ances are estimated with 1 month of observations. We conduct weekly cross-
sectional regressions and then report the time series means of the coefficient
estimates and t-statistics.

From column 4 of Table 5, we show the results using decomposed variances as
independent variables to identify which variance component significantly contrib-
utes to the negative predictability of the realized total variance. To represent the role
of jumps without considering signs, we decompose total variances into jump and
jump-robust variances. Column 4 shows that the coefficient of jump variances is
�0.669 and that of jump-robust variances is �0.152. Both coefficients are signif-
icant at the 1% level. Column 5 indicates that the negative relation of jump
variances to subsequent returns mainly results from positive jump variance effects.
In particular, positive jump variances continue to have significantly negative

TABLE 5

Return Prediction with Decomposed Variances

Table 5 showshowdecomposed variances are related to excess returns in the subsequentweek.Weestimate the coefficients
of the following Fama–MacBeth (FMB) regression:

rx i,w + 1 = γ0,w + γ1,w TV i,w + c0
wX i,w + εi,w + 1 or

rx i,w + 1 = γ0,w + γ1,w JV
ð+ Þ
i,w + γ2,w JV

ð�Þ
i,w + γ3,w JRV i,w + c0

wX i ,w + εi,w + 1,

where rx i,w is the excess return of cryptocurrency i in week w . TV i ,w , JV
ð+ Þ
i,w , JV ð�Þ

i,w , and JRV i ,w are the total, positive jump,
negative jump, and jump-robust variances, respectively. These decomposed variances are estimated with the previous
month of observations (i.e., observations from week w �3 to week w ). For comparison, we replace TV i,w with the volatility
estimated from 1-month daily return data (column 2). X i,w is the vector of control variables such as lagged excess returns and
natural logarithmic market capitalization. Then, we report the time-series averages of the estimated coefficients and the
corresponding t-statistics. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

1 2 3 4 5 6

Constant 0.012 �0.005 �0.054** 0.014* 0.120 �0.033
t–stat. 1.57 �0.47 �2.10 1.81 1.53 �1.29

Total variance �0.221*** �0.171***
t–stat. �7.77 �5.62

Jump variance �0.669***
t–stat. �4.71

Positive jump variance �1.470*** �1.492***
t–stat. �5.24 �4.69

Negative jump variance 0.626 0.791
t–stat. 1.07 1.31

Jump–robust variance �0.152*** �0.151*** �0.091**
t–stat. �4.83 �4.41 �2.00

Volatility (daily data) �0.134
t–stat. �0.86

Lagged return 0.006 0.003
t–stat. 0.44 0.16

Market capitalization 0.003*** 0.002**
t–stat. 3.13 2.11

Adj. R2 0.115 0.092 0.186 0.163 0.200 0.266
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coefficients, while negative jump variances have positive coefficients. The negative
return prediction of positive jump and jump-robust variances is maintained after
controlling for lagged returns and market capitalization, as shown in column 6.
These results imply that cryptocurrencies with higher variances tend to provide
lower returns in subsequent periods and that this predictive relationship is amplified
if positive jump variances are high.

From these analyses, we propose two key takeaways. First, it is important to
account for the unique characteristics of cryptocurrency markets with unusually
high volatility. Our realized variancemeasures capture short-term volatility dynam-
ics and accommodate frequent updates with high-frequency data, which allows for
the identification of unique variance effects. Another important and interesting
point is that the negative return prediction results from return distributions beyond
the left tail. This relationship could contrast with the classical risk and return trade-
off, which is typically represented by the positive relation between risk measures
(e.g., variances) and returns. In the next section, we explore the possible connection
of our findings with previous studies that present this negative relationship.

C. Robustness Tests

In this subsection, we address the concern that the return predictability of
positive jump and jump-robust variances is attributable to our selection of depen-
dent variables or omitted variables in the regressions. We also investigate how our
results are affected by aggregate cryptocurrency uncertainty, average liquidity in
cryptocurrencymarkets, and business cycles.We prove that our results are robust to
model specifications and market conditions.

First, we test whether our results are sensitive to the choice of subsequent
return horizons for dependent variables. We consider the 2 alternatives of 2-week
and 1-month excess returns as dependent variables by replacing rxi,w+ 1 with
rxi,w + 1:w + 2 or rxi,w+ 1:w + 4 in equation (6), where rxi,w + 1:w + k represents the excess
returns of cryptocurrency i from weeks w + 1 to w + k. Columns 1 and 2 of Table 6
present the results of applying equation (6) with the replaced dependent variables.
We continue to find that positive jump and jump-robust variances yield negative
coefficients, which are significant at the 1% level.36

In the second set of robustness checks, we consider additional control vari-
ables of lagged returns with alternative horizons while keeping the same dependent
variables of subsequent-week returns as in our main regression specification. This
set of robustness tests is motivated by Jegadeesh (1990), Lehmann (1990), and
Jegadeesh and Titman (1993), who document short-term return reversals at weekly
and monthly horizons and return momentum at 6-month to 12-month horizons in
stockmarkets. Given our relatively short sample period, we use lagged 1-month and
1-quarter returns, instead of lagged 1-week returns, as control variables. We report
the results in columns 3 and 4 of Table 6. These alternative controls are intended to
capture momentum or reversal effects that may exist in cryptocurrencymarkets.We
conclude that our main findings remain consistent.

36We perform additional tests with other horizons and find consistent results.
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Because (jump) variances can be high when maximum returns are high, one
might raise the question of whether our findings are related to maximum return
effects. To distinguish our findings from the maximum return effects, we control
for the maximum 15-minute returns in week w and maximum daily returns in the
previous month. As columns 5 and 6 of Table 6 indicate, neither the 15-minute nor
one-day maximum return weakens our results. This result suggests that our decom-
posed variance measures capture the aspects of historical return variations that are
different from one extreme realized return.37

We also investigate whether our results are robust to changes in aggregate
cryptocurrency market uncertainty, average liquidity in cryptocurrency markets,
and business cycles. We compute weekly cryptocurrency market volatility by
following the approach of Menkhoff, Sarno, Schmeling, and Schrimpf (2012) that
is used for foreign currency markets. For average illiquidity, we adopt an approach
similar to that of Chordia, Roll, and Subrahmanyam (2001) by taking the average of
the illiquidity measures of Amihud (2002) across cryptocurrencies. Using the
medians of these measures, we construct high- and low-volatility or illiquidity
subsamples. To consider business cycles, we separate our sample into

TABLE 6

Robustness Test

Table 6 shows the robustness of the decomposed variance effect. We use the following Fama–MacBeth (FMB) regression:

rx i,w + 1 = γ0,w + γ1,w JV
ð+ Þ
i,w + γ2,w JV

ð�Þ
i,w + γ3,w JRV i,w + c0

wX i ,w + εi,w + 1,

where rx i,w is the excess return of cryptocurrency i in weekw . JV ð + Þ
i ,w , JV ð�Þ

i,w , and JRV i,w are the positive jump, negative jump,
and jump-robust variances, respectively. These decomposed variances are estimated from the previous month of
observations (i.e., observations from week w �3 to week w ). X i,w is the vector of control variables such as lagged excess
returns and natural logarithmic market capitalization. For the part denoted “Dependent variable,” we replace the dependent
variable with 2-week excess returns (column 1) and 1-month excess returns (column 2). For the part denoted “Control: Long-
term,”we control for the potential return momentum/reversal effect and maximum return effect, employing the lagged excess
returns over periods from week w �3 to week w (i.e., 1-month returns) for column 3 and those from week w �11 to w (i.e., 1-
quarter returns) for column 4. For the part denoted “Control: Maximum,” we use the maximum 15-minute excess returns in
weekw for column5and themaximumone-day returns during the period fromweekw �3 toweekw for column6. In this table,
we report the time-series averages of the estimated coefficients and the corresponding t -statistics. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent Variable Control: Long-Term Control: Maximum

1 2 3 4 5 6

Constant �0.090* �0.192** �0.023 �0.001 �0.021 �0.024
t–stat. �1.88 �2.24 �0.96 �0.04 �0.87 �0.98

Positive jump variance �2.693*** �4.562*** �1.588*** �1.343*** �1.268*** �1.266***
t–stat. �5.05 �6.32 �5.20 �4.01 �4.02 �3.15

Negative jump variance 1.139 �0.333 0.960 0.889 0.740 0.908
t–stat. 1.02 �0.25 1.53 1.44 1.22 1.49

Jump–robust variance �0.169** �0.234** �0.104*** �0.126*** �0.117*** �0.159***
t–stat. �2.19 �2.13 �2.57 �3.17 �2.89 �3.91

Lagged return (or Max) 0.036 0.082** 0.059** 0.156*** �0.200*** 0.051
t–stat. 1.32 2.32 2.00 3.43 �3.27 1.13

Market capitalization 0.005*** 0.011*** 0.002* 0.001 0.002* 0.002*
t–stat. 2.80 3.50 1.80 0.73 1.82 1.79

Adj. R2 0.281 0.288 0.271 0.267 0.250 0.260

37Univariate regression with 1-day maximum returns yields a significantly negative coefficient,
which is consistent with the results of Bali et al. (2011). By adding positive jump variances, we find that
the effect of the maximum returns becomes weaker than that of the univariate regression result.
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two subsamples, the latter of which starts in Aug. 2021 (i.e., the subsample for the
former period includes recession periods). We choose this separation because the
National Bureau of Economic Research (NBER) indicates that the peak during our
sample period occurs in Feb. 2020 and because the two subsamples can be of similar
sizes. Then, we apply the FMB regressions of equation (6) to each subsample.

Table 7 shows the results. In the columns denoted Market volatility, the
variance effects of this article are significant for both the high- and low-volatility
subsamples. As the columns under Market illiquidity indicate, the return predict-
ability of positive variances is robust, while that of jump-robust variances is
significant only for the period with high levels of market illiquidity. This result
implies that the effect of variances from extreme price movements (i.e., positive
jumps) can be dominant in less liquid markets. The last two columns for business
cycles indicate that our findings are robust regardless of the business cycle or
subsample period. Overall, our results are robust to sample selection and market
conditions such as market volatility and illiquidity.

D. Comparison with the Realized Skewness Effect

The variance effects in this article might be linked to the skewness effect,
which also implies a negative relationship between skewness and subsequent

TABLE 7

Time-Series Subsample Analyses

Table 7 shows how the effects of decomposed variances on subsequent excess returns depend on market conditions. We
construct time series subsamples depending on the overall volatility and illiquidity of cryptocurrency markets and business
cycles. Cryptocurrency market volatility is defined as the means of the average absolute values of 15-minute log
cryptocurrency returns across individual cryptocurrencies during the corresponding week, following Menkhoff et al.
(2012). Cryptocurrency market illiquidity is captured by the averages of individual weekly Amihud (2002) illiquidity
measures. The High (Low) period subsample is obtained by excluding the 20% of weeks with the lowest (highest) volatility
or illiquidity measures. Business cycles are separated considering NBER business cycles (i.e., in our sample, the former
(latter) period is before (after) Aug. 2021, and the former period includes recession periods). We apply the following Fama–
MacBeth (FMB) regression to these time series subsamples:

rx i ,w + 1 = γ0,w + γ1,w JV
ð + Þ
i,w + γ2,w JV

ð�Þ
i,w + γ3,w JRV i,w +c0

wX i,w + εi,w + 1,

where rx i,w is the excess return of cryptocurrency i in weekw . JV ð + Þ
i,w , JV ð�Þ

i ,w , and JRV i ,w are the positive jump, negative jump,
and jump-robust variances, respectively. These decomposed variances are estimated from the previous month of
observations (i.e., observations from week w�3 to week w ). X i ,w is the vector of control variables such as lagged excess
returns and natural logarithmic market capitalization. Then, we report the time-series averages of the estimated coefficients
and the corresponding t-statistics. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels,
respectively.

Market Volatility Market Illiquidity Sample Period

Low High Low High Former Latter

Constant �0.032** �0.034** �0.035** �0.036*** 0.034* �0.100***
t–stat. �2.37 �2.36 �2.26 �3.86 1.92 �11.61

Positive jump variance �1.032*** �1.890*** �1.477*** �1.504*** �2.098*** �0.877***
t–stat. �8.38 �7.36 �7.96 �8.15 �7.52 �8.91

Negative jump variance �0.443** 1.860*** 0.457* 1.009*** 2.199*** �0.638***
t–stat. �2.14 5.10 1.74 3.73 5.39 �4.67

Jump–robust variance �0.076*** �0.105*** �0.028 �0.099*** �0.148*** �0.032*
t–stat. �4.77 �3.25 �1.49 �3.92 �4.50 �1.83

Lagged return �0.003 0.007 �0.008 0.008 0.020 �0.015*
t–stat. �0.30 0.51 �0.76 0.80 1.38 �1.94

Market capitalization 0.002*** 0.002*** 0.002*** 0.002*** �0.000 0.004***
t–stat. 3.96 3.70 2.97 6.78 �0.25 13.34

Adj. R2 0.228 0.301 0.238 0.281 0.361 0.170
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returns (Amaya et al. (2015)). Jia et al. (2021) and Borri and Santucci de Magistris
(2022) document the effects of coskewenss and realized skewness on the cross
section of cryptocurrency returns, respectively. To clarify how the variance effect in
this article is related to the skewness effect, we compare these two effects. We first
checkwith our data that the skewness effect exists in cryptocurrencymarkets. Then,
we compare our decomposed variance effects with the skewness effect.38

Following Amaya et al. (2015), we use lagged skewness as the main explan-
atory variable and volatility and kurtosis as control variables. We run the following
Fama–MacBeth (FMB) regression:

rxi,w+ 1 = λ0,w + λ1,wLSkewi,w + λ2,wVoli,w + λ3,wKurti,w + c
0
wX i,w + εi,w + 1,(7)

where LSkewi,w, Voli,w, and Kurti,w are the weekly realized skewness, volatility,
and kurtosis of returns, respectively.39

We report the results in Table 8. In column 1, we run a univariate regression
that uses only realized skewness and show that cryptocurrencies with high realized
skewness tend to have low excess returns in subsequent weeks, which is consistent
with the findings of Amaya et al. (2015). We include volatility and kurtosis in
column 2 and add lagged returns and market capitalization in column 3. We
continue to find that high realized skewness significantly predicts low future
returns. As column 4 shows, this negative relationship is robust to the additional
controls of jump-robust volatility and kurtosis. Therefore, the skewness effect
appears to exist in cryptocurrency markets, as it does in U.S. equity markets.

We compare the return predictability of skewness with that of positive jump
variances by conducting horse-race regressions. As columns 5 and 6 of Table 8
show, the coefficients of realized skewness become insignificant after controlling
for the decomposed partial variances. Jump-robust and positive jump variances
continue to exhibit negative and statistically significant coefficients, which indi-
cates that the realized variances, including positive jump variances, are more
important return predictors in cryptocurrency markets than is realized skewness.
Interestingly, in highly uncertain cryptocurrency markets, high realized variances
are more important and preferred characteristics than high realized skewness as
long as they are not associated with extreme negative returns.

V. Exploration of Mechanism for Return Predictability

The negative relation between variances and future cryptocurrency returns
contrasts with the positive risk–return tradeoffs that traditional finance theories
suggest (e.g., Merton (1987)). However, considering other asset markets that share
similar characteristics and investors with cryptocurrency markets, our findings can
be explained by behavioral finance studies on speculative retail trading with lottery
preferences. In this section, we explore several economic mechanisms and discuss

38In Appendix D of the Supplementary Material, we also use alternative jump variance measures
instead of skewness.

39We use jump-robust volatilities instead of jump-robust variances to be consistent with the FMB
regression specification of Amaya et al. (2015).Whenwe use variances or jump-robust variances instead
of volatilities or jump-robust volatilities, we find essentially the same results.
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related studies in the literature to enhance our understanding of the potential drivers
of our findings.

A. Retail Investor Trading

We consider speculative retail trading as one explanation because Kogan et al.
(2023) show that retail investors actively participate in cryptocurrency markets.
According to Han and Kumar (2013), retail investors are drawn toward stocks with
speculative features (e.g., high volatility and skewness) and are willing to undertake
risk that may yield lower returns. Barberis and Huang (2008) demonstrate inves-
tors’ preference for lottery-type returns. Barberis and Xiong (2012) present a model
in which investors’ risk-seeking behavior allows investors to prefer holding and
trading highly volatile securities because of a greater chance of realizing large gains.
Our finding for cryptocurrency markets is closely related to these studies.

For formal tests, we gauge retail investors’ trading activities by modifying the
RTP of Han and Kumar (2013) to accommodate our weekly studies using crypto-
currency market data. Specifically, we acknowledge a notably wide dispersion in
the right-skewed distribution of trading volumes. Given the unique nature of
cryptocurrency markets, we establish the 90th percentile of volumes, which
is 22 million dollars, across all sample cryptocurrencies as the threshold for

TABLE 8

Comparison of Positive Jump Variance Effects with Skewness Effects

Table 8 shows the return predictability with skewness, which is compared with that with positive jump variances. We employ
the following Fama–MacBeth (FMB) regression:

rx i ,w + 1 = λ0,w + λ1,w LSkewi,w + λ2,wVol i,w + λ3,wKurt i,w + c0
wX i,w + εi,w + 1,

where rx i,w is the excess return of cryptocurrency i in week w . LSkewi ,w , Vol i,w , and Kurt i,w are the realized weekly
skewness, volatility (i.e., the square root of the variance), and kurtosis of the returns, respectively. These realized moments
are estimated from the previous month of observations. To compare the positive jump variance effects with the skewness
effects, we replace Vol i,w with the jump-robust volatility (i.e., the square root of the jump-robust variance) and the positive and
negative jump variances. X i ,w is the vector of control variables such as lagged excess returns and natural logarithmic market
capitalization. Then,we report the time-series averages of the estimated coefficients and the corresponding t -statistics. ***, **,
and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

1 2 3 4 5 6

Constant �0.016 0.063*** 0.025 0.065*** 0.043*** �0.002
t–stat. �1.73 6.16 0.80 6.08 3.69 �0.08

Skewness �0.286*** �0.007 �0.009* �0.009* 0.005 0.002
t–stat. �7.52 �1.46 �1.86 �1.84 0.82 0.23

Volatility �0.049*** �0.039***
t–stat. �8.76 �5.88

Jump–robust volatility �0.052*** �0.035*** �0.018**
t–stat. �8.08 �4.80 �2.24

Kurtosis �0.002** �0.001** �0.002*** �0.001 �0.000
t–stat. �2.21 �2.17 �2.85 �1.00 �0.20

Lagged return 0.005 0.001
t–stat. 0.34 0.06

Market capitalization 0.001 0.001
t–stat. 1.12 1.19

Positive jump variance �1.632*** �1.672***
t–stat. �3.75 �3.57

Negative jump variance 1.019 0.715
t–stat. 1.31 0.94

Adj. R2 0.041 0.173 0.244 0.173 0.253 0.319
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characterizing retail investors’ trading activities.40 We also use characteristic vari-
ables such as market capitalization, prices, and percentage BASs because Han and
Kumar (2013) document that retail investors tend to favor stocks with low market
capitalization and low prices, which tend to be less liquid. Daily dollar trading
volumes are employed to check for trading activities associatedwith high variances.

We examine the cross-sectional differences in these characteristics of
variance-sorted portfolios. This approach is similar to that used in asset pricing
studies that explain the negative risk and return relationship in stock markets by
considering firm or portfolio characteristics (Fu (2009), Brandt, Brav, Graham, and
Kumar (2010)) and price pressures resulting from illiquidity (Avramov, Chordia,
and Goyal (2006)). To be consistent with our sorting analyses in Section IV, at the
end of week w, we sort cryptocurrencies on one of decomposed variances and
construct tercile portfolios. For each portfolio, we compute the equal-weighted
averages of the characteristics in week w.41

Table 9 shows the time-series averages of the characteristic variables for the
sorted portfolios. Using the total variance-sorted portfolios, Panel A indicates that
retail trading activities are significantly greater for cryptocurrencies with high total
variances than for those with low total variances. Cryptocurrencies with high total
variances tend to have smaller market sizes, lower prices, and wider BASs than
those with low total variances. These results are consistent with those of Han and
Kumar (2013). Interestingly, the largest trading volumes of High total variance
portfolios result mainly from High positive jump variance portfolios, which show
the most discernible differences in trading volumes (Panel B). High positive jump
variance portfolios also have higher RTPs than other portfolios, which implies that
cryptocurrencies with high positive jump variances attract retail transactions.

The literature documents similar return predictability of extreme volatility in
other asset markets in which retail investors actively participate. Xiong and Yu
(2011) study asset price bubbles in China’s warrant markets with the limited
presence of institutional investors, finding that warrant bubbles are accompanied
by trading frenzy and large volatility and highlighting the role of short-selling
constraints and heterogeneous beliefs in explaining the price bubbles (i.e., resale
option theory). Our evidence of large trading volumes for High (positive jump)
variance portfolios indicates that cryptocurrency investors indeed tend to disagree
about the future prices of cryptocurrencies with high variances. However, our
variance effects are unlikely to result from overpricing because of short-selling
constraints. For our tests, we measure short-selling availability by using the trading
volumes of associated futures contracts to initiate short-selling positions.42 As
Table 9 shows, High variance portfolios tend to exhibit larger futures trading

40We utilize dollar volumes at 5-minute intervals. Considering that approximately 90–95% of
Coinbase’s revenues originate from retail investors, we use the 90th percentile of 5-minute trading
volumes. We perform additional tests using the 50th and 95th percentiles as alternative thresholds and
confirm the robustness.

41We report the contemporaneous characteristics for simplicity; the predictive analyses are
consistent.

42We collect daily futures trading volumes and the volume of futures buyers (those taking the
counterparty positions for sellers at prevailing market prices). These futures trading volume data are
from binance.com.
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TABLE 9

Characteristics of Decomposed Variance-Sorted Portfolios

Table 9 shows the characteristics of decomposed variance-sorted portfolios. At the beginning of every week, we sort the 100
sample cryptocurrencies based on the estimated (total) variance, positive and negative jump variances, or jump-robust
variance and construct tercile portfolios. We estimate the total and decomposed variance measures by using the previous
month of observations. For each sorted portfolio, we provide the average market capitalization (in billions of USD), daily
trading volume (in billions of USD), prices (in USD), BAS, and RTP of Han and Kumar (2013) in the corresponding week. In
addition, we report sentiments for individual cryptocurrencies. We use the number of buy opinions (relative to market
capitalization) and the percentage of buy opinions relative to total opinions on Twitter and Telegram. To examine the
possibility of short selling, we also consider the futures trading volume (in millions of USD) and volumes that buyers take
the sellers’ futures prices (in millions of USD). In each panel, column Low (High) presents portfolios with the lowest (highest)
sorting measures. Column H–L shows the differences between the values of High and Low portfolios. ***, **, and * denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

Low Mid High H–L

Panel A. Total Variance

Size/trade variable
Market capitalization ($B) 39.2 2.2 0.9 �38.3***
Daily trading volume ($B) 11,704 21,263 23,957 12,253***
Price ($) 3,124 227 261 �2,863***
Bid–ask spread 0.001 0.001 0.002 0.001***
RTP 0.913 0.958 0.952 0.039***

Sentiment
No. of Twitter buy /market cap 181.147 311.487 598.336 417.188***
% of Twitter buy 25.389 24.965 25.923 0.534
No. of Telegram buy /market cap 36.410 109.980 280.846 244.437***
% of Telegram buy 23.347 18.089 16.142 �7.205

Short selling availability
Futures volumes ($M) 660 772 1358 698***
Futures buyers’ volume ($M) 320 375 666 346***

Panel B. Positive Jump Variance

Size/trade variable
Market capitalization ($B) 26.9 15.2 1.5 �25.4***
Daily trading volume ($B) 1,552 16,045 39,133 37,581***
Price ($) 2,308 1,121 294 �2,014***
Bid–ask spread 0.001 0.001 0.002 0.001***
RTP 0.933 0.938 0.956 0.023***

Sentiment
No. of Twitter buy /market cap 169.808 278.230 639.958 470.151***
% of Twitter buy 25.484 25.524 25.416 �0.068
No. of Telegram buy /market cap 52.182 78.820 278.874 226.692***
% of Telegram buy 21.929 19.907 15.941 �5.988

Short selling availability
Futures volumes ($M) 587 1302 935 348***
Futures buyers’ volume ($M) 286 633 458 172***

Panel C. Negative Jump Variance

Size/trade variable
Market capitalization ($B) 28.2 12.0 2.7 �25.5***
Daily trading volume ($B) 8,594 22,304 25,823 17,229***
Price ($) 2,368 954 381 �1,986***
Bid–ask spread 0.001 0.001 0.002 0.001***
RTP 0.935 0.927 0.960 0.025***

Sentiment
No. of Twitter buy /market cap 239.442 278.201 568.234 328.792***
% of Twitter buy 25.182 25.586 25.556 0.374
No. of Telegram buy /market cap 51.585 51.797 296.433 244.848***
% of Telegram buy 21.361 19.777 16.545 �4.816

Short selling availability
Futures volumes ($M) 736 1114 960 225***
Futures buyers’ volume ($M) 358 543 469 112***

Panel D. Jump-Robust Variance

Size/trade variable
Market capitalization ($B) 38.9 2.4 1.0 �37.9***
Daily trading volume ($B) 19,248 26,639 11,064 �8,184***
Price ($) 3,114 195 299 �2,816***
Bid–ask spread 0.001 0.001 0.002 0.001***
RTP 0.920 0.951 0.951 0.031***

(continued on next page)
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volumes than Low variance portfolios, which implies that cryptocurrencies with
high variances tend to have fewer short-selling constraints.

B. Investor Sentiment

Baker and Wurgler (2006) show that investor sentiment affects the cross
section of stock returns. These authors find that when sentiment is high, “riskier”
stocks with high volatility tend to earn lower returns and confirm their prediction
that highly volatile stocks are difficult to value and to arbitrage, making these stocks
especially prone to fluctuations in sentiment. This effect is stronger for small,
young, unprofitable, non-dividend-paying, extreme growth, and distressed stocks.
As Sockin and Xiong (2023) also discuss the importance of sentiment in crypto-
currency markets, in this subsection, we check whether our variance effects are
related to sentiment.

Considering Vosoughi, Roy, and Aral (2018) and Duz Tan and Tas (2021), we
use daily coin-level sentiment measures from Twitter. We supplement our analyses
with Telegram sentiment measures.43 We employ the numbers and percentages of
buy opinions and examine the relationship between these sentiment and our real-
ized variance measures in the cross section. As Table 9 shows, more positive
sentiment is shared among investors for cryptocurrencies with higher variances,
particularly with positive jump variances. This finding implies greater enthusiasm
for cryptocurrencies with high positive jump variances and is consistent with the
active participation of retail investors in the previous subsection. In addition, our
cryptocurrency market results support the model of Pedersen (2022), in which
speculative investors learn about market sentiment through social network plat-
forms, further increasing prices.

C. Cryptocurrencies as Lotteries

In this subsection, we support that the variance effect is consistent with
cumulative prospect theory based on investors’ preferences for lottery-like returns
(e.g., Barberis and Huang (2008)). The key insight of this theory is that investors
may favor assets with ex ante return distributions with rare but extremely high
returns and thus would be willing to pay higher prices for such assets, which results

TABLE 9 (continued)

Characteristics of Decomposed Variance-Sorted Portfolios

Panel D. Jump-Robust Variance (continued)

Sentiment
No. of Twitter buy /market cap 239.160 293.993 552.437 313.278***
% of Twitter buy 25.556 25.097 25.678 0.123
No. of Telegram buy /market cap 47.538 100.089 277.792 230.255***
% of Telegram buy 22.797 18.068 16.582 �6.215

Short selling availability
Futures volumes ($M) 675 724 1389 714***
Futures buyers’ volume ($M) 327 351 681 354***

43We collect daily investor sentiment data from intotheblock.com via cryptocompare.com, which
provides the number of buy, sell, and neutral opinions. We appreciate that the referee informs us of the
data source.
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in low subsequent returns. Accordingly, investors with lottery preferences are
attracted by and seek out cryptocurrencies with observable measures that can help
them predict lottery-type returns in the future. We hypothesize that positive jump
and jump-robust variances can predict future lottery returns because positive jumps
share common features with lottery-type returns (i.e., unusually large payoffs with
low probability) and because high variances increase the likelihood of realizing
lottery-type returns as long as they are not associated with extremely negative
jumps.

Awidely accepted measure for lottery-like returns in the literature is skewness
(e.g., Boyer et al. (2010), Barberis, Mukherjee, and Wang (2016)). Therefore, to
support our explanation, we test whether our key variance measures (i.e., positive
jump and jump-robust variances) can predict future skewness. If this condition
holds, these variance measures can be negatively related to subsequent returns, as
documented in this article. We perform an empirical test similar to that of Boyer
et al. (2010). Specifically, we estimate the following regression model:

Skewi,w+ 1 =ψ0 +ψ1LSkewi,w +ψ2JV
ð+ Þ
i,w +ψ3JV

ð�Þ
i,w +ψ4JRV i,w + c

0X i,w + ei,w+ 1,

(8)

where Skewi,w is the weekly realized skewness of cryptocurrency i in week w.
LSkewi,w is the realized skewness estimated from the previous month of observa-
tions (i.e., observations from week w�3 to week w). X i,w is the vector of control
variables, such as weekly kurtosis, lagged excess returns, natural logarithmic
market capitalization, and fixed effects.

Table 10 shows that lagged skewness does not provide significant coeffi-
cients in a robust manner. This evidence is consistent with that of Boyer et al.
(2010), who also show that lagged realized skewness is not a strong predictor of
future skewness for stocks. However, we find that both positive jump and jump-
robust variances significantly predict skewness in the subsequent week. Column
3 shows that both positive jump and jump-robust variances have significantly
positive coefficients, which indicates that one can expect to observe greater
skewness for cryptocurrencies with higher positive jump and jump-robust vari-
ances realized in the current period. In the remaining columns, we continue to
find robust results. This finding has important implications in practice because
investors can expect future skewness by using our decomposed realized vari-
ances, which can be estimated with available data.

D. Nondiversifiable Factors

Our variance measures are computed without a specific assumption of a factor
model and thus include systematic and idiosyncratic components. In this subsec-
tion, we discuss whether our finding of the negative return prediction of variances is
related to nondiversifiable components. This discussion is related to that of Ang,
Hodrick, Xing, and Zhang (2009), who document that stocks with recent past high
idiosyncratic volatility have low future average returns and that not easily diversifi-
able factors underlie their idiosyncratic volatility effects.
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In Section IV, for our cryptocurrency return prediction, we examine the excess
returns and alphas of variance-sorted portfolios, accounting for the three factors of
Liu et al. (2022). In Table 4, both the returns and alphas of High total and positive
jump variance portfolios are significantly lower than those of Low portfolios. This
implies that the negative relation between realized variances and subsequent returns
cannot be fully explained by these existing systematic factors. Given this context,
we further investigate whether idiosyncratic components mainly contribute to the
return predictability of total and positive jump variances.

To this end, we compute the correlations among the 3-factor alphas of crypto-
currencies constituting each variance-sorted portfolio.44We find that High total and
positive jump variance portfolios exhibit average correlations of�0.3% and 0.1%,
respectively. Moreover, the correlations observed in High total and positive jump
variance portfolios are significantly lower than those in Low and Mid portfolios.45

The significantly low correlations of High total and positive jump variance crypto-
currencies suggest that the returns of cryptocurrencies in High portfolios tend to be
more idiosyncratic than those in Low portfolios. Combined with the significant

TABLE 10

Prediction of Weekly Skewness

Table 10 shows whether weekly skewness can be predicted by lagged weekly skewness or decomposed variances. To
investigate this possibility, we use the following panel regression:

Skewi ,w + 1 =ψ0 +ψ1LSkewi,w +ψ2JV
ð + Þ
i,w +ψ3JV

ð�Þ
i,w +ψ4JRV i ,w + c0X i,w +ei ,w + 1,

where Skewi,w is the realized weekly skewness of cryptocurrency i in weekw and is estimated from the observations in week
w . LSkewi,w is the realized skewness estimated from the previous month of observations (i.e., observations from weekw �3
to week w ). JV ð + Þ

i ,w , JV ð�Þ
i,w , and JRV i,w are the positive jump, negative jump, and jump-robust variances, respectively. These

decomposed variances are estimated from thepreviousmonth of observations (i.e., observations fromweekw �3 toweekw ).
X i,w is the vector of control variables such asweekly kurtosis, laggedexcess returns, natural logarithmicmarket capitalization,
and fixed effects. ***, **, and * denote statistical significance at the 1%, 5%, and 10% levels, respectively.

1 2 3 4 5 6 7

Constant �0.048*** �0.170*** �0.239*** �0.343*** �0.270*** �0.376*** �0.083***
t–stat. �4.96 �13.47 �15.02 �2.99 �10.21 �3.07 �0.25

Skewness 0.224*** 0.136*** 0.132*** �0.039
t–stat. 11.18 5.25 4.96 �1.35

Positive jump variance 11.127*** 9.043*** 10.391*** 4.322*** 5.517*** 2.842**
t–stat. 11.80 9.32 10.15 3.46 4.20 1.99

Negative jump variance �0.966 �0.196 �1.585 3.887** 2.466 1.089
t–stat. �0.67 �0.14 �1.03 2.42 1.44 0.61

Jump–robust variance 0.649*** 0.647*** 0.684*** 0.692*** 0.414***
t–stat. 10.50 9.75 10.01 9.30 5.61

Kurtosis 0.004* 0.004** 0.004
t–stat. 1.93 1.97 1.67

Lagged return �0.196*** �0.213*** �0.116**
t–stat. �4.19 �4.57 �2.42

Market capitalization 0.005 0.005 0.002
t–stat. 0.87 0.85 0.13

Fixed effects No No No No No No Yes
Adj. R2 0.014 0.024 0.031 0.032 0.034 0.035 0.069

44We report the results obtained using the 3-factor model alphas and confirm the consistency of our
conclusions using market model alphas.

45The differentials are statistically significant at the 1% level. For total (positive jump) variance-
sorted portfolios, the correlations of LowandMid portfolios are 2%and 1% (2%and 0.4%), respectively.
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alpha differentials reported in our sorting analyses, these findings reveal that
idiosyncratic components play important roles in our main finding of the total
and positive jump variance effects in cryptocurrency markets. These additional
findings distinguish the dynamics of cryptocurrency markets from those of equity
markets.

VI. Conclusion

The remarkable growth in cryptocurrency markets has been accompanied by
unusually large price fluctuations, generating return distributions with exception-
ally wide ranges and heavy tails. We study how realized variances associated with
different parts of return distributions affect future cryptocurrency returns. Using
high-frequency returns, we decompose total variances into jump-robust, positive
jump, and negative jump variances.

Our cross-sectional analyses reveal that cryptocurrencies with high total var-
iances tend to exhibit low excess returns in subsequent weeks. The weekly return
spread between cryptocurrencies in the lowest and highest tercile portfolios is 3.7%
(193% per annum). This negative return prediction is attributable to jump-robust
and positive jump variances. Interestingly, this result is more pronounced for
cryptocurrencies with smaller sizes, lower prices, less liquidity, and more retail
trading activities and is affected by investor sentiment. Our results can be explained
by the overpricing of such cryptocurrencies that results from the risk-taking behav-
ior of retail investors seeking highly volatile assets with the potential for large gains.
In addition, our findings support the impact of retail investors’ active participation
on cryptocurrency markets.

Our article contributes to the literature by adopting comprehensive intraday
cryptocurrency data to precisely measure variances and identifying how decom-
posed partial variances can be used to distinguish their differential impact on future
returns. We show that it is important to frequently capture the dynamic nature of
cryptocurrency market volatility by using high-frequency data. Our study provides
important implications for assessing risks in highly volatile asset markets.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S002210902400022X.

References

Aït-Sahalia, Y., and J. Jacod. “Testing for Jumps in a Discretely Observed Process.” Annals of Statis-
tistics, 37 (2009), 184–222.

Amaya, D.; P. Christoffersen; K. Jacobs; and A. Vasquez. “Does Realized Skewness Predict the Cross-
Section of Equity Returns?” Journal of Financial Economics, 118 (2015), 135–167.

Amihud, Y. “Illiquidity and Stock Returns: Cross-Section and Time-Series Effects.” Journal of Finan-
cial Markets, 5 (2002), 31–56.

Andersen, T.G.; T. Bollerslev; and D. Dobrev. “No-Arbitrage Semi-Martingale Restrictions for
Continuous-Time Volatility Models Subject to Leverage Effects, Jumps and i.i.d. Noise: Theory
and Testable Distributional Implications.” Journal of Econometrics, 138 (2007), 125–180.

Lee and Wang 29

https://doi.org/10.1017/S002210902400022X  Published online by Cam
bridge U

niversity Press

http://doi.org/10.1017/S002210902400022X
http://doi.org/10.1017/S002210902400022X
https://doi.org/10.1017/S002210902400022X


Andersen, T. G.; T. Bollerslev; F. X. Diebold; and H. Ebens. “The Distribution of Realized Stock Return
Volatility.” Journal of Financial Economics, 61 (2001a), 43–76.

Andersen, T. G.; T. Bollerslev; F.X.Diebold; and P. Labys. “TheDistribution ofRealized ExchangeRate
Volatility.” Journal of the American Statistical Association, 96 (2001b), 42–55.

Ang, A.; R. J. Hodrick; Y. Xing; and X. Zhang. “The Cross-Section of Volatility and Expected Returns.”
Journal of Finance, 61 (2006), 259–299.

Ang, A.; R. J. Hodrick; Y. Xing; and X. Zhang. “High Idiosyncratic Volatility and Low Returns:
Internationa and Further U.S. Evidence.” Journal of Financial Economics, 91 (2009), 1–23.

Avramov, D.; T. Chordia; and A. Goyal. “Liquidity and Autocorrelations in Individual Stock Returns.”
Journal of Finance, 61 (2006), 2365–2394.

Baker, M., and J. Wurgler. “Investor Sentiment and the Cross-Section of Stock Returns.” Journal of
Finance, 61 (2006), 1645–1680.

Bali, T. G.; N. Cakici; and R. F. Whitelaw. “Maxing Out: Stocks as Lotteries and the Cross-Section of
Expected Returns.” Journal of Financial Economics, 99 (2011), 427–446.

Bandi, F. M., and J. R. Russell. “Separating Microstructure Noise from Volatility.” Journal of Financial
Economics, 79 (2006), 655–692.

Barberis, N., andM.Huang. “Stocks as Lotteries: The Implications of ProbabilityWeighting for Security
Prices.” American Economic Review, 98 (2008), 2066–2100.

Barberis, N.; A. Mukherjee; and B. Wang. “Prospect Theory and Stock Returns: An Empirical Test.”
Review of Financial Studies, 29 (2016), 3068–3107.

Barberis, N., and W. Xiong. “What Drives the Disposition Effect? An Analysis of a Long-Standing
Preference-Based Explanation.” Journal of Finance, 64 (2009), 751–784.

Barberis, N., and W. Xiong. “Realization Utility.” Journal of Financial Economics, 104 (2012),
251–271.

Barndorff-Nielsen, O., and N. Shephard. “Econometrics of Testing for Jumps in Financial Economics
Using Bipower Variation.” Journal of Financial Econometrics, 4 (2006), 1–30.

Biais, B.; C. Bisiere; M. Bouvard; C. Casamatta; and A. J. Menkveld. “Equilibrium Bitcoin Pricing.”
Journal of Finance, 78 (2023), 967–1014.

Bianchi, D., and M. Babiak. “A Factor Model for Cryptocurrency Returns.” CERGE-EI Working Paper
(2021), available at https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3935934.

Bollerslev, T.; S. Z. Li; and B. Zhao. “Good Volatility, Bad Volatility, and the Cross Section of Stock
Returns.” Journal of Financial and Quantitative Analysis, 55 (2020), 751–781.

Bollerslev, T.; M. C. Medeiros; A. J. Patton; and R. Quaedvlieg. “From Zero to Hero: Realized Partial
(Co) Variances.” Journal of Econometrics, 231 (2021), 348–360.

Borri, N. “Conditional Tail-Risk in CryptocurrencyMarkets.” Journal of Empirical Finance, 50 (2019),
1–19.

Borri, N., and P. Santucci de Magistris. “Crypto Premium, Higher-Order Moments and Tail Risk.”
Available at SSRN (2022).

Borri, N.; D. Massacci; M. Rubin; and D. Ruzzi. “Crypto Risk Premia.” Working Paper, LUISS
University (2022).

Borri, N., and K. Shakhnov. “The Cross-Section of Cryptocurrency Returns.” Review of Asset Pricing
Studies, 12 (2022), 667–705.

Boyer, B.; T. Mitton; and K. Vorkink. “Expected Idiosyncratic Skewness.” Review of Financial Studies,
23 (2010), 169–202.

Brandt, M. W.; A. Brav; J. R. Graham; and A. Kumar. “The Idiosyncratic Volatility Puzzle: Time Trend
or Speculative Episodes?” Review of Financial Studies, 23 (2010), 863–899.

Chernov, M.; J. Graveline; and I. Zviadadze. “Crash Risk in Currency Returns.” Journal of Financial
and Quantitative Analysis, 53 (2018), 137–170.

Chordia, T.; R. Roll; and A. Subrahmanyam. “Market Liquidity and Trading Activity.” Journal of
Finance, 56 (2001), 501–530.

Cong, L. W.; G. A. Karolyi; K. Tang; and W. Zhao. “Value Premium, Network Adoption, and Factor
Pricing of Crypto Assets.” Working Paper, Cornell University (2022).

Corbet, S.; D. J. Cumming; B. M. Lucey; M. Peat; and S. A. Vigne. “The Destabilising Effects of
Cryptocurrency Cybercriminality.” Economics Letters, 191 (2020), 108741.

De Long, J. B.; A. Shleifer; L. H. Summers; and R. J. Waldmann. “Noise Trader Risk in Financial
Markets.” Journal of Political Economy, 98 (1990), 703–738.

Duz Tan, S., and O. Tas. “Social Media Sentiment in International Stock Returns and Trading Activity.”
Journal of Behavioral Finance, 22 (2021), 221–234.

Fama, E. F., and J. D. MacBeth. “Risk, Return, and Equilibrium: Empirical Tests.” Journal of Political
Economy, 81 (1973), 607–636.

Foucault, T.; D. Sraer; and D. J. Thesmar. “Individual Investors and Volatility.” Journal of Finance, 66
(2011), 1369–1406.

30 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S002210902400022X  Published online by Cam
bridge U

niversity Press

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3935934
https://doi.org/10.1017/S002210902400022X


Fu, F. “Idiosyncratic Risk and the Cross-Section of Expected Stock Returns.” Journal of Financial
Economics, 91 (2009), 24–37.

Griffin, J. M., and A. Shams. “Is Bitcoin Really Untethered?” Journal of Finance, 75 (2020),
1913–1964.

Han, B., and A. Kumar. “Speculative Retail Trading and Asset Prices.” Journal of Financial and
Quantitative Analysis, 48 (2013), 377–404.

Hou, K., and R. K. Loh. “Have We Solved the Idiosyncratic Volatility Puzzle?” Journal of Financial
Economics, 121 (2016), 167–194.

Hou, K., and T. J. Moskowitz. “Market Frictions, Price Delay, and the Cross-Section of Expected
Returns.” Review of Financial Studies, 18 (2005), 981–1020.

Huang, W.; Q. Liu; S. G. Rhee; and L. Zhang. “Return Reversals, Idiosyncratic Risk, and Expected
Returns.” Review of Financial Studies, 23 (2010), 147–168.

Jegadeesh, N. “Evidence of Predictable Behavior of Security Returns.” Journal of Finance, 45 (1990),
881–898.

Jegadeesh, N., and S. Titman. “Returns to Buying Winners and Selling Losers: Implications for Stock
Market Efficiency.” Journal of Finance, 48 (1993), 65–91.

Jia, Y.; Y. Liu; and S. Yan. “Higher Moments, Extreme Returns, and Cross-Section of Cryptocurrency
Returns.” Finance Research Letters, 39 (2021), 101536.

Jiang, G. J., and R. C. Oomen. “Testing for Jumps When Asset Prices Are Observed with Noise–A
“Swap Variance” Approach.” Journal of Econometrics, 144 (2008), 352–370.

Kilic, M., and I. Shaliastovich. “Good and Bad Variance Premia and Expected Returns.” Management
Science, 65 (2019), 2522–2544.

Kogan, S.; I. Makarov; M. Niessner; and A. Schoar. “Are Cryptos Different? Evidence from Retail
Trading.” NBERWorking Paper No. 31317 (2023).

Lee, S. S. “Jumps and Information Flow in Financial Markets.” Review of Financial Studies, 25 (2012),
439–479.

Lee, S. S., and P. A. Mykland. “Jumps in Financial Markets: A New Nonparametric Test and Jump
Dynamics.” Review of Financial Studies, 21 (2008), 2535–2563.

Lee, S. S., and M. Wang. “The Impact of Jumps on Carry Trade Returns.” Journal of Financial
Economics, 131 (2019), 433–455.

Lee, S. S., andM.Wang. “Tales of Tails: Jumps in CurrencyMarkets.” Journal of Financial Markets, 48
(2020), 100497.

Lehmann, B. N. “Fads, Martingales, and Market Efficiency.” Quarterly Journal of Economics, 105
(1990), 1–28.

Li, T.; D. Shin; and B. Wang. “Cryptocurrency Pump-and-Dump Schemes.”Working Paper, University
of Florida (2021).

Liu, Y., and A. Tsyvinski. “Risks and Returns of Cryptocurrency.” Review of Financial Studies, 34
(2021), 2689–2727.

Liu, Y.; A. Tsyvinski; and X. Wu. “Common Risk Factors in Cryptocurrency.” Journal of Finance, 77
(2022), 1133–1177.

Makarov, I., and A. Schoar. “Trading and Arbitrage in Cryptocurrency Markets.” Journal of Financial
Economics, 135 (2020), 293–319.

Menkhoff, L.; L. Sarno; M. Schmeling; and A. Schrimpf. “Carry Trades and Global Foreign Exchange
Volatility.” Journal of Finance, 67 (2012), 681–718.

Merton, R. C. “Option Pricing When Underlying Stock Returns Are Discontinuous.” Journal of
Financial Economics, 3 (1976), 125–144.

Merton, R. C. “A Simple Model of Capital Market Equilibrium with Incomplete Information.” Journal
of Finance, 42 (1987), 483–510.

Patton, A. J., and K. Sheppard. “Good Volatility, Bad Volatility: Signed Jumps and the Persistence of
Volatility.” Review of Economics and Statistics, 97 (2015), 683–697.

Pedersen, L. H. “Game On: Social Networks and Markets.” Journal of Financial Economics, 146
(2022), 1097–1119.

Piazzesi, M. “Bond Yields and the Federal Reserve.” Journal of Political Economy, 113 (2005),
311–344.

Price, K.; B. Price; and T. J. Nantell. “Variance and Lower PartialMomentMeasures of Systematic Risk:
Some Analytical and Empirical Results.” Journal of Finance, 37 (1982), 843–855.

Scaillet, O.; A. Treccani; and C. Trevisan. “High-Frequency Jump Analysis of the Bitcoin Market.”
Journal of Financial Econometrics, 18 (2020), 209–232.

Shams, A. “The Structure of Cryptocurrency Returns.” Charles A. Dice Center Working Paper No.
2020-11 (2020).

Sockin, M., and W. Xiong. “A Model of Cryptocurrencies.” Management Science, 69 (2023),
6684–6707.

Lee and Wang 31

https://doi.org/10.1017/S002210902400022X  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S002210902400022X


Vosoughi, S.; D. Roy; and S. Aral. “The Spread of True and False News Online.” Science, 359 (2018),
1146–1151.

Xiong, W., and J. Yu. “The Chinese Warrants Bubble.” American Economic Review, 101 (2011),
2723–2753.

Yermack, D. “Is Bitcoin a Real Currency? An Economic Appraisal.” In Handbook of Digital Currency.
Amsterdam, The Netherlands: Elsevier (2015), 31–43.

32 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S002210902400022X  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S002210902400022X

	Variance Decomposition and Cryptocurrency Return Prediction
	I. Introduction
	II. Inference Methods
	III. Data
	A. Intraday Cryptocurrency Returns and Jumps
	B. Weekly Realized Variances

	IV. Return Prediction with Variances
	A. Sorting Analyses
	B. Cross-Sectional Regression Analyses
	C. Robustness Tests
	D. Comparison with the Realized Skewness Effect

	V. Exploration of Mechanism for Return Predictability
	A. Retail Investor Trading
	B. Investor Sentiment
	C. Cryptocurrencies as Lotteries
	D. Nondiversifiable Factors

	VI. Conclusion
	Supplementary Material


