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Abstract

We prove the genus-one restriction of the all-genus Landau–Ginzburg/Calabi–Yau

conjecture of Chiodo and Ruan, stated in terms of the geometric quantization of an

explicit symplectomorphism determined by genus-zero invariants. This gives the first

evidence supporting the higher-genus Landau–Ginzburg/Calabi–Yau correspondence

for the quintic 3-fold, and exhibits the first instance of the ‘genus zero controls higher

genus’ principle, in the sense of Givental’s quantization formalism, for non-semisimple

cohomological field theories.

1. Introduction

Over the last twenty-five years, there have been a number of important developments that

have advanced our understanding of Gromov–Witten (GW) theory. Among these results, the

genus-zero mirror theorems have provided closed formulas for the genus-zero GW potentials of

a large number of target geometries [Giv98, LLY97, Ber00, CK14], and Teleman’s classification

theorem for semisimple cohomological field theories [Tel12] has led to explicit formulas for all-

genus partition functions in terms of Givental’s quantization formula [Giv01a, Giv01b]. One of

the most important remaining open problems is to understand the all-genus partition functions

of non-semisimple cohomological field theories, of which the GW theory of the quintic 3-fold

X := V (W = x5
0 + · · ·+ x5

4) ⊆ P4 is the prototypical example.

The Landau–Ginzburg/Calabi–Yau (LG/CY) correspondence, which first arose in the study

of string theory [GVW89, VW89, Mar89], suggests an equivalence between the GW theory of a

CY hypersurface and the LG model of the defining equation of the hypersurface. The latter model

is now mathematically understood in terms of Fan–Jarvis–Ruan–Witten (FJRW) invariants. In

the case of the quintic 3-fold, Chiodo and Ruan proved that the genus-zero GW theory of X can

be identified with the genus-zero FJRW theory of the polynomial W after analytic continuation

and an explicit linear symplectic transformation U [CR10].

Motivated by Givental’s quantization formula, Chiodo and Ruan suggested that the

geometric quantization Û, which is an explicit differential operator constructed from U, should

identify the higher-genus GW and FJRW partition functions after analytic continuation. The

genus-zero restriction of their quantization conjecture follows from the fact that U identifies the

genus-zero theories. The main result of this work is the genus-one verification of Chiodo and

Ruan’s all-genus LG/CY conjecture.
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Main Result Theorem 3.3. The genus-one potential determined by the action of Û on the
Fan–Jarvis–Ruan–Witten partition function of W = x5

0 + · · · + x5
4 is equal to the analytic

continuation of the genus-one Gromov–Witten potential of the quintic 3-fold X = V (W ).

The theorem is significant for several reasons. First of all, it provides the first evidence for
the higher-genus LG/CY correspondence. It has been suggested that the LG model could be
instrumental in computing higher-genus GW invariants of the quintic 3-fold, and this theorem
lends validity to that approach. Secondly, the theorem gives evidence for a general ‘genus zero
controls higher genus’ principle, in the sense of Givental, in which a correspondence between
all-genus partition functions is determined by a genus-zero correspondence through an explicit
quantization procedure. While such a principle has been studied extensively and proved in many
cases for semisimple cohomological field theories, for example [Tel12, Giv01b, BCR13, Zon15,
CI18, HLSW15, IMRS16], this is the first significant evidence for such a principle in the non-
semisimple case.

1.1 Plan of the paper
We begin in § 2 by recalling the basic definitions in GW and FJRW theory. We recall
some previously known results, including the genus-zero mirror theorems, the genus-zero
LG/CY correspondence, and the genus-one mirror theorems. In § 3 we discuss the Birkhoff
factorization of the symplectomorphism U and recall Givental’s quantization formulas in order
to make Theorem 3.3 precise. We also apply the string and dilaton equations to reduce
the main theorem to the one-parameter ‘small state space’. In § 4 we provide a proof of
the genus-zero restriction of the quantization conjecture, mostly in order to set up notation
for the genus-one correspondence. The proof of the genus-one correspondence occupies §§ 5, 6,
and 7, where we carefully analyze the vertex- and loop-type graphs that appear in the
quantization formula.

2. Recapitulation of global mirror symmetry for the quintic 3-fold

In this section we review the basic setup of GW and FJRW invariants, and we recall previously
known mirror theorems concerning the genus-zero and genus-one invariants.

2.1 Review of Gromov–Witten theory
Let X denote the Fermat quintic 3-fold,

X := V (x5
0 + · · ·+ x5

4) ⊂ P4,

and let Mg,n(X, d) denote the moduli space of n-pointed, genus-g, degree-d stable maps to X.
GW invariants of X encode virtual intersection numbers

〈α1ψ
k1 · · ·αnψkn〉CY

g,n,d :=

∫
[Mg,n(X,d)]vir

n∏
i=1

ev∗i (αi)ψ
ki
i , (1)

where αi ∈ H∗(X,C), evi : Mg,n(X, d) → X is the ith evaluation map, ψi is the descendent
cotangent-line class, and [−]vir is the virtual fundamental class. The correlators defined in (1)
are multilinear and symmetric. For the purposes of this paper, we focus on the ambient sector
HCY ⊂ H∗(X,C) of the state space, obtained by restricting the cohomological insertions to the
image of the restriction map:

HCY := Im(H∗(P4,C) → H∗(X,C)).
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The genus-one global mirror theorem for the quintic 3-fold

A natural basis for HCY is given by {ϕ0, . . . , ϕ3}, where ϕm is the pullback of c1(O(1))m under

the inclusion X ↪→ P4. The genus-g GW potential is defined by

FCY
g (t) :=

∑
n,d

1

n!
〈t(ψ)n〉CY

g,n,d,

where

t(z) =
∑
k>0

06m63

tmk ϕmz
k.

We view the set of variables t = {tmk } as formal parameters,1 and we write t(z) when we want

to emphasize the role of z. The sum is taken over all indices for which the underlying moduli

space is non-empty. The GW partition function is defined by

DCY(t, ~) = exp

(∑
g>0

~g−1FCY
g (t)

)
.

Following Givental [Giv04], we define an infinite-dimensional vector space

HCY := HCY((z−1))

with symplectic form

ΩCY(f(z), g(z)) = Resz=0(f(z), g(−z))CY,

where (−,−)CY denotes the Poincaré pairing on X. Let (q,p) be the Darboux coordinates on

HCY with respect to the basis ϕmz
k, so that a general element of HCY can be written∑

k>0
06m63

qmk ϕmz
k +

∑
k>0

06m63

pm,kϕm(−z)−k−1,

where ϕm is Poincaré dual to ϕm. Viewing F0(t) as a formal function on HCY
+ := HCY[z] via the

dilaton shift

t(z) = q(z) + ϕ0z,

the genus-zero GW invariants are encoded in a Lagrangian subspace LCY, defined as the graph

of the differential of FCY
0 :

LCY :=

{
pm,k =

∂FCY
0 (t)

∂qmk

}
⊂ HCY.

A general point of LCY has the form

JCY(t,−z) := −zϕ0 + t(z) +
∑
n,d,m

1

n!

〈
t(ψ)n

ϕm
−z − ψ

〉CY

0,n,d
ϕm.

1 Typically, one introduces an additional Novikov parameter to keep track of the degree d. However, the divisor
equation implies that the Novikov parameter and t10 are redundant, allowing us to omit the Novikov parameter in
our discussion.
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Givental proved that LCY is a cone centered at the origin, and that every tangent space T is
tangent to LCY exactly along zT . In particular, LCY (and hence, the totality of genus-zero GW
invariants) is determined by the finite-dimensional slice

JCY(t,−z) = −zϕ0 + t+
∑
n,d,m

1

n!

〈
tn

ϕm
−z − ψ

〉CY

0,n,d
ϕm,

where t =
∑

06m63 t
mϕm. The properties of the cone imply that

LCY =

{∑
r

cr(t, z)S
CY(t, z)∗(ϕr) : cr(t, z) ∈ HCY

+

}
,

where2

SCY(t, z)∗(ϕr) =
∂JCY(t,−z)

∂tr
= ϕr +

∑
n,d,m

1

n!

〈
φrt

n ϕm
−z − ψ

〉CY

0,n,d
ϕm.

In the particular case of the quintic 3-fold X, even more is true. It follows from dimension
arguments along with the string and dilaton equations that LCY is, in fact, determined by the
one-dimensional slice along the small state space t = τϕ1:

JCY(τϕ1,−z) = −zϕ0 + τϕ1 +
∑
n,d,m

1

n!

〈
(τϕ1)n

ϕm
−z − ψ

〉CY

0,n+1,d
ϕm.

By a slight abuse of notation, we often drop ϕ1 in the notation when we restrict to the small
state space: JCY(τ,−z) := JCY(τϕ1,−z).

2.2 Review of Fan–Jarvis–Ruan–Witten theory

Let M1/5
g,~m denote the moduli space of stable 5-spin curves with n orbifold marked points

having multiplicities ~m = (m1, . . . ,mn). More precisely, a point in M1/5
g,~m parameterizes a tuple

(C, q1, . . . , qn, L, κ) where

– (C, q1, . . . , qn) is a stable orbifold curve with µ5 orbifold structure at all marks and nodes;

– L is an orbifold line bundle on C and the µ5-representation L|qi is multiplication by e2πimi/5;

– κ is an isomorphism

κ : L⊗5 ∼= ωC,log.

The (narrow) FJRW invariants of the quintic 3-fold encode the intersection numbers

〈φm1ψ
k1 · · ·φmnψkn〉LG

g,n := 52−2g

∫
[M1/5

g,~m+~1
]vir

n∏
i=1

ψkii , (2)

where ψi is the ith cotangent line class on the coarse curve, and [−]vir is the fifth power of
the Witten class associated to the quintic 3-fold.3 By convention, the correlators (2) vanish if
mi = 4 for any i. We let HLG denote the narrow state space, which is the complex vector

2 The asterisk in the notation refers to the fact that SCY(t, z)∗ is the adjoint of a fundamental solution of the
Dubrovin connection.
3 The sign convention we use for the Witten class agrees with the original construction of Fan, Jarvis, and Ruan
[FJR13].
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space generated by the formal symbols φ0, . . . , φ3 and with a non-degenerate pairing defined by
(φi, φj)

LG = 5δi+j=3.4

Analogously to GW theory, we define formal generating series FLG
g (t) and DLG(t), we define

a vector space HLG with symplectic form ΩLG, and we define a Lagrangian subspace LLG ⊂ HLG

which is determined by the slice JLG(t,−z) via the derivatives SLG(t, z)∗. As in GW theory, the
totality of genus-zero FJRW invariants are determined by the one-dimensional slice

JLG(τ,−z) = −zφ0 + τφ1 +
∑
n,d,m

1

n!

〈
(τφ1)n

φm
−z − ψ

〉LG

0,n,d
φm.

2.3 Genus-zero mirror theorems and the Landau–Ginzburg/Calabi–Yau
correspondence

Define I-functions ICY(q, z) ∈ HCY and ILG(t, z) ∈ HLG by

ICY(q, z) := z
∑
d>0

qϕ1/z+d

∏5d
k=1(5ϕ1 + kz)∏d
k=1(ϕ1 + kz)5

,

where ϕk1 := ϕk and ϕ4 = 0, and

ILG(t, z) := z
∑
a>0

ta

zaa!

∏
0<k<(a+1)/5
〈k〉=〈(a+1)/5〉

(kz)5φa,

where φ4 = 0.5

The leading z-coefficients of the I-functions are especially important:

ICY(q, z) =: ICY
0 (q)ϕ0z + ICY

1 (q)ϕ1 +O(z−1)

and

ILG(t, z) =: ILG
0 (t)φ0z + ILG

1 (t)φ1 +O(z−1).

The genus-zero mirror theorems, conjectured by Candelas, de la Ossa, Green, and Parkes
[CdlOGP91] in the GW setting and Huang, Klemm, and Quackenbush [HKQ08] in the FJRW
setting, provide an explicit solution to genus-zero GW and FJRW invariants in terms of the
respective I-functions.

Theorem 2.1 (Givental [Giv98], Lian, Liu, and Yau [LLY97]). Setting

τCY =
ICY

1 (q)

ICY
0 (q)

,

we have

JCY(τCY, z) =
ICY(q, z)

ICY
0 (q)

.

4 This pairing is different from the standard pairing in FJRW theory that was defined in [FJR13], but it is consistent
with our previous work [GR19] and matches better with the pairing in GW theory.
5 We warn the reader that the LG I-function defined here differs from the I-function defined in [CR10] by a factor
of t. This keeps the notation consistent with our previous work [GR19].
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Theorem 2.2 (Chiodo and Ruan [CR10]). Setting

τLG =
ILG

1 (t)

ILG
0 (t)

,

we have

JLG(τLG, z) =
ILG(t, z)

ILG
0 (t)

.

Chiodo and Ruan also studied the relationship between the respective I-functions. They
proved the following theorem, which verifies the genus-zero LG/CY correspondence for the
quintic 3-fold.

Theorem 2.3 (Chiodo and Ruan [CR10]). Define a linear transformation U(−z) :HLG
→HCY

by

U(−z)(φm) =
ξm+1

e−2πiϕ1/z − ξm+1

−2πi(−z)m

Γ(1 + 5ϕ1/z)

Γ5(1 + ϕ1/z)

Γ5(1− (m+ 1)/5)
.

Then U(z) is symplectic and, upon identifying q−1 = t5, there exists an analytic continuation of
ICY(q, z) such that

U(z)(tILG(t,−z)) = 5ĨCY(t,−z).

From the discussion above, it follows that Theorem 2.3 can be rephrased as the statement that
the symplectomorphism U(z) identifies Givental’s Lagrangian cones upon analytic continuation.
Following ideas due to Givental, Chiodo and Ruan wrote in [CR10] that

the quantization Û is a differential operator which we expect to yield the full higher
genus Gromov–Witten partition function when applied to the full higher genus
Fan–Jarvis–Ruan–Witten partition function.

In other words, Chiodo and Ruan conjectured that the higher-genus LG/CY correspondence
can be formulated as an explicit relationship, depending only on genus-zero data, between the
GW and FJRW partition functions. In § 3 below, we make this conjecture more explicit, and we
give a precise statement of our main result, which proves the genus-one part of their conjecture.

2.4 Genus-one mirror theorems
Our proof of the genus-one LG/CY correspondence relies on the genus-one mirror theorems. In
GW theory, the genus-one mirror theorem was conjectured by Bershadsky, Cecotti, Ooguri, and
Vafa [BCOV94] and originally proved by Zinger [Zin09] (by combining the results in Kim
and Lho [KL18] and Ciocan, Fontanine, and Kim [CFK16], there is also a new proof using
quasimap techniques).

Theorem 2.4 (Zinger [Zin09]). Setting

τCY =
ICY

1 (q)

ICY
0 (q)

,

we have

FCY
1 (τCY) = log

(
ICY

0 (q)−31/3q−25/12(1− 55q)−1/12

(
q
dτCY

dq

)−1/2)
.
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In FJRW theory, the genus-one mirror theorem was conjectured by Huang, Klemm, and
Quackenbush [HKQ08] and proved by the authors [GR19].

Theorem 2.5 (Guo and Ross [GR19]). Setting

τLG =
ILG

1 (t)

ILG
0 (t)

,

we have

FLG
1 (τLG) = log

(
ILG

0 (t)−31/3(1− (t/5)5)−1/12

(
dτLG

dt

)−1/2)
.

3. Birkhoff factorization and geometric quantization

In order to make the higher-genus LG/CY correspondence more explicit, we write the linear
transformation U(z) as a matrix in the bases {φm} and {ϕm}. Following Coates and Ruan [CR13],
we consider the Birkhoff factorization of the matrix U(z),

U(z) = U−U0U+,

where U− = 1 + O(z−1) is upper triangular, U+ = 1 + O(z) is lower triangular, and U0 is a
diagonal matrix that is constant in z. By analogy with Givental [Giv01a], we define

S−1(z) = U−(z)

and
R(z) = U0U+(z)U−1

0 ,

so that
U(z) = S−1(z)R(z)U0.

We view R and S as linear automorphisms of HCY, and U0 as a linear identification of HLG and
HCY. Since U is symplectic (i.e. U(z)U(−z)∗ = 1, where the asterisk denotes adjoint), it is not
hard to see that S, R, and U0 are also symplectic:

S(z)S(−z)∗ = R(z)R(−z)∗ = U0U∗0 = 1.

Consider the geometric quantizations R̂, Ŝ−1, and Û0, defined, for example, in [Giv01a].
These are differential operators, which can be computed explicitly by the following result.

Theorem 3.1 (Givental [Giv01a]). Let q(z) = qmk ϕmz
k be coordinates on HCY

+ . Given a
partition function D(q) on HCY

+ , the quantized operators act as follows.

(i) The quantization of U0 acts by

Û0 D(q) = D(U−1
0 q).

(ii) The quantization of S−1 acts by

Ŝ−1 D(q) = eW (q,q)/2~D([Sq]+),

where [Sq]+ is the power series truncation of S(z)q(z) and the quadratic form W (q,q) =∑
k,l(Wklqk, ql)

CY is defined by∑
k,l>0

Wkl

wkzl
:=

S(w)∗S(z)− 1

w−1 + z−1
.
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(iii) The quantization of R acts by

R̂ D(q) = [e(~/2)V (∂/∂q,∂/∂q)D](R−1q),

where R−1q is the power series R−1(z)q(z) and the quadratic form V =
∑

k,l(pk, Vklpl)
CY

is defined by

V (w, z) =
∑
k,l>0

Vklw
kzl =

1−R(−w)∗R(−z)
w + z

.

When a partition function is written in the coordinates t(z), we apply the formulas in
Theorem 3.1 by first identifying t(z) and q(z) via the dilaton shift :

q(z) = t(z)− Φ0z,

where Φ0 = ϕ0 or φ0 depending on the context. To simplify notation, we introduce the convention

D(q) = D(t),

where q and t are related by the dilaton shift. It is important to notice that, even though we
might start with a partition function that is a formal series centered at t(z) = 0, the outcome of
acting by the quantized operator may be divergent at t(z) = 0.

The Chiodo–Ruan conjecture can be stated more explicitly in the following form.

Conjecture 3.2 (Chiodo and Ruan [CR10]). There exists an analytic continuation of DCY

such that

D̃CY(t) ∝ Ŝ−1R̂ Û0 DLG(t),

where the symbol ‘∝’ denotes equivalence up to a scalar multiple.

The main result of this paper is the following partial verification of Conjecture 3.2.

Theorem 3.3. Conjecture 3.2 holds for the genus-zero and genus-one potentials. In other words,
there exist an analytic continuation and a constant c such that, for g 6 1,

[~g−1] ˜log(DCY(t)) = [~g−1] log(Ŝ−1R̂ Û0 DLG(t)) + δg,1c.

Remark 3.4. In order to interpret the analytic continuation, we consider both sides as formal
power series in the variables {tmk : (k,m) 6= (0, 1)} with coefficients that are analytic in t10, and
we analytically continue coefficient by coefficient. Implicit in Conjecture 3.2 is the claim that
both sides are analytic in t10. The question of whether genus-g potentials are analytic is open in
general. We verify the necessary convergence of genus-zero and genus-one potentials throughout
the course of our arguments.

3.1 Quantized operators, potential functions, and graph sums
In order to investigate Theorem 3.3, we consider intermediate partition functions

DA(q) := Û0 D
LG

(q),

DB(q) := R̂ DA(q),

DC(q) := Ŝ−1 DB(q).
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Notice that DLG
(q) is centered at q(z) = −φ0z while DA(q), DB(q), and DC(q) are centered

at q(z) =−U0φ0z, q(z) =−R(z)U0φ0z, and q(z) =−[U(z)φ0z]+, respectively. For each partition
function, we can write

D•(q) =: e
∑
g>0 ~g−1F

•
g(q).

Theorem 3.1 implies that the U0-action is a change of variables:

DA(q) = DLG
(U−1

0 q) =⇒ F
A
g (q) = F

LG
g (U−1

0 q).

The R-action is more interesting. We have∑
g>0

~g−1F
B
g (q) = log(DB(q))

= log([e(~/2)V (∂/∂q,∂/∂q)DA](R−1q)). (3)

The action of the exponential of the quadratic differential operator in (3) has a Feynman graph
expansion, and the logarithm outputs only the connected graphs. Let Γ denote a connected
graph consisting of vertices V , edges E, and legs L, with each vertex v labeled by a genus gv. For
each v, let val(v) be the total number of legs and edges adjacent to v, define g(Γ) = b1(Γ)+

∑
v gv

where b1 denotes the first Betti number of the graph, let F = {v, e} denote the set of flags, and
let Fv and Lv denote the flags and legs adjacent to a vertex v. We have

F
B
g (q) =

∑
Γ:g(Γ)=g

1

|Aut(Γ)|
Contr(Γ),

where
Contr(Γ) = Reszf=0

∏
v

Contr(v)
∏
e

Contr(e),

with vertices contributing

Contr(v) =

( ∑
mf ,kf

(∏
f∈Fv

ϕmf

zkf+1
⊗ ∂

∂q
mf
kf

)
F
A
g (q)

)
q(z)→R−1q(z)

contracted along the edges by pairing with the 2-tensor

Contr(e) = V (zf , zf ′) =
∑
m,m′

V (zf , zf ′)m,m′ϕm ⊗ ϕm
′
.

Including the S-action, we have

F
C
g (q) = δg,0~−1W (q,q)/2 +

∑
Γ:g(Γ)=g

1

|Aut(Γ)|
Reszf=0

∏
v

Contr(v)
∏
e

Contr(e),

where Contr(e) = Contr(e), but we replace the vertex contributions with

Contr(v) =
∑
mf

〈∏
l∈Lv

(q(ψl) + ϕ0ψl)
∏
f∈Fv

U−1
0 ϕmf
zf − ψf

〉LG

gv ,val(v)

⊗
f

ϕmf ,

where
q(z) := U−1

0 R−1(z)[S(z)q(z)]+.
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3.2 String and dilaton equations
In this section, we show that the dilaton and string equations commute with quantization,
allowing us to reduce Conjecture 3.2 to the small state space.

The dilaton equation asserts that, for • = CY or LG and Φm = ϕm or φm, we have

〈Φ0ψΦm1ψ
k1 · · ·Φmnψ

kn〉•g,n+1,(d) = (2g − 2 + n)〈Φm1ψ
k1 · · ·Φmnψ

kn〉•g,n,(d),

whenever the moduli space on the right-hand side exists. The string equation asserts that

〈Φ0Φm1ψ
k1 · · ·Φmnψ

kn〉•g,n+1,(d) =

n∑
i=1

〈Φm1ψ
k1 · · ·Φmiψ

ki−1 · · ·Φmnψ
kn〉•g,n,(d),

whenever the moduli space on the right-hand side exists. We interpret ψ−1 = 0. In addition,
by a virtual dimension count, the correlator 〈Φm1ψ

k1 · · ·Φmnψ
kn〉•g,n,(d) vanishes unless∑

mi +
∑
ki = n. Using this vanishing, it is not hard to see that D•(t) can be reconstructed

from its restriction to t(z) = t10Φ1 by the dilaton and string equations and the initial conditions

〈ΦaΦbΦ0〉•0,3,(0) = 5δa+b,3 and 〈Φ0ψ〉1,1,(0) = −25
3 . (4)

The first initial condition in (4) can be computed directly from the definitions, while the second
can be computed using the CohFT axioms (see, for example, [GR19, § 7.6]).

It is useful to rephrase the string and dilaton equations as differential operators. In terms of
total descendent potentials, the dilaton equation can be rewritten as(∑

m,k

qmk
∂

∂qmk
+ 2~

∂

∂~
− 25

3

)
D•(t) = 0, (5)

and it is well known (see, for example, [Coa03, Example 1.3.3.2]) that the string equation takes
the form

1̂/z D•(t) = 0. (6)

Moreover, the equations (5) and (6) take into account the initial conditions (4), and thus
determine D•(t) uniquely from its restriction to t(z) = t10Φ1. The following compatibility is
important in order to reduce Conjecture 3.2 to the small state space.

Lemma 3.5. The formal series Ŝ−1R̂ Û0 D
LG

(q) centered at q(z) = −[U(z)φ0z]+ satisfies the
dilaton equation (5) and the string equation (6).

Proof. We start with the dilaton equation. We must prove(∑
m,k

qmk
∂

∂qmk
+ 2g − 2

)
F
C
g (q) = δg,1

25

3
. (7)

First of all, notice that the genus-zero shift W (q,q)/2 is annihilated by the operator in (7),
simply because it is homogenous of degree 2 in q. Next, notice that∑

m,k

qmk
∂

∂qmk
=
∑
m,k

qmk
∂

∂qmk
.
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Therefore, by applying the dilaton equation for FJRW invariants to each vertex in the graph

sum expression of F
C
g (q), along with fact that Euler characteristics add∑

v∈Γ

(2− 2gv − |Fv|) = 2− 2gΓ,

we observe that∑
m,k

qmk
∂

∂qmk
F
C
g (q) =

∑
m,k

qmk
∂

∂qmk
F
C
g (q) = (2− 2g)F

C
g (q) + δg,1

25

3
.

This proves (7).
We now verify the compatibility of the string equation. We must prove

1̂/zŜ−1R̂ Û0 D
LG

(q) = 0. (8)

By the string equation in FJRW theory, we know

1̂/z DLG(t) = 0.

Therefore, it suffices to check that 1̂/z commutes with Ŝ−1R̂ Û0. Clearly, 1/z commutes with
each of S−1, R, and U0, but a little care must be taken because the quantization procedure is
not an algebra homomorphism. However, by the formula for the cocycle given in [Coa03, § 1.3.4],

we see immediately that the cocycle vanishes when we commute 1̂/z with Ŝ−1 and Û0. Upon
noticing that the linear-in-z terms of R are strictly above the diagonal, we also see from [Coa03,

Example 1.3.4.1] that the cocycle vanishes when we commute 1̂/z with R̂. This proves (8). 2

Using the reconstruction by the dilaton and string equations, we can make the following
reduction.

Corollary 3.6. In order to prove Conjecture 3.2, it suffices to prove the restriction

F̃CY
g (t10) = FCg (t10) + δg,1c. (9)

The rest of this paper is devoted to proving (9) in the case of genus-zero and genus-one
potential functions. The analytic continuation in (9) is described as follows. By the g 6 1 mirror
theorems for GW invariants, FCY

g (τCY) is an analytic function near q = 0. In the course of our

arguments below, we verify that FCg (τ̃CY) is also an analytic function at t = 0. The analytic

continuation of τCY in this expression can be computed explicitly by Theorem 2.3. Thus, the
analytic continuation occurring in (9) occurs after substituting t10 = τCY and takes FCY

g (τCY)
from q = 0 to t = 0 along the same path that identifies I-functions in Theorem 2.3.

4. Genus-zero correspondence and tail series

Our goal in this section is to prove the genus-zero correspondence in Theorem 3.3 and to set up
some notation for studying generating series of rational tails that appear in the Feynman graph
expansions for FCg . We begin by recalling a few important points about genus-zero descendent
invariants and semi-classical limits.
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If M(z) is a symplectomorphism such that M̂D• = D?, then a careful study of the genus-zero
Feynman graphs (see, for example, [CPS13, § 3.5]) implies that

ML• = L?,

where, as in § 2, the Lagrangian cone L is the differential of the genus-zero potential. In particular,
by identifying the parts that have non-negative powers of z, this implies that

J
?
(q,−z) = M(z)J

•
(M · q,−z), (10)

where
M · q(z) := [M(z)−1J

?
(q,−z)]+.

Keep in mind that the change of variables M · q(z) shifts the center of the power series. The
next result is a consequence of Theorem 2.3.

Proposition 4.1. Setting τC := τ̃CY, we have

J̃CY(τC , z) = JC(τC , z).

Proof. By (10), we see that

U(z)JLG(τLG,−z) = J
C

([U(z)JLG(τLG,−z)]+,−z).

By Theorem 2.3, the left-hand side can be rewritten as

U(z)JLG(τLG,−z) =
5ĨCY

0 (t)

tILG
0 (t)

J̃CY(τC ,−z).

On the other hand, we have

J
C

([U(z)JLG(τLG,−z)]+,−z) = JC
(
−5ĨCY

0 (t)ϕ0z + 5ĨCY
1 (t)ϕ1

tILG
0 (t)

+ ϕ0z,−z
)

=: JC(T0ϕ0z + T1ϕ1,−z),

which is centered at T0 = T1 = 0. Expanding as a Taylor series, we have

JC(T0ϕ0z + T1ϕ1,−z) =
∑
i,j

Ai,j
i!j!

T i0T
j
1 ,

and the dilaton equation (7) implies that

Ai,j = (i+ j − 2)Ai−1,j .

Using the fact that, for j > 2,∑
m

(
m+ j − 2

m

)
Tm0 =

1

(1− T0)j−1
, (11)

we see that

JC(T0ϕ0z + T1ϕ1,−z) =
5ĨCY

0 (t)

tILG
0 (t)

JC(τC ,−z),

concluding the proof. 2
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Remark 4.2. The identity (11) allows us to write JC , which is a priori centered at T0 = T1 = 0,
as an analytic function at t = 0.

Corollary 4.3. We have the following genus-zero correspondence:

F̃CY
0 (τC) = FC(τC).

Proof. By Proposition 4.1(
∂FC0 (q)

∂q1
0

)
q(z)=τCϕ1

=
˜(

∂FCY
0 (q)

∂q1
0

)
q(z)=τCYϕ1

=: J2(τC),

(
∂FC0 (q)

∂q0
1

)
q(z)=τCϕ1

=
˜(

∂FCY
0 (q)

∂q0
1

)
q(z)=τCYϕ1

=: J3(τC),

and all other partial derivatives vanish at q(z) = τCϕ1. Thus, applying the dilaton equation, we
have

2FC0 (τC) = 2F̃CY
0 (τC) = τCJ2(τC)− J3(τC). 2

By Corollary 3.6, this completes the proof of Theorem 3.3 for g = 0.

4.1 Tail series

A significant portion of our analysis of the action of Û on DLG(t) concerns packaging genus-zero
tails in the Feynman graph expansions introduced in § 3.1. More specifically, define

T (q, z) = q(z) +

(
U−1

0 Res
zf=0

V (z, zf )
∑
k,m

ϕm

zk+1
f

∂F
B
0 (q)

∂(R−1q)mk

)
q(z)→[S(z)q(z)]+

.

Before continuing, let us briefly parse the definition of T (q, z). First, since

F
B
0 (q) =

∑
Γ:g(Γ)=0

Contr(Γ),

we see that the partial derivatives

∑
k,m

ϕm

zk+1
f

∂F
B
0 (q)

∂(R−1q)mk

specify in each graph contribution a leg with a particular insertion on it. Contracting with
V (z, zf ) and taking the residue turns the specified leg into a specified edge. Finally, applying
U−1

0 and specializing the variables q(z) → [S(z)q(z)]+, we see that T (q, z) is the contribution of

all possible genus-zero trees attaching to a specified vertex in the graph contribution for F
C

(q).
Adding q(z) simply corresponds to the contribution of the degenerate tree. We call T (q, z) the
tail series. The next lemma describes T (q, z) explicitly.

Lemma 4.4. With notation as above, we have

T (q, z) = U(z) · q(z).
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Proof. We compute directly:

Res
zf=0

V (z, zf )
∑
k,m

ϕm

zk+1
f

∂F
B
0 (q)

∂(R−1q)mk
= Res

zf=0
V (z, zf )R(zf )∗

∑
k,m

ϕm

zk+1
f

∂

∂qmk
FB0 (t)

= Res
zf=0

R(zf )∗ −R(−z)∗

z + zf

∑
k,m

ϕm

zk+1
f

∂F
B
0 (q)

∂qmk

= Res
zf=0

R(zf )∗

z + zf

∑
k,m

ϕm

zk+1
f

∂F
B
0 (q)

∂qmk

= Res
zf=0

R(zf )∗

z + zf
(J

B
(q, zf )− q(−zf )).

Therefore,

Res
zf=0

V (z, zf )
∑
k,m

ϕm

zk+1
f

∂F
B
0 (q)

∂(R−1q)mk
= Reszf=0

R−1(zf )

zf − z
(J

B
(q,−zf )− q(zf ))

= [R−1(z)J
B

(q,−z)]+ −R−1(z)q(z).

To obtain T (q, z) from this, we multiply both sides by U−1
0 , substitute q(z) → [S(z)q(z)]+, and

add q(z), obtaining

T (q, z) = U−1
0 [R−1(z)J

B
([S(z)q(z)]+,−z)]+

= U−1
0 [R−1(z)S(z)J

C
(q(z),−z)]+

= U(z) · q(z). 2

5. Genus-one correspondence

In regard to the genus-one potential, there are two types of graphs which appear: the vertex-type
graphs consist of trees with a unique genus-one vertex, and the loop-type graphs consist of graphs
Γ with b1(Γ) = 1 and with gv = 0 for all v ∈ V . We separate the contributions from the two
types of graphs, and we write

FC1 (t) = FC1 (t)V + FC1 (t)L.

We now analyze these contributions.

5.1 Vertex-type graphs

By definition of the tail series, the contribution from the vertex-type graphs to F
C
1 is equal to

F
C
1 (q)V = F

LG
1 (T (q, z)).

Restricting to the small state space, we obtain the following result.

Proposition 5.1. We have

FC1 (τC)V = FLG
1 (τLG) + 25

3 (log(tILG
0 (t))− log(5ĨCY

0 (t)))

where the variables are related by τC := τ̃CY = ĨCY
1 (t)/ĨCY

0 (t), and τLG = ILG
1 (t)/ILG

0 (t).
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Proof. By Lemma 4.4, we have

F
C
1 (q)V = F

LG
1 (T (q, z))

= F
LG
1 (U(z) · q(z))

= F
LG
1 ([U(z)−1J

C
(q,−z)]+).

Specializing t = τ̃CY, the GW mirror theorem (Theorem 2.1) and the genus-zero LG/CY
correspondence (Proposition 4.1) imply that

FC1 (τC)V = FLG
1 ([U(z)−1J̃CY(τC ,−z)]+ + zφ0)

= FLG
1

(
−tILG

0 (t)zφ0 + tILG
1 (t)φ1

5ĨCY
0 (t)

+ zφ0

)
= FLG

1

(
ILG

1 (t)

ILG
0 (t)

)
− log

(
tILG

0 (t)

5ĨCY
0 (t)

)
〈ψ1φ0〉LG

1,1 ,

where the final equality follows from the dilaton equation. 2

5.2 Loop-type graphs

In order to study the loop-type graph contributions to FC1 , we consider the 1-form dF
C
1 (q)L,

which packages loop-type graph contributions with one specified leg. We break the loop at the
vertex where the tree supporting the specified leg attaches and analyze the resulting genus-zero
graph contributions. Define the 2-tensors

V
•
(q, w, z) :=

∑
m

ϕm ⊗ ϕm

w + z
+

∑
m,m′,k,k′

ϕm ⊗ ϕm′

wk+1zk′+1

∂2F
•
(q)

∂qmk ∂q
m′
k′
.

The next lemma determines dF
C
1 (t)L in terms of V

•
(q, w, z).

Lemma 5.2. We have

dF
C
1 (q)L = 1

2 Resw=0
z=0

(dV
LG

(U · q, w, z),U−1(w)⊗ U−1(z)V
C

(q,−w − z))LG,

where the pairing contracts along each factor of the 2-tensors.

Proof. By arguing as in the proof of Lemma 4.4, we have

dF
B
1 (q)L = 1

2 Resw=0
z=0

(dV
A

(T (q, z), w, z), R−1(w)⊗R−1(z)V
B

(q,−w,−z)). (12)

Therefore, to obtain dF
C
1 (q), we must replace q in (12) with S−1 · q. Using the facts that

J
B

(S−1 · q,−z) = S(z)J
C

(q,−z) and that V
•
(q,−w,−z) is obtained from J

•
(q,−z) by applying

the operator ∑
k,m

ϕm

(−w)k+1
⊗ ∂

∂qmk
= S−1(w)

∑
k,m

ϕm

(−w)k+1
⊗ ∂

∂(S−1 · q)mk
,

we have
V
B

(S−1 · q,−w,−z) = S(w)⊗ S(z) V
C

(q,−w − z).

Therefore, the second term in the pairing in (12) becomes

R(w)−1S(w)⊗R(z)−1S(z) · V C
(q,−w − z).
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Similarly, the first term becomes

dV
A

(R(z) · (S−1 · q), w, z) = U0 ⊗ U0 dV
LG

(U · q, w, z).

The lemma then follows from the fact that U∗0 = U−1
0 . 2

If we turn off the descendent parameters by setting t = t, then the string and Witten–
Dijkgraaf–Verlinde–Verlinde equations (see, for example, [Coa03, Proposition 1.4.1]) imply that

V CY(t, z, w) =

∑
m S

CY(t, w)∗(ϕm)⊗ SCY(t, z)∗(ϕm)

w + z

and

V LG(t, z, w) =

∑
m S

LG(t, w)∗(φm)⊗ SLG(t, z)∗(φm)

w + z
.

Therefore, by further specializing t = τC (= τ̃CY), using the genus-zero correspondence of
Theorem 3.3, and applying the dilaton equation as in the proof of Proposition 5.1, the residue
in Lemma 5.2 simplifies as follows.

Lemma 5.3. We have

dFC1 (τC)L =
1

2
Resw=0

z=0

(
d

∑
mU(−w)SLG(τLG, w)∗(φm)⊗ U(−z)SLG(τLG, z)∗(φm)

w + z
,∑

m S̃
CY(τC ,−w)∗(ϕm)⊗ (z)S̃CY(τC ,−z)∗(ϕm)

−w − z

)CY

. (13)

In order to further study the residue (13), it will be useful to work in canonical bases for
quantum products. Although the GW and FJRW invariants associated to the quintic 3-fold do
not yield semisimple Frobenius manifolds, they both admit twisted extensions in genus zero that
do admit semisimple Frobenius manifolds. In the next section, we recall and study the twisted
extensions.

6. Interlude on twisted invariants

In this section we describe semisimple twisted theories that extend the genus-zero GW and
FJRW invariants.

6.1 Twisted GW and 5-spin invariants
Twisted GW invariants associated to the quintic 3-fold take inputs from the extended state space

H
CY

with basis ϕ0, . . . , ϕ4 where ϕi = c1(O(1))m ∈ H∗(P4,C). To define them, we consider the
natural (C∗)5-action on P4:

(α1, . . . , α5) · (z1, . . . , z5) := (α1z1, . . . , α5z5).

There is an induced (C∗)5-action on Mg,n(P4, d) and a natural lift to Rπ∗L⊗5. Lifting the ϕi to
equivariant cohomology where

∏
(ϕi − λi) = 0, the twisted GW invariants are defined by

〈ϕm1ψ
a1 · · ·ϕmnψan〉

CY,λ
g,n,d :=

∫
[Mg,n(P4,d)]vir

( n∏
i=1

ev∗i (ϕmi)ψ
ai
i

)
e(C∗)5(Rπ∗L⊗5),
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where e(C∗)5(−) is the equivariant Euler class. These invariants take values in localized equivariant
cohomology

H∗loc(B(C∗)5,C) = C[λ±1
1 , . . . , λ±1

5 ].

We recover the genus-zero GW invariants of the quintic by restricting the genus-zero twisted

invariants to the ambient state space HCY ⊂ HCY
and taking the non-equivariant limit λi = 0.

We define the shifted twisted GW invariants by

〈〈ϕm1ψ
a1 · · ·ϕmnψan〉〉CY,λ

g,n (τ) :=
∑
d

∑
k>0

τk

k!
〈ϕm1ψ

a1 · · ·ϕmnψan ϕ1 · · ·ϕ1〉CY,λ
g,n+k,d.

We are primarily interested in the specialization λi = ξiλ where ξ = exp(2πi/5). Since
the unspecialized correlators are symmetric in {λi}, the specialized correlators are Laurent
polynomials in λ5. The CY I-function can be extended to the (specialized) twisted setting:

ICY,λ(q, z) := zϕ0

∑
d>0

qϕ1/z+d

∏5d
k=1(5ϕ1 + kz)∏d

k=1((ϕ1 + kz)5 − λ5)
,

where ϕa1 := λ5ba/5cϕa.

Analogously, twisted 5-spin invariants take inputs from the extended state space H
LG

with
basis φ0, . . . , φ4. To define them, we consider the natural (C∗)5-action on L⊕5. This induces
an action on Rπ∗L(−Σ5)⊕5, where Σ5 is the universal divisor of untwisted points. The twisted
5-spin invariants are defined by

〈φm1ψ
a1 · · ·φmnψan〉LG,λ

g,n := 52−2g

∫
[M1/5

g,~m+~1
]

( n∏
i=1

ψaii

)
e(C∗)5((−Rπ∗L(−Σ5)⊕5)∨),

taking values in
H∗loc(B(C∗)5,C) = C[λ±1

1 , . . . , λ±1
5 ].

We recover the genus-zero FJRW invariants associated to the quintic by restricting the genus-zero

twisted invariants to the narrow state space HLG ⊂ H
LG

and taking the non-equivariant limit
λi = 0. We define the shifted twisted 5-spin invariants by

〈〈ϕm1ψ
a1 · · ·ϕmnψan〉〉LG,λ

g,n (τ) :=
∑
k>0

τk

k!
〈φm1ψ

a1 · · ·φmnψan φ1 · · ·φ1〉LG,λ
g,n+k.

As in the CY case, we are primarily interested in the specialization λi = ξiλ. The LG I-function
can be extended to the (specialized) twisted setting:

ILG,λ(t, z) = z
∑
a>0

ta

zaa!

∏
0<k<(a+1)/5
〈k〉=〈(a+1)/5〉

((kz)5 + λ5)φa.

Notice that ICY,λ is annihilated by the Picard–Fuchs operator

−
(
q
d

dq

)5

+

(
λ

z

)5

+ q

5∏
i=1

(
5q

d

dq
+ i

)
, (14)

while tILG,λ is annihilated by the Picard–Fuchs operator(
1

5
t
d

dt

)5

+

(
λ

z

)5

− t−5
5∏
i=1

(
t
d

dt
− 1

)
. (15)

Moreover, the differential operators (14) and (15) agree upon setting q−1 = t5.
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6.2 Genus-zero computations
In what follows, we use Φm to denote ϕm or φm, depending on the context, and we use x to
denote q or t. For • = CY or LG, we study the semisimple Frobenius manifold on H

• ⊗ C[λ±5]
where the pairing is defined by

(Φa,Φb)
•,λ := 〈〈Φa Φb Φ0〉〉•,λ0,3

and the quantum product is defined by

Φa ?
•
τ Φb :=

∑
m

〈〈ΦaΦbΦm〉〉•,λ0,3Φm, (16)

where Φm is dual to Φm under the pairing.
For any F (x, z) ∈ C[[x, z−1]], define

D• =


q
d

dq
, • = CY,

d

dt
, • = LG,

and define the Birkhoff factorization operator

M•F (x, z) := zD•
F (x, z)

F (x,∞)
,

where, in the presence of state-space insertions, we set Φi = 1 in the denominator.
We inductively define series I•p,q(x) by

I•0,q(x) := I•,λq (x) and I•,λp,q (x) := D•
(

I•p−1,q(x)

I•p−1,p−1(x)

)
for q > p > 0, (17)

so that
(M•)p(I•,λ(x, z)/z) =

∑
q>0

I•p,p+q(x)z−qΦp+q

for p > 0.
We have the following expression of twisted S-operators in terms of I-functions.

Proposition 6.1. Define the twisted S-operators by

S•,λ(x, z)∗(Φ) := Φ +
∑
m

〈〈
Φ

Φm

z − ψ

〉〉•,λ
0,2

(x)Φm.

Then

S•,λ(x, z)∗(Φm) :=
(M•)m(I•,λ(x, z)/z)

I•m,m(x)
.

Proof. This follows from standard properties of Givental’s Lagrangian cone. See, for example,
[GR19, Lemma 7.4] for the proof in the LG setting. 2

We have the following important properties of I•p,p, which were proved in [ZZ08] for the CY
case and in [GR19] for the LG case.
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Proposition 6.2 ([ZZ08, Theorem 2], [GR19, Lemma 7.6]). Define

L• =

{
(1− q55)−1/5, • = CY,

(1− (t/5)5)−1/5, • = LG.

Then the following properties hold:

(i) I•0,0 · · · I•4,4 = (L•)5;

(ii) I•5+p,5+p = λ5I•p,p;

(iii) for 0 6 p 6 4, I•p,p = I•4−p,4−p.

Following the arguments of [GR19], we see that the quantum product (16) is semisimple. In
particular, define

Eα =

{
εα, • = CY

eα, • = LG

}
:=

1

5

∑
i

Φ̃iξ
−iα, α = 0, 1, 2, 3, 4,

where

Φ̃0 = Φ0, Φ̃1 =
g−2/5f−1/5

λ
· Φ1, Φ̃2 =

g−4/5f3/5

λ2
· Φ2,

Φ̃3 =
g−6/5f2/5

λ3
· Φ3, Φ̃4 =

g−3/5f1/5

λ4
· Φ4,

with f := I•2,2/I
•
1,1 and g = I•0,0/I

•
1,1. Then

Eα ?
•
τ Eβ = δα,βEα.

Let {u•,α} be canonical coordinates, determined up to a constant by∑
α

Eα du
•,α = Φ1 dτ

•.

The next result computes the canonical coordinates explicitly in terms of a global 1-form.

Proposition 6.3. We have

du•,α = ξαλ · du,

where du is the global one-form

du = LCY dq

q
= LLG dt.

Proof. The LG case is proved in [GR19, Lemma 7.8], and the CY case follows from the same
arguments. 2

We fix the constants of integration by declaring

uCY,α = ξαλ log(q) +O(q)

and

uLG,α = O(t).
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The normalized canonical coordinates are defined by

Ẽα := (∆•α)1/2Eα

where

∆•α =
1

η(Eα, Eα)•,λ
.

We compute the pairing on the canonical coordinates explicitly.

Proposition 6.4. We have

∆•α = (ξαλ)3
(I•0,0)2

(L•)2
.

Proof. The LG case is proved in [GR19, Lemma 7.9], and the CY case follows from the same
arguments. 2

The change of basis matrix between flat and normalized canonical coordinates is denoted by

Ψ•αm := (Ẽα,Φm)•,λ.

From the above definitions, we can compute the change of basis explicitly.

Proposition 6.5. We have
Ψ•αm = ξα(m−3/2)c•3−m,

where c•i satisfy

c•−1 := λ5/2, c•0 := λ3/2
I•0,0
L•

, c•1 := λ1/2
I•0,0I

•
1,1

(L•)2

c•2 := (c•1)−1 = λ−1/2
I•0,0I

•
1,1I

•
2,2

(L•)3
, c•3 := (c•0)−1 = λ−3/2

I•0,0I
•
1,1I

•
2,2I

•
3,3

(L•)4
.

For convenience, we also define c•4 := λ−5/2, so that c•m = (c•3−m)−1 for m = 0, . . . , 4. The
inverse matrix of Ψ• is given by

(Ψ•)−1
mα =

ξα(3/2−m)

5
c•m.

Since the quantum product is semisimple for both types of twisted invariant, there is a
canonical R-matrix that yields the higher-genus twisted invariants via Teleman’s reconstruction
theorem [Tel12]. The diagonal entries of the linear term of the R-matrix can be computed
explicitly.

Proposition 6.6. Define

(RCY
1 )αα =

1

5

d

duα

(
5

4
log(LCY)− 4 log(ICY

0 )− log(ICY
1,1 )− 3

4
log(q)

)
and

(RLG
1 )αα =

1

5

d

duα

(
5

4
log(LLG)− 4 log(ILG

0 )− log(ILG
1,1 )

)
.

Then, up to constant terms, these matrices are equal to the linear terms of the canonical R-
matrices associated to the respective semisimple Frobenius manifolds.
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Proof. In the LG case, this is [GR19, Proposition 7.10]. In the CY case, the proof in [GR19] can
be mimicked up to the point where

(dRCY
1 )αα =

1

5λξα

((
d log cCY

2

du

)2

+

(
d log cCY

3

du

)2)
du.

Letting (−)′ denote q(d/dq), we then apply [ZZ08, Lemma 3] at the second equality below to
rewrite the right-hand side as(
d log cCY

2

du

)2

+

(
d log cCY

3

du

)2

=
1

(LCY)2

(
(cCY

2 )′

cCY
2

+
(cCY

3 )′

cCY
3

)
=

1

LCY

(
−3

4
(LCY)4 − 1

LCY

(
−5

(LCY)′

LCY
+ 4

(ICY
0 )′

ICY
0

+
(ICY

1 )′

ICY
1

))′
=

d

du

(
1

LCY

(
1

4
(LCY)5 − 1− 4

(ICY
0 )′

ICY
0

− (ICY
1 )′

ICY
1

))
=

d2

du2

(
5

4

(LCY)′

LCY
− 4

(ICY
0 )′

ICY
0

− (ICY
1 )′

ICY
1

− 3

4
log(q)

)
.

In the last equality, we have used the fact that (LCY)′/LCY = 1
5((LCY)5 − 1). 2

Notice that the genus-one formulas can be obtained from the above R-matrices by the
formulas

dFCY
1 (τCY) = −200

24
d log(q1/5ICY

0 (q))− 5

24
d log(q1/5LCY(q)) +

1

2

∑
α

(RCY
1 )αα du

α (18)

and

dFLG
1 (τLG) = −200

24
d log(ILG

0 (t))− 5

24
d log(LLG(t)) +

1

2

∑
α

(RLG
1 )αα du

α. (19)

6.3 The twisted genus-zero correspondence
We can extend Theorem 2.3 to the twisted setting.

Theorem 6.7. Define the linear transformation Uλ(−z) : HLG
→ HCY

by

Uλ(−z)(φm) =
ξm+1

e−2πiϕ1/z − ξm+1

−2πi(−z)m

Γ(1 + 5ϕ1/z)

4∏
i=0

Γ(1 + ϕ1/z − ξiλ/z)
Γ(1− (m+ 1)/5− ξiλ/z)

,

where ϕa1 := λ5ba/5cϕa. Then Uλ(−z) is a symplectic transformation and, upon identifying
q−1 = t5, there exists an analytic continuation of ICY,λ(q, z) such that

Uλ(−z)(tILG,λ(t, z)) = 5ĨCY,λ(t, z).

Proof. The Mellin–Barnes method employed in [CR10] to prove Theorem 2.3 (Corollary 4.2.4 in
their paper) easily generalizes. 2

Using Proposition 6.1 and Theorem 6.7, we can study the action of the symplectic
transformation Uλ on the S-operators.
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Proposition 6.8. We have

Uλ(−z)SLG,λ(τLG, z)∗ = S̃CY,λ(τC , z)∗M(t, z), (20)

where M(t, z) has only non-negative powers of z. Moreover, M(t, 0) is diagonal with

M(t, 0) =

(
δm,m′(−1)m

5m+1

tm+1

ĨCY
0,0 · · · ĨCY

m,m

ILG
0,0 · · · ILG

m,m

)
mm′

= −(Ψ̃CY)−1ΨLG (21)

and
M(0, z) = Rλ(−z)Uλ0 . (22)

Proof. Statement (20) follows from Theorem 6.7 and general properties of Lagrangian cones.
However, in order to prove (21), we first provide a more constructive proof of (20). From
Proposition 6.1 and Theorem 6.7, we compute

S̃CY(τC , z)∗(ϕ0) =
ĨCY,λ(t, z)

ĨCY
0,0

=
t

5

ILG
0,0

ĨCY
0,0

Uλ(−z)SLG,λ(τLG, z)∗(φ0),

S̃CY,λ(τC , z)∗(ϕ1) =
z

ĨCY
1,1

(
− t

5

d

dt

)
S̃CY,λ(τC , z)∗(ϕ0)

= O(z)Uλ(−z)SLG,λ(τLG, z)∗(φ0)

− t2

52

ILG
0,0 I

LG
1,1

ĨCY
0,0 Ĩ

CY
1,1

Uλ(−z)SLG,λ(τLG, z)∗(φ1),

...

S̃CY,λ(τC , z)∗(ϕ4) = O(z)

3∑
m=0

Uλ(−z)tm+1SLG,λ(τLG, z)∗(φm)

+
t5

55

ILG
0,0 I

LG
1,1 I

LG
2,2 I

LG
3,3 I

LG
4,4

ĨCY
0,0 Ĩ

CY
1,1 Ĩ

CY
2,2 Ĩ

CY
3,3 Ĩ

CY
4,4

Uλ(−z)SLG,λ(τLG, z)∗(φ4).

The explicit formula for M(t, 0) in (21) then follows from this computation and Proposition 6.5.
To prove (22), multiply both sides of (20) by Sλ(−z) to obtain

Rλ(−z)Uλ0SLG,λ(τLG, z)∗ = Sλ(−z)S̃CY,λ(τC , z)∗M(t, z).

Since SLG,λ(τLG, z)∗|t=0 = 1, it suffices to prove that

Sλ(−z)S̃CY,λ(τC , z)∗|t=0 = 1. (23)

By Proposition 6.1 and the definition of the operator MCY, we compute, using the fact that
Sλ(−z) = 1 +O(z−1), that

Sλ(−z)S̃CY,λ(τC , z)∗(ϕk) = Sλ(−z) (MCY)k(ĨCY,λ(t, z)/z)

[z0ϕk](MCY)k(ĨCY,λ(t, z)/z)

=
(MCY)k(Sλ(−z)ĨCY,λ(t, z)/z)

[z0ϕk](MCY)k(Sλ(−z)ĨCY,λ(t, z)/z)
. (24)

Since Uλ0 is diagonal and Rλ(−z) = 1 +O(z), we see that
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Sλ(−z)ĨCY,λ(t, z)/z =
t√
5
Rλ(−z)Uλ0ILG,λ(t, z)/z

=
t√
5

4∑
i=0

(
(Uλ0)iiϕi

i!
ti +O(ti+1)

)
z−i +O(t6z−5). (25)

Reinserting (25) into (24), one verifies (23) from the definition of MCY. 2

7. Loop-type graphs revisited

We now return to the task of computing the residue in (13). We begin by reinterpreting the
residue in terms of a non-equivariant limit of twisted invariants.

Lemma 7.1. The loop-type contributions can be expressed as a non-equivariant limit:

dFC1 (τC)L = lim
λ→0

1

2
Resw=0

z=0

(
d

∑
mUλ(−w)SLG,λ(τLG, w)∗(φm)⊗ Uλ(−z)SLG,λ(τLG, z)∗(φm)

w + z
,∑

m S̃
CY,λ(τC ,−w)∗(ϕm)⊗ (z)S̃CY,λ(τC ,−z)∗(ϕm)

−w − z

)CY

. (26)

Proof. Recall that

S•,λ(τ, z)∗(Φ) =
∑
m

〈〈
Φ

Φm

z − ψ

〉〉•,λ
0,2

Φm.

Since

Φ4 =
1

5λ5
Φ4,

some care is required in taking the non-equivariant limit. It is not difficult to check that the LG
correlators have a zero of order 5 × (number of φ4 insertions) at λ = 0. Along with the fact that
Uλ(z)(φ4) has a zero of order 5 at λ = 0, we see that

lim
λ→0

∑
m

Uλ(−w)SLG,λ(τLG, w)∗(φm)⊗ Uλ(−z)SLG,λ(τLG, z)∗(φm)

always exists, and it vanishes whenever there is a φ4 or φ4 insertion in either of the correlators.
Similarly, it is not hard to see that the CY correlators have a zero of order 5 at λ = 0 whenever
there is a ϕ4 insertion, and therefore

lim
λ→0

((∑
m

S̃CY,λ(τC ,−w)∗(ϕm)⊗ S̃CY,λ(τC ,−z)∗(ϕm)

)
[ϕi ⊗ ϕj ]

)
always exists, and it vanishes whenever there is a ϕ4 or ϕ4 insertion in the correlators. Therefore,
the limit of the pairing exists and vanishes whenever there is a Φ4 or Φ4 insertion in any of the
correlators. 2

Now that we understand the residue in terms of twisted S-matrices, we can rewrite it in
terms of R-matrices, where the residue will become easy to compute. To do this, let pα denote
the equivariant cohomology class of the αth (C∗)5-fixed point of P4, and set

p̃α :=
pα√

(pα, pα)CY
.

The following result allows us to rewrite S-matrices in terms of R-matrices.
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Proposition 7.2. As a linear map from the basis {pα} to the basis {ϕi}, the matrix series of

the twisted CY fundamental solution

SCY,λ(τCY, z)(p̃α) = p̃α +
∑
i

〈〈
ϕi

p̃α
z − ψ

〉〉CY,λ

0,2

ϕi

factors canonically as

(ΨCY)−1RCY(q, z)eU
CY/z,

where UCY := diag(uCY,1, . . . , uCY,5) and RCY(q, z) is an R-matrix of the Frobenius manifold

associated to twisted GW invariants. In addition, the matrix series of the twisted 5-spin

fundamental solution

SLG,λ(τLG, z)Uλ(−z)∗(p̃α) = Uλ(−z)∗(p̃α) +
∑
i

〈〈
φi

Uλ(−z)∗(p̃α)

z − ψ

〉〉LG,λ

0,2

φi

factors canonically as

−(ΨLG)−1RLG(t, z)eU
CY/z,

where RLG(t, z) is an R-matrix of the Frobenius manifold associated to the twisted 5-spin

invariants.

Remark 7.3. The reader should note that it does not follow from Proposition 7.2 that R• = R•.

However, since they are both R-matrices of the same semisimple Frobenius manifold, they differ,

at most, by right multiplication by a matrix of the form diag(
∑

k>0 a2i+1z
2k+1).

Proof. The factorization of SCY,λ(τCY, z) was proved by Givental [Giv01b] using materialization.
A detailed proof can be found in [LP04, ch. 7]. To prove the factorization of
SLG,λ(τLG, z)Uλ(−z)∗, we apply Proposition 6.8 to see that

SLG,λ(τLG, z)Uλ(−z)∗(p̃α) = M(t, z)∗S̃CY,λ(τCY, z)(p̃α)

= M(t, z)∗(Ψ̃CY)−1R̃
CY

(t, z)eU
CY/z(p̃α)

= −(ΨLG)−1RCY(t, z)eU
LG/z(p̃α),

where

RLG(t, z) := −(ΨLG)M(t, z)∗(Ψ̃CY)−1R̃
CY

(t, z).

To verify that RLG(t, z) is an R-calibration of the Frobenius manifold, the following properties

must be checked:

(i) UCY is a diagonal matrix of canonical coordinates for the twisted 5-spin Frobenius manifold;

(ii) RLG(t, z) = 1 +O(z); and

(iii) RLG(t, z)RLG(t,−z)∗ = 1.

The first property follows from Proposition 6.3. The second follows from the fact that RCY(q, z) =

1 +O(z), along with the second part of Proposition 6.8 and the observation that (Ψ•)(Ψ•)∗ = 1.

The third property follows from the observations (Ψ•)(Ψ•)∗ = 1 and M(t, z)M(t,−z)∗ = 1. 2
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We now compute the residue.

Proposition 7.4. We have

dFC1 (τC)L = lim
λ→0

1

2

∑
α

(R̃
CY

1 (t)∗αα −RLG
1 (t)∗αα) duα,

where R•1(t)αα denotes the diagonal entries of the linear-in-z part of R•.

Proof. Inserting the factorizations of Proposition 7.2 into the residue in Lemma 7.1, we obtain

dFC1 (τC)L =
1

2
lim
λ→0

Resw=0
z=0

(
d

∑
αR

LG(t, w)∗(eα)⊗RLG(t, z)∗(eα)

w + z

+

∑
α dU

CYRLG(t, w)∗(eα)⊗RLG(t, z)∗(eα)

w(w + z)

+

∑
αR

LG(t, w)∗(eα)⊗ dUCYRLG(t, z)∗(eα)

(w + z)z
,∑

α R̃
CY

(t,−w)∗(εα)⊗ R̃
CY

(t,−z)∗(εα)

−w − z

)CY

.

Expanding the denominators as Taylor series in either z/w or w/z, the residue is easily computed
to yield

dFC1 (τC)L =
1

2
lim
λ→0

∑
α

(R̃
CY

1 (t)∗αα −RLG
1 (t)∗αα) duα.

The proposition follows from the fact that R•1(x)∗ = R•1(x), which follows easily from the
properties that R•(x, z) = 1 +O(z) and R•(x, z)R•(x,−z)∗ = 1. 2

7.1 Comparing constants
Since both R•1 and R•1 are linear terms of R-matrices, they differ by at most an additive constant.
The purpose of this subsection is to compare the constants in order to obtain the following
improvement of Proposition 7.4.

Proposition 7.5. We have

dFC1 (τC)L = lim
λ→0

1

2

∑
α

(R̃CY
1 (t)αα −RLG

1 (t)αα) duα.

Proof. We prove Proposition 7.5 via a sequence of lemmas.

Lemma 7.6. We have
RCY(q = 0, z) = 1

and ∑
α

RCY
1 (q)αα du

α =
∑
α

RCY
1 (q)αα du

α +
3

4
du.

Proof of Lemma 7.6. By a standard application of the divisor equation and the localization
isomorphism, we compute

SCY,λ(τCY, z)(p̃α) = eξ
αλτCY/z p̃α +

∑
i

d>0

eτ
CYd

〈
ϕi

eξ
αλτCY/z p̃α
z − ψ

〉
0,2,d

ϕi.
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Multiplying on the right by e−U
CY/z and using the facts that τCY = log(q) +O(q) and uCY,α =

ξαλ log(q) +O(q), we see that

(SCY,λ(τCY, z)e−U
CY/z)|q=0(p̃α) = p̃α.

Moreover, since (ΨCY)|q=0 is simply the change of basis from the {ϕi} to {p̃α}, we see that, as
a matrix,

RCY(q = 0, z) = (ΨCYSCY,λ(τCY, z)e−U
CY/z)|q=0 = 1.

To prove the second statement, we note that RCY
1 (q) and RCY

1 (q) are both linear terms of
R-calibrations, so they only differ by an additive constant. Observing that

RCY
1 (q = 0)αα = − 3

20λξα
,

the computation above shows that∑
α

RCY
1 (q)αα du

α =
∑
α

(
RCY

1 (q)αα +
3

20λξα
+ 1

)
duα

=

(∑
α

(
RCY

1 (q)αα +
3

20λξα
+ 1

)
λξα

)
du

=
∑
α

RCY
1 (q)αα du

α +
3

4
du. 2

Lemma 7.7. We have

R̃CY
1 (t = 0)αα =

1

5λξα

(
2

ξ

1 + ξ

Γ5(4/5)

Γ5(3/5)
+

ξ(1 + ξ)3

(1 + ξ + ξ2)2

Γ5(3/5)

Γ5(2/5)

)
.

Proof of Lemma 7.7. We know that

R̃CY
1 (t)αα =

1

5λξα
1

LLG

d

dt

(
−1

4
log(1− t−555)− 4 log(ĨCY

0 (t))− log

(
− t

5

d

dt

ĨCY
1 (t)

ĨCY
0 (t)

)
+

15

4
log(t)

)
.

Write

ĨCY
i (t) =

t

5

3∑
j=0

bijI
LG
j (t) =

t

5

(
bi0 + bi1t + bi2

t2

2
+O(t3)

)
,

where the coefficients bij can be computed explicitly from the formula for U (see below, for
example). Notice that the log(t) terms cancel and, disregarding constant terms in the derivative,
we are left with

R̃CY
1 (t)αα =

1

5λξα
1

LLG

d

dt

(
−1

4
log(t5 − 55)− 4 log(b00 + b01t+ · · ·)

− log(b00(b00b11 − b01b10) + (b200b12 − 2b00b01b11 − b00b02b10 + 2b201b10)t + · · ·)
)
,

where + · · · denotes higher-order terms in t. Computing the derivative and setting t = 0, we
obtain

R̃CY
1 (t = 0)αα =

1

5λξα

(
b200b12 + 2b00b01b11 − b00b02b10 − 2b201b10

b00(b01b10 − b00b11)

)
.
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Using the fact that, for i = 0, 1,

bij =
(−1)j+1(2πi)i+1

Γ5(1− (j + 1)/5)

ξj+1

(1− ξj+1)i+1
,

the lemma follows by direct computation. 2

Lemma 7.8. We have

lim
λ→0

∑
α

λξαRLG
1 (t = 0)αα =

3

4

and

lim
λ→0

∑
α

RLG
1 (t)αα du

α = lim
λ→0

∑
α

RLG
1 (t)αα du

α +
3

4
du.

Proof of Lemma 7.8. Recall that

RLG(t, z) = −(ΨLG)M(t, z)∗(Ψ̃CY)−1R̃
CY

(t, z),

so that

RLG
1 (t)αα = −((ΨLG)M1(t)∗(Ψ̃CY)−1)αα + R̃

CY

1 (t)αα.

By the previous two lemmas, it suffices to prove that

lim
λ→0

∑
α

λξα((ΨLG)M1(t)∗(Ψ̃CY)−1)αα

∣∣∣∣
t=0

= 2
ξ

1 + ξ

Γ5(4/5)

Γ5(3/5)
+

ξ(1 + ξ)3

(1 + ξ + ξ2)2

Γ5(3/5)

Γ5(2/5)
.

Let ΨLG
0 and Ψ̃CY

0 denote the specializations at t = 0. Then by (21) and (22), we have

(ΨLG
0 )M1(0)∗(ΨCY)−1 = (ΨLG

0 )(Rλ(−z)Uλ0)∗1(−Uλ0(ΨLG
0 )−1)

= (ΨLG
0 )(Uλ0)−1Rλ1 (Uλ0)(ΨLG

0 )−1

= (ΨLG
0 )(Uλ+)1(ΨLG

0 )−1.

Therefore, ∑
α

λξα((ΨLG
0 )M1(0)∗(Ψ̃CY

0 )−1)αα = tr(diag(λξα)(ΨLG
0 )(Uλ+)1(ΨLG

0 )−1)

= tr(Λ(Uλ+)1),

where

Λ := (ΨLG
0 )−1 diag(λξα)(ΨLG

0 ) =


0 0 0 0 λ5

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0

 .

Thus, the non-equivariant limit can be computed explicitly in terms of coefficients of U+:

lim
λ→0

∑
α

λξα((ΨLG
0 )M1(0)∗(Ψ̃CY

0 )−1)αα = (U+)01 + (U+)12 + (U+)23.

1021

https://doi.org/10.1112/S0010437X19007231 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X19007231


S. Guo and D. Ross

By expanding the gamma functions in terms of constants D := 5/12 and E := −40ζ(3)/(2πi)3,
Chiodo and Ruan [CR10] computed

U(−z) =



(−1)k+1(2πi)

Γ5(1 − (k + 1)/5)

ξk+1

1 − ξk+1
zk

(−1)k+1(2πi)2

Γ5(1 − (k + 1)/5)

ξk+1

(1 − ξk+1)2
zk−1, k = 0, 1, 2, 3

(−1)k+1(2πi)3

Γ5(1 − (k + 1)/5)

(
ξk+1(1 + ξk+1)

2(1 − ξk+1)3
+D

ξk+1

1 − ξk+1

)
zk−2

(−1)k+1(2πi)4

Γ5(1 − (k + 1)/5)

(
ξk+1(1 + 4ξk+1 + ξ2k+2)

6(1 − ξk+1)4
+D

ξk+1

(1 − ξk+1)2
− E

ξk+1

1 − ξk+1

)
zk−3


.

(27)
By explicitly constructing S(−z) using elementary row operations, we have

S(−z)U(−z) =



−2πi

Γ5(4/5)

ξ

1− ξ
,

2πi

Γ5(3/5)

ξ2

1− ξ2
z,

−2πi

Γ5(2/5)

ξ3

1− ξ3
z2,

2πi

Γ5(1/5)

ξ4

1− ξ4
z3

0
−(2πi)2

Γ5(3/5)

ξ3

(1− ξ2)2
,

(2πi)2

Γ5(2/5)

ξ4(1 + ξ)

(1− ξ3)2
z,
−(2πi)2

Γ5(1/5)

ξ5(1 + ξ + ξ2)

(1− ξ4)2
z2

0 0
−(2πi)3

Γ5(2/5)

ξ6

(1− ξ3)3
,

(2πi)3

Γ5(1/5)

ξ7(1 + ξ + ξ2)

(1− ξ4)3
z

0 0 0
−(2πi)4

Γ5(1/5)

ξ10

(1− ξ4)4


,

where, by definition, the right-hand side is U0U+(−z). Therefore, we can compute

(U+)01 =
ξ

1 + ξ

Γ5(4/5)

Γ5(3/5)
,

(U+)12 =
ξ(1 + ξ)3

(1 + ξ + ξ2)2

Γ5(3/5)

Γ5(2/5)
,

and

(U+)23 =
ξ(1 + ξ + ξ2)(1− ξ3)3

(1− ξ4)3

Γ5(2/5)

Γ5(1/5)
.

By applying the formula Γ(x)Γ(1−x) = π/sin(πx) and simplifying, it is straightforward to show
that (U+)23 = (U+)01, finishing the proof of the lemma. 2

Proposition 7.5 now follows easily from Proposition 7.4 and Lemmas 7.6 and 7.8. 2

Combining Propositions 5.1 and 7.5 with equations (18) and (19), we conclude that

dFC1 (τC) = dF̃CY
1 (τC),

which, by Corollary 3.6, finishes the proof of Theorem 3.3.
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