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Abstract

The algebraic structure of relativistic wave equations of the form

is considered. This leads to the problem of finding all Lie algebras L which
contain the Lorentz Lie algebra so(i, 1) and also contain a "four-vector" of;
such an L gives rise to a family of wave equations. The simplest possibility
is the Bhabha equations where L^soiS). Some authors have claimed that this is
the only one, but it is shown that there are many other possibilities still in accord
with physical requirements. Known facts about representations, along with
Dynkin's theory of the embeddings of Lie algebras, are used to obtain a partial
classification of wave equations. The discrete transformations C,P, 7" are also
discussed, along with reality properties. Finally, a simple example of a family
of wave equations based on L = sp(\2) is considered in detail. The so(i, 1)
content and mass spectra are given for the low order members of the family,
and the problem of causality is briefly discussed.

1. Introduction

In this paper we shall consider the problem of describing all the finite dimensional

Lorentz invariant first-order wave equations of the form

where the a" (// = 0,1,2,3) are nxn matrices. We take K to be a real non-zero

constant throughout the paper, except at the end of Section 3, where we briefly

consider the case where K is also an nxn matrix.

This problem has been considered by many authors, notably Dirac [1], Fierz

and Pauli [2], Bhabha [3], Harish-Chandra [4], Le Couteur [5] and Gel'fand and
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[2] Relativistic wave equations 447

Yaglom [6]. We refer the reader to the books by Corson [7], and Gel'fand, Minlos
and Shapiro [8] for further details. The equations given by Dirac, Fierz and Pauli
involve subsidiary conditions on the components of y/(x), and lead to the well-
known difficulties involved in the introduction of an external field. We follow
Bhabha in assuming that there are no such subsidiary conditions; a given wave
equation then in general describes particles with a spectrum of rest masses and
spins [3].

Let us recall some of the properties of the wave equation (1.1). Under a
Lorentz transformation x' = Ax we suppose that

y/\x') = n(A) y/(x),

where 7i(A) is some n x n matrix. As is well known, n is a representation of the
Lorentz group 50(3,1), and so the generators 1^ (/„„ = — IVfl) of n must satisfy
the commutation relations

V'ftvt * pal Svp'fta &iip*vo ova *pp' Spa -"vp* \*--£)

Here we have taken g00 = -gn = -g21 = - g 3 s = 1, and g^ = 0 if / /#v. The
condition that (1.1) is invariant is

or (1.3)

[I,,v,«p]=gvp<Xt-gl,p*v

This means that {a*1} transforms like a four-vector operator.
Let us denote by S the Lie algebra generated by the /„„ and <xp. It is important

to observe that the commutators [o^, av] are not determined by any direct physical
considerations. We note that it is quite consistent with (1.3) to assume that
[a,,,av] = cl^ (ceC), and so that S is the Lie algebra of SO(3,2). This is the most
familiar case, the simplest wave equation of this type being the Dirac equation,
and it was worked out in detail by Bhabha [3]. It was asserted by Bauer [9] that
this case is essentially the only one possible. More recently, Lorente, Huddleston
and Roman [10] claimed that, for a large class of representation n, S = sp(4, R ) s
so(3,2). However, these claims are incorrect :f counter-examples are easily found,
and so more general possibilities for S must be considered. We may formulate the
problem as follows:

"Find all Lie algebras L which contain a copy of so(3,1), and also contain a four-
vector operator {a"}. L is to be minimal in the sense that L is generated by so(3,1) and
the a"."

Given such a Lie algebra L, we obtain a whole family of wave equations by
taking all the irreducible representations of L. The Lorentz content of these equa-

t Reference [10] was shown to be incorrect by Bracken in [29].
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tions is obtained by finding the branching rule for the reduction of L to so{3,1),
while the possible values of the rest mass are simply related to the eigenvalues of
the matrix a0 in these representations. The family of wave equations associated
with the irreducible representations of L can be regarded as the wave equations for
the states of a quark model, the quark being the multiplet associated with the
fundamental representation. These higher representations are constructed by
group theoretical procedures analogous to the construction of hadrons from
quarks.

The main aim of this paper is to present some of these more general possibilities,
in order to systematize the results already found [3, 6, 11] for the general structure
of a". We have given invariant proofs wherever possible. In Section 2, we formulate
the problem more precisely, giving the notation which will be in force throughout
the paper. We discuss briefly those aspects of Dynkin's theory of semi-simple
sub-algebras of semi-simple Lie algebras which we need [12]. Also, we give a
more elegant way of describing a "vector operator" such as (a"}.

In Section 3, we give a general analysis of the Lie algebra structure of wave
equations. Section 4 contains a description of the discrete transformations:
charge conjugation, space reflection and time reversal. We also discuss the existence
of an invariant Hermitian form, which is required in order that the wave equation
(1.1) be obtainable from an invariant Lagrangian.

Next, in Section 5, we consider an example in detail: we shall call this example
the "Kursunoglu equation" (in fact it is a special case of the wave equation recently
proposed by Kursunoglu [13]). We give the so(3,1) content for the lowest dimensional
representations of this equation, their corresponding mass spectra, and discuss
the external field problem for this case. Section 6 presents some conclusions.

2. Summary of Dynkin's theory. Tensor operators

Since this paper is concerned with the problem of specifying the embedding
of one Lie algebra in another, and since the branching rules depend on the embed-
ding, we give here a brief account of Dynkin's general theory [12,14].

We note first that, although in the Introduction we mentioned Lie algebras L
over the real field R, in fact we need only consider their complexifications Lc.
This is so because the finite dimensional irreducible representations of L are in
a one-to-one correspondence with the finite dimensional irreducible representations
of IF. Thus, for example, instead of so(3,1), we work with its complexification
so(4,C)=sl(2,C)®sl(2,C)- When it is necessary to distinguish the factors in this
direct sum, we write them as sl(2, C), and sl(2, C)'.

Our notation will mainly follow that of Humphreys [15]. Let L be a complex
semi-simple Lie algebra of rank /. Choosing a Cartan sub-algebra (CSA) H of L,
with dual space H*, we let O denote the set of roots relative to H. If A = {«,, ...,a,}
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is a basis of <&, we denote by <D+ the set of positive roots relative to A, and write
A+<=#* for the set of dominant integral linear functions on H (see [15], p. 112).
Any Ae A+ can be written in the form

X- £ ro,A,,

where m,sZ+, and A,, ...,X, are the fundamental dominant weights ([15], p. 67).
We denote by K(A) the finite dimensional irreducible L-module with highest

weight Ae A+, and denote the corresponding representation by nx. If

X= £ mlXl,

we shall often label V(X) (or nx) by (m,,...,m,). However, we denote the irreducible
sl(2,C)-modules by (J), where j = 0,i, 1,|,..., and dim(j) = 2/+1. This is the
conventional notation in physics: in [15] they are denoted by (2/).

Suppose now that LJ is a complex semi-simple lie algebra, of rank /', such that
there is a Lie algebra monomorphism f:L'-+L. Then we say that L' is embedded in
L, and call / the embedding. We use primed quantities H', <P', A', etc. to denote a
CSA, root system, base etc. of V. H' and H may be chosen such that f(H')sH [12],
the transpose/*: //*-»// '* will then make sense. Now the L-module V(X) may be
made into an L-module in the obvious way, that is by considering the representa-
tion nx of of L'. By Weyl's theorem ([15], p. 28), V(X) is completely reducible:

F(A)s 0 w(A') K'(A') (as an L'-module),
X'eA'+

where K'(A') denotes the irreducible L'-module with highest weight /TeA'+.
This decomposition is the branching rule for the representation nx restricted to
L'. Clearly, if fieH* is a weight of i/on V(X), then /*Gu)e//'* is a weight of H'
on V{X) [12].

We say that two embeddings / , , f2 of L' in L are equivalent (written / , ~/2)
if they always give rise to the same branching rules for representations of L, that
is for every Ae A+, the two L'-module structures induced on K(A) by fu f2 are
isomorphic. It turns out [12,14], that an embedding/: L'-*L can be specified up
to equivalence by giving the branching rule for just one irreducible L-module
V(a>) in the following cases:

L

A,
B,

c,
G2

F*
E6

(O

A,
A,

Ai
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For the remaining simple algebras, however, we need to give the branching rules
for two irreducible /.-modules V{a>), V(co'):

L

D,
E-,
Es

CO

A,
A,

0}'

A , - ,
A,
A8

We have numbered the simple roots as in [15, p. 58].
Thus we see that to specify embeddings in the algebras B,, and C,, we only need

give the branching rule for the natural representations, of dimension 21+ 1 and 21,
respectively. However, for Z), we must give the branching rules for the natural
2/-dimensional representation and for one of the 2'~'-dimensional spin represen-
tations.

Once / has been so specified, we can describe the map /* explicitly [12,14] by
computing its action on some basis for H* in terms of a basis for //'*. It is then
straightforward to determine the branching rule for any irreducible L-module
V(k). To do this, we find the system of weights T\(X) of V(X), and then apply/* to
obtain the full set of weights for V{1) regarded as an L'-module. Systematic
extraction of the irreducible L'-modules gives us the required branching rule.
We shall use this method in Section 5.

The generalization to the case where L is semi-simple is immediate: we have
£ s L i © . . . ® L r , where theLj are ideals of L which are simple Lie algebras of rank
/,. The irreducible L-modules are of the form V(Xa))®...®V(Xm), where VXU))
is an irreducible /..-module (1 <!</•). The notation (ml,...,m,) for the irreducible
representations of a simple Lie algebra can be generalized to (m[l\ . . . , /n^0; . . . ;
m[r\ ...,m\r?) for the irreducible representations of L. Again, we make an exception
for so(4,C)=sl(2,C)@sl(2,C), and use (k,l), not (2k;2l), to denote its irreducible
representations. Thus, for example, the four-vector representation is (|, •£), and the
adjoint representation is (l,0)©(0,1).

This method of finding branching rules is completely general, and conceptually
is the most appealing one. However, it is often cumbersome to apply, because we
have to know the set U(X) of weights of V{X). Finding the multiplicity of a weight is
quite difficult, especially when the rank of L or the dimension of V{X) is large.
So wherever possible, we use branching rules obtained by classical tensor and spinor
methods: these rules are only available for the so-called "natural" embedding, for
example so(n)^so(n+1), sp(n)®sp(m)<= sp(n + m), and so on. We shall not describe
these rules in detail (see King [16]).

We remark, in connection with this, that Bauer only considered natural embed-
dings of JO(4, C)<=L, and consequently missed many more exotic possibilities
(see [9], p. 127).
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Now we consider the question of the invariant description of a "vector operator"
such as {a"}, following some unpublished notes by Hannabuss. If £ is a complex
semi-simple Lie algebra, (7^, V(X)) is some finite dimensional irreducible representa-
tion of L, and (n, V) is any finite dimensional representation of L, then we call the
vector space

F = HomL(V(X)®V,V)

the space of tensor operators for the pair (V(X), V). By using the canonical isomor-
phism V*® W^Hom(V, W), we see that

y ^ y = HomL(K(A), End V).

This enables us to identify IT with &"'. We recall that the L-module action on
End V is given by

x.A = [n(x), A] = n(x)A-An{x) (xeL, AeEnd V).

Choose now TeST (7V0), and let {w, |K/<m} be a basis for V{X). Define
TteEnd V, l^i^m, by

Uv) = T(Wi®v), (veV).

Then it is clear that, if L acts on V(A) by

m

X.W,= £ Cji Wj, (X £ L, Cjt 6 C),

it follows that
m

v T — V r TX .11 — 2* cJtJJ-

This is the usual conception of a tensor operator: a set of operators {r,} which
"transform like" some representation of L under commutation.

Finally, we observe that if Y\(X) = {v1,...,vm} is the set of weights of V{X), and

we choose M', to be in the weight space K(A)V|(1 ^ / ^ w ) , where

V[k\t = {we V(X)\h. w = v,(h)w for all heH),

then the operator Tt is a "shift operator" on V in the sense that

3. Classification of wave equations

In this section we describe the structure, of wave equations of the form (1.1).
As stated in the Introduction, we essentially must list all the minimal complex
Lie algebras L=>io(4, C) such that the adjoint representation adL of L contains
a copy of the vector representation (\, £). Stated in this "analytic" form, the problem
is very difficult to attack: we shall use a "synthetic" procedure.

To do this, we use the results of Section 2 on tensor operators, specializing to
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the case L = so(4, C) and V(X) = ( i , i ) . We write

where nj denotes the irreducible representation {kj, lj) of so(4, C). An irreducible
representation (k,l) may occur more than once in V. It is clear that there will
exist a non-zero four-vector operator {7*j|l < /^4} on V if, and only if, the space
^ = Homso(4iC)((^,-£)® K, V) of vector operators is non-trivial. In other words,
V must occur as an so(4, C)-sub-module of (-£,i)® K; or, equivalently, (•£,•£) must
occur as an so(4,C)-sub-module of End V^ V*®V. We can now easily derive the
following result:

PROPOSITION 3.1. Let V be as above, and let p be the number of distinct pairs (VT, Vs)
of linked irreducible so(4, C)-sub-modules of V, where we say Vr is linked to Vs if
ks = kr±± and (independently) ls = lr±\. Then dim$~ = 2p.

PROOF. Every representation of so(4, C) is equivalent to its contragredient [17],

and so

End K s K*(g) K s V® V* 0 [(*„ lr)®(ks, ls)].
1 Sr, j«r

But each term in this sum can be decomposed using the well-known rule

k,+k, ;,+;,

(*„/,)»(*„/,)£ © © (*,/)•
k=\k,-k,\ i=\i,-i.\

Clearly, (i,i) occurs in {kn/r)®(ks,ls) exactly when ks = kr±\,ls = lr±i- The
result now follows.

We see that there are two kinds of linkage; either kr + lr = ks + ls or
kr+lr = ks + ls±l. They were called by Bhabha Type I and Type II, respectively.

The result gives us the number of linearly independent vector operators in
End V. Given any vector operator {Tt}, we let 5 be the Lie sub-algebra of sl(V)
generated by {n(x), r,|jc6jo(4,C), 1 ̂ / ^ 4 } . Clearly, we can restrict our attention
to those V which are indecomposable as S-modules, since any other V is construc-
tible from these. Now if TE^~, T has an obvious decomposition as ^ i ^ r . ^ r ^ ,
where TrseHomso(4,C) (K(A)® Vs, Vr). The "components" Tt of T have a correspond-
ing decomposition into matrix blocks, which we write as (r\T,\s), or, following
Bhabha [3], as (Arr,/r|r,|i(rI,/I). If (r\T,\s)*0, we write Vr<-Vs, and we call this a
one-way coupling of Vs to VT. This is obviously only possible when Vr is linked to
Vs.

It is useful to describe the situation graphically. The point (k,l) in the plane
is taken to represent the irreducible so(4, C )-module (k,l). If Vr*-Vs, we draw a
directed line from (ks, ls) to (kr, lr). We see now that an indecomposable V has a
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graph consisting of a set of points in the plane, with various one- and two-way
couplings, which cannot be written as the sum of two mutually uncoupled sub-
graphs.

In this paper we shall limit ourselves to the case where S acts irreducibly on V.
Since it consists of trace zero matrices, 5 will then be semi-simple. As pointed
out by Wightman [18], there is no general argument which shows that all wave
equations with K # 0 must be of this type, although it is easy to see that a wave
equation of the type VX^>V2 is inconsistent with K # 0 . If S acts reducibly on V,
then S is not semi-simple; the representations of such algebras are not very well
known.

It is clear that the graph of an irreducible V will be such that any two points
in the graph are coupled by a suitable directed path. If the graph has no closed
loops, then all the couplings must be two-way; that is Vl^±V2^±...x^Vt. But if
closed loops are present, there can be one-way couplings. For example, if
^, = (0,i), K2 = Q,1), K3 = ( l , i ) and K4 = (±,0), then Vi-*V2^V^V^Vl

corresponds to an irreducible V. We shall consider this example later on.
Let us revert to the structure of V as an so(4, C)-module. It is well known that

the irreducible representation (nr, Vr) of so(4, C) is symplectic if kr + lr is half-
integral, and orthogonal if kr + lr is integral [17]. This means that there exists
a non-degenerate bilinear form bT(v, v') on Vr, which is antisymmetric (symmetric)
according as kT + lr is half-integral (integral), such that

br{x.v, v') = -br(v,x.v') for all xeso(4,C). (3.1)

Clearly, if Vr is linked to Vs, then Vr and Vs are either both symplectic or both
orthogonal. Thus, an irreducible S-module V will be either symplectic or orthogonal
as an so(4, C)-module. In fact, we have the embedding

or (3.2)

so(4,C)S

where sp[V){so{V)) denotes the Lie algebra of linear transformations on V which
are skew relative to the antisymmetric (symmetric) form b induced by the
br (1 ̂ r^t). These two distinct kinds of irreducible wave equations are of course
those describing particles of half-integral and integral spin, respectively. We shall
usually be able to treat these cases concurrently.

We note here that if each irreducible so(4, C)-module occurs an even number of
times in V, then, as well as the embedding so{4, C)£sp(V)(so(V)), we can also have
so(4,C)^so(V)(sp(V)). This is because W@W*^W®W is both orthogonal and
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symplectic for any so(4, C)-module W [17]. However, we shall not pursue this here,
but use the chain (3.2), which is applicable for all so(4, C)-modules.

Since we have an embedding of so(4, C) in sp( V) (so( V)), it is natural to ask
whether 5 is contained in the same algebra. Now each form br on Vr is only deter-
mined up to a non-zero scalar multiple dr and sp( Vr) (so( Vr)) is unaffected by
changing 6r. However, sp(V){so{V)) depends sharply on the choice of the dr. So
we should really ask if, given some vector operator {Tt}, there is a choice of constants
<5r such that {Ti}^sp(V)(so(V)), and hence S^sp(V)(so(V)). We answer this question
later on, but we can establish here an existence result.

PROPOSITION 3.2. Let V,pbe as in Proposition 3.1. Choose any values of the constants
5r, thus fixing sp(V)(so(V)). Then there are exactly p linearly independent vector
operators {7̂ } in sp(V)(so(V)).

PROOF, (a) Suppose V is symplectic as an JO(4, C)-module. We shall use King's
results [16] to obtain the branching rule for

sp(V)-> 0 sP(Vr). (3.3)

To do this, we use the Young diagram notation <A> = <rl5 ...,/•/> (with rl,...,r,

non-negative integers and r t ^ r2 ^ ... r, ^ 0) as an alternative label for the irreducible

5/»(2/)-module V(X) = (ml, ..^m,), where

that is, ntj = r, — rJ+l (1 ̂ j^l—l) and w, =rt.
In this notation, the branching rule for

sp(2r + 2s)->sp(2r)®sp(2s)
is given by

u
where the summation is taken over all partitions £, and over those /? which are
the conjugate of an even partition [16]. The division refers to the usual division of
S-iunctions [19]. In particular, for the adjoint representation <2> of sp(2r + 2s) we
have

A simple induction argument then yields, for the reduction (3.3):

<2>-K2;O;...;O>0<O;2;O;...;O>0...0<O;...;O;2>0 0

where Wrs denotes the irreducible 0 J = , sp( Fr)-module
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with one in the r and s positions and zeros elsewhere. It is clear that WTS contains
the so(4, C)-module (|, ^) once if, and only if, Vr is linked to Vs, and the result
follows.

(b) If V is orthogonal, the proof is similar. In this case the Young diagram
notation [A] = [pu ...,p,] for irreducible so(2l+ l)-modules is related to the highest
weight notation (m,, ...,m,) by

/
Pj=

i

P i = i

while for so(2l) we have
1-2

Pj= Z

Pi-1 =

Pi =

The adjoint representation of so(2l+ 1) or so(2l) is [I2], and we can deduce, from
[16]:

so(V)-+ 0 so{Vr),

[l2]-*[l2;O;...;O]©...e[O;...;O;l2]0 0 Zrs,

with Zrs denoting the irreducible @'r=i so( Kr)-module

with one in the r and s positions and zeros elsewhere. As in (a), the result follows.
To carry out calculations, it is necessary to write down explicit expressions for

the matrix blocks (r|r,|j) of the vector operator. We can do this fairly easily by
using the definition of a vector operator given in Section 2.

It is formally convenient to describe the transformation properties of operators
in spinor form. Upper case Italic letters will be used for spinor indices: they take
the values 1,2. Thus instead of {7,}, we now write {TAB}, which is related to the
a" occurring in (1.1) by [3]:

a°+a3 a ' - /a 2 \
(3.4)

a' + za2 a 0 - a 3 /

Suppose that {h,x,y,h',x',y'} is the usual basis for so(4,C) = J / (2 ,C)©J/(2 ,C) ,

with
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[hx] = 2x, [hy]=-2y, [xy) = h,

[h'x'] = 2x', [h'y']=-2y', [*'/] = *'

and primed and unprimed quantities commuting. Then corresponding to the

representation (7rr, Vr) of so(4, C) we can define two symmetric spinors KAB(kr),

LAB(lr) by [3]:

Kl = —/k2
 = ^3> ^2 = K-i K\ = ^ + ,

L j 1 = —Li = — L3, Z-i' = —L + , L j 2 = — L_ ,

where

tf3 = K(A), L3 = inXh'),

K+ = 7rf(x), L + = nr(x'),

K . = nr(y), L _ = n r ( / ) .

We shall choose the usual basis for Kr:

{Vkr.mr; lr, nr\ ~
 kr < mr < *r. ~ 'r < "r < 'r}-

In this basis, the matrix elements of the K's are

W±)mrnr;m/nr- = [(*, + «r') (*, ± «,• + l)]*«J»P.«r.± 1 < W

Similar formulae hold for the Z/s. Note that the matrix Br of the bi-linear non-
degenerate form br on Vr, which we discussed earlier, is given by

\ur)mrnr; mr'nr' \ ') umr.-mr'
unr.-nr'- \J-J)

It is easy to see that (B7
r denoting the transpose of Br):

fiT = ( _ 1 ) 2 ( k r + / r ) 5 r )

and also that (3.1) is satisfied.
Now {TA6} must transform like the basis {WAB} of {\,\), which is related to the

canonical basis by

^ = (-1)*-%.-^'

where A, B = \, - \ as A,B = 1,2. From the definition of TAB, we see that

(r\TAB\s): Vs^Vr

Vks-ms; ls,ns-+Trs(WAtl<g)Vks.ms. , s , n j ) .

The right-hand side may be written as:

W K » » A K . , . r : «,.,,, (̂ eC). (3.6)

In (3.6), {jijijm\mx m2) denotes the Clebsch-Gordan coefficient for the coupling
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of j \ andj2 to givey'3, and (k) means (2fc +1)*. Thus we see that the block (r\TAB\s)
has matrix elements

k,krmr\ -Ams)(\lslrr,r\Bns). (3.7)

We shall also find it convenient to express the blocks (r\TAB\s) in terms of the
spinor matrices uA(k), vA(k), uB(l), vB(l). For Type I coupling (ks = kr+i, ls = lr-\)
we have:

(3.8)
(s\TAB\r) = asru

A(kr + ±)®vB(lr),

while for Type II coupling (ks = kr + \, ls = / r+i),

(r\TAB\s) = arsv
A(kr+$)®vB(lr + V,

(3.9)
(s\TAB\r) = aSTuA(

The spinor matrices are given by

(3.10)

They satisfy the relations

uA{.k + i) vA(k +1) = - !>„(*) uA{k) = 2A: + 1 ,

= uA(k + i) uA(k) = 0,
(3.11)

vA(k + i) uB(k + i) = KAB(k) + (k+ \)eAB,

uA(k)vB(k) = KAB(k)-keAB.

Similar relations hold for uB{l), vB(l), if we replace K by L. Apart from a change
of phase of vA, vB, these relations are essentially those given by Bhabha [3].

For each linkage (Vr, Vs), the constants ars, asr are quite arbitrary: this gives us
the 2p linearly independent vector operators mentioned in Proposition 3.1. If we
fix these constants, we get a vector operator which can be denoted TAB(a). Now
two such vector operators TAB(a), TAB(a') may be physically equivalent: this is so
exactly when they lead to the same mass spectrum, which means that

aV) = G«°(«)G"1,
(3.12)

[Q, n(x)] = 0 for all x eso(4, C).
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It follows from (3.12) that

and thus (3.13)
TA\a')= QTA\a)Q~x.

We shall write TAB(a')~TAB(a) if such a Q exists. It is clear that ~ is an equivalence
relation; we denote the equivalence class of TAB(a) modulo ~ by [TA6[a)\.

In order to describe these classes explicitly, we recall that n may contain repeated
representations. Without loss of generality, we may group together the equivalent
subrepresentations of n, and write

©
r= 1

where £*= 1«r = /, <pr is (knlr), and q>T, ips are in equivalent if n£s. V will have a
corresponding decomposition

V= @nrWr= 0 Yr. (3.14)

If >VeEnd V, it can be split up into super-matrix blocks which we denote by
[r|A'|^]GHom(ys, Yr). In particular TAB splits up into blocks [r\TA6\s]; each of
which consists of smaller blocks of the form (3.8) or (3.9) This allows us to make an
obvious generalization of (3.8) and (3.9) by writing

[r\TAB\s] = Ars®(vA(kr + ±)®Alr)),

and so on, where Ars is now an arbitrary coupling matrix, with mr rows and ms

columns. The vector operator may also be denoted by TAB(A).
The most general matrix Qe GL(V) which commutes with n(so(4)) is [6a]:

Q= © (Qr®IJ, (3.15)
r = l

where QreGL(nr), and dr = dim^r. Rewriting (3.13) as

TAB(A')= QTAB(A)Q-\
we find that

Ars = QrArsQ;x. (3.16)

If the graph of V contains a closed loop y of the form

Kr i -Kr 2^ . . .^±Kr n-Kr | , O 2 (3.17)

(where repeated representations may occur), we define

(3.18)
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These cyclic quantities will be very important in the sequel. Once more, we may
generalize this notation to apply to a closed "loop" F of the form

Yri^Yr2^...^Yrn^Yri. (3.19)
For 1</</?, we write

A ( F , r , ) = A r . n + 1 ^ r j + . r i + j ••• -^ >•„ - i r n ^ r , , r , ••• ^ r ( _ | r j ,

(3.20)

It is clear from (3.16) that

TAB(A') = QTA\A)Q~X

if and only if (3.21)
^ ± # ( r , r ( ) = C ^ O V , ) ^ 1 for every F.

Thus, the class [TAB(A)] is parameterized by the eigenvalues of A±{T,ri), for F
of the form (3.19), and l^i^n.

These results are fairly complicated. However, they simplify considerably if
we restrict ourselves to the case where n has no repeated sub-representations.
Reasonable wave equations are usually of this type. If we replace A by a, F by y.
and note that Q is now

® qrlir (qreC),

then (3.16) becomes

and we see that (3.21) becomes

TAB(a')=* QTAb{a)Q~x

if and only if (3.22)

a±'(y) = a±(y) for every closed loop y.

In particular, by taking y to be any trivial loop Kr^±Ks, we have a'rsa'sr = arsasr.
Thus the equivalence class [TAB(a)] is parameterized by the n = p + c quantities
arsasr, and a+(y), where y goes over the c non-trivial closed loops in the graph of
V: in other words, physically inequivalent vector operators are in one-to-one
correspondence with points in C .

Clearly, the above arguments are still valid if there are some one-way couplings;
except that fewer parameters will be needed.

Returning to the general case, we can now answer the question raised earlier;
given TAB(a), can we choose the constants Sr such that TA6(a) is skew relative to
the bilinear form with matrix

fi= © SrBr,
r = 1
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BTAB + (TA6)rB = 0. (3.23)

The answer is given by the following

THEOREM 3.3. The vector operator TAB(a) is skew with respect to B = @'r= i SrBr

if, and only if, all the couplings are two-way, and a+{y) = a~{y) for every non-trivial
closed loop y in the graph of V. The constants Sr are given by:

In particular, if there are no such loops, so that the graph is an open chain, then
TAB{a) is always skew relative to B. If n has no repeated representations, then the
members of the class \TAB(a)\ are either all skew relative to some B or else none of
them are.

PROOF. We can write (3.23) in the block form

TA*\r)TdsBs = O.

By substituting (3.5) and (3.7) into this equation we obtain

(— l ) " ( m r + " r ) Sr ars(ks) (ls) ($ks kr — mr\ — Ams) ($ls lr—nr\Bns)

= — dsasr(— l)ms+"s(kr)(lr)($krks — ms\—Amr)($lrls — ns\Bnr).

Thus ars = 0 if and only if asr = 0, so all couplings must be two-way. Using the
relation ([20, p. 10)

U\JlJm\mlm2) = (—l)J'~miT^.(JlJJ2-m2\ml-m)>
\]2)

we get, after some manipulation,

as required. If y is the closed loop (3.17), then it is clear that the dr are consistently
defined exactly when a+(y) = a~(y). Finally if n has no repeated representations and
TA\a')e[TAB(a)}, then a^y) = a±(y), and so

a+(y) = a~(y) if and only if a+'(y) = a~'(y).

This completes the proof.

The calculation of the Lie algebra S(a), generated by TA\a) and n(x) (x eso(4, C)),
is in general extremely complicated. Of course, if TAB(a')e[TAB(a)], then S(a')
is conjugate to S(a), but if [TAB(a)] and [TAB(a')] are disjoint classes, then S(a)
may not even be isomorphic to S(a'). To see what can happen, we shall consider
some special examples of (irreducible) wave equations.
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The simplest possibility is t = 2, so that (n, V) ~ (ni®n2, V1@V2), where
7t, = (&,,/,) and n2 = (k2,l2)- From above, we have S(a)ssp(V)(so(V)), for any
vector operator TAB(a). In this case we have the following

THEOREM 3.4. Suppose the graph of V does not meet the k or I axes.
Then S{a) = sp{V)(so{V)), for any choice of coupling constants al2,a2lj^0.

PROOF. (I) If the linkage is Type I, we take k2 = k^+%, l2 = lx-\, where by
hypothesis kx >0, lv >\. Writing

AR/ = -[T*,TeA],

we find, using (3.8) and (3.11), that [3]:

| l )= a12a2lllKA"(k1),
(3.24)

(2\RA
B\2) = -

(3.25)

The off-diagonal blocks of RA
B, Rjf are of course zero. Now we observe that the

coefficients of KAk^), KA
B(Jcl+\) in (3.24) can never be equal; the same is true

for the coefficients of L/(ly), I ^ V i - i ) i n (3.25). Also, since &!>(), lv>\, these
matrices are non-zero. Thus the linear span R of the matrices RA

B will be of the
form

R = {y{x) = Zi ni(x)®{2 n2(x)\xesl(2, C)}(

with <Ji#^2; similarly the linear span R' of the matrices RA
B will be of the form

(2, C)'},

where 4iV^2- Since R,R' S5(a), we see that S(a) also contains the matrices

Z2n{x)-y'{x)A r N ( ^cs & * ( * ) * * )A,(x) = TTI(X)©0 = — - — or
S2""S.l

A2(x) = O07r2(x) = — - — or

according as x lies in i/(2, C) or 5/(2, C)'.
We now write, say,

/0
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where X is the matrix uniquely determined by X from the requirement that TAB

be skew relative to B. Then if m,neZ,+ and x,yeso(4, C) we have

(adA1(x))"(adA2C))"r11

By taking suitable repeated commutators, we find that S(a) contains all the matrices
of the form

0 B I ( I I )*K 2 ( IO\
, u,u'eU\{\}.

0 /

Here U denotes the universal enveloping algebra of so(4, C), and 1 its identity.
Now nt(U\{l}), for / = 1,2, is an irreducible algebra of linear transformations

in a finite dimensional vector space, and so it must be the complete matrix algebra
End Vt. Thus S(a) contains all the matrices

0 AlXA2\
, A.eEndV,.

\[A,XA2]~ 0 /

If A1 has matrix elements {£PJ, with £,kl #0 (say), and we choose Al = ek,k, A2 = ew

(where efJ denotes the matrix with 1 at the intersection of the /th row and the jth
column, and zeros elsewhere), then clearly

Al XA2 = £,uek'i'-

By taking suitable linear combinations of such matrices, it is clear that the matrices

/0 ^ \
I (A arbitrary)

\A o/
belong to S(a). These matrices generate all of sp(v)(so(V)), and so

S(a) = sp(V)(so(V)).

(II) If the linkage is type II, we take k2 = kx + $, l2 = /t +\, where ku lx > 0. We
find that

The arguments used in (I) now apply word for word, and S(a) must be all of
sp(V)(so{V)).
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We observe that Theorem 3.4 provides us with a large class of wave equations
for which S(a) is not isomorphic to so(5), contrary to the claims made by Bauer
[9] and Lorente, Huddleston and Roman [10]. The crucial point is to realize that,
although the diagonal blocks of RA

B, RA
B are multiples of KA

B, LA
B, respectively,

these constants are different for each block: thus dimS(a)>dim.ro(5). Note that
we excluded the cases (I) ky = 0, /t = \, and (II) kx = /, = 0. For these equations,
RA

B and RA
B each have a vanishing diagonal block, and so S(a) =so{5) [3].

We next consider the case {n, V) = ( © J = , nr, @'r=, Vr), for which the correspond-
ing graph is a straight chain (all couplings being two-way). Thus, the linkages
are either all Type I, "with

kr+1 — k T + -j ,

/r+i = W ,

or all Type II, with

We know that [TAB(a)] corresponds to a point a = (au...,ap)eC, where

By Theorem 3.3, S(a)zsp(V)(so(V)), for any choice of TA\a). It is possible to
generalize the method of proof of Theorem 3.4 for "almost all" choices of
a = (au ...,ap). More precisely, the proof is valid for every aeD, where D is a
subset of C which is dense in the Zariski topology on C [15].

THEOREM 3.5. Let V be as above, such that the graph of V does not meet the k or I
axes. Then S(a) = sp{V){so{V)) for every aeD, D^C being defined below.

PROOF (I). Suppose the linkages are all Type I. For any V, it is clear that (r\RA
B\s)

and (r\RA
B\s) can be non-zero only if ks — kr and ls = lr, Ir+ 1 or if ks = kr, kr+ 1

and /s = lr. Thus, for a straight chain, only the diagonal blocks (r\RA
B\r), (r\RA

B\r)
can be non-zero. By using (3.8) and (3.11), we obtain:

(r\RA
B\r) = gr(a)KA

B(kr), (r\RA
B\r) = hr(a)LA

B(lr),

where, for 1 ^ r ̂  /, gr(a) and hr(a) are defined by

We now take

D = {aeC>\g,(a)*gs(a), hr(a)*hs(a) for all

Choose aeD: the coefficients gr{a) are then all distinct, and so are the hr(a). Also
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by hypothesis, kt >0 and /t>0, so that K/(kT), L/(JT) are non-zero, for 1
Thus, the linear span R of the matrices RA

B is of the form

* = {><*)= © trnr(x)\xesl(2,C)},
r = l

where the £r are all distinct. If x,yesl(2, C), we have

[y(x),y(y)}= © {W[xy\),

and since sl(2, C) is semi-simple we therefore can generate the matrices

r = l
?Mx), xesl(2,C).

More generally, we can generate

/">(*)= © SrlnJLx), xesl(2,Q-
r = l

Clearly, for xesl(2, C), the matrices y(x), y(1\x), yl2\x), etc. go over all the linearly
independent matrices of the form

t

p(x)= 0 rjrnr(x), rireC.
r=\

Thus, in particular, we see that S(a) contains the matrices

A,(x) = 0e...©»i(*)e0©...©0, xesl(2,C)

(nt(x) occurring as the /th factor). In fact, this result holds for all xeso(4,C), as
we can see by considering the linear span R' of the matrices RA

B.
Now put

0 X
l2

o x23

x23 o

0

, . 1 . . "0

Then, by examining the commutators (ad Ar(x))m(ad Ar+l(y)fTii (x,yeD2,
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m, « e Z + ) , for l^r^t—l, we find that S(a) contains the matrices

465

nr(u)Xr,r+lnr+l(u')

[nXu)Xr,r+lnr+l(u')]

0 0

where u,u'eU\{\}. Arguing as in the proof of Theorem 3.4, we see that S(a)
contains all matrices with an arbitrary r,r+l block and all other blocks zero
(except for the r+ \,r block), for l < r ^ / — 1. It is easy to show that such matrices
are enough to generate all of sp(V)(so(V)), and so the result follows.

(II) If the linkages are all Type II, and we assume that kl,ll >0, the argument
is analogous to (1), with the appropriate choice of D^C.

It is probable that Theorem 3.5 remains valid for all aeC. This may be proved
directly for the case t = 3, but the argument is long and unilluminating, and does
not appear to generalize to t > 3, so we omit it.

The situation is even worse for the most general V; usually, RA
B and RA

B will
have non-vanishing off-diagonal matrix blocks, making S(a) harder to calculate.

However, Theorems 3.4 and 3.5 cover a large class of wave equations. The Lie
algebra approach we have used brings some order into the plethora of possible
wave equations, because it tells us that certain wave equations with complicated
graphs (and possibly repeated representations) are in fact members of the family
of wave equations associated with some equation covered by Theorem 3.4 or 3.5.
For example, if F, = (0,i), V2 = Q, 1), V3 = ( l , i ) and K4 = (},0), and we take the
closed chain Vl^V2^V3^V4.^V1, then it was shown by Bhabha [3] that there is
a unique choice of TAB(&) for which the off-diagonal blocks of RA

B, R/ all
vanish, and S(a)^so(5). For other choices of TA1(d), of course, S(a) cannot be
isomorphic to so(5); amongst these other possibilities we have the Pauli-Fierz
equation [8], and if we take a12 = a23 = a34. = a41 = 0 we obtain the example
V1-*V2-*V3-*Vi-*Vl mentioned earlier. In this case a tedious calculation shows
that S(a) = sl(\6).

Given some wave equation for which S(a) is known, we can in principle proceed
to find the properties of the corresponding family of wave equations by obtaining
the branching rules for S(a)-+so(4). However, we note that for S(a) = Dt (and
£ 7 ,£ 8 ) , the embedding so(4)c5(a) is not uniquely specified, since we only know
the branching rule for the natural representation. In fact, the embedding may
a priori be one of two inequivalent types [12]; this ambiguity is very interesting,
but we shall not consider it any further. In Section 5, we discuss an example for
which the embedding is uniquely specified.
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What sort of couplings may be expected in any given family of wave equations?
If (nx, V{1)) is an irreducible representation of S{a) (with highest weight ?.) which
is self-contragredient, then it is either symplectic or orthogonal, that is

So it is clear that if there is a coupling, it must be two-way. However, not all the
linked 5o(4)-sub-modules of V().) need be coupled: only a sufficient number to
ensure irreducibility. The representations of sp(n) and so(2n+\) are all self-
contragredient, but if S(a) = sl(n) or so(2n) this is not so, and one-way couplings
may appear.

Finally, we consider the properties of the wave equation (1.1) in which K may
be any matrix. It is clear that for relativistic invariance, we must have (as well as

(1-3))
[K, I»V] = 0. (3.26)

As in (3.15), K must be of the form
k

K=®{Kr®hr, Kregl{nr). (3.27)
r = 1

It is natural to consider the Lie algebra K{a) generated by S(a) and K. We then have
the following general result.

THEOREM 3.6. Suppose K is not a multiple of the identity. If n has no repeated
sub-representations, and S(a) — sp( V) (so( V)), then K(a) = sl( V) if Tm = 0 and

PROOF. The r, s block of the commutator [K, TAB(a)] will be

(Kr-Ks)(r\TAB(a\s),
while the s, r block is

-(Kr-Ks)(s\TAB(a)\r).

Since K is not a multiple of the identity, there exist r,s such that KT^KS, and clearly
[K,TAB(a)]esp(V)(so(V)) when TAB(a)esp(V)(so(V)). Now the Lie algebra K'{a)
generated by S{a) and [K, TAB(a)] consists of trace zero matrices, acts irreducibly
on V, and contains S(a) properly. Since sp{V) and so(V) are maximal among the
semi-simple sub-algebras of sl(V), it is clear that K'(a) = sl(V). Thus K{a) = sl(V)
if K is traceless: otherwise K{a) = gl(V).

To take a well-known example, if n = (i,0)©(0,£) (the Dirac equation), then
S = sp(4)^so(5) and if

~KlI2 0 "I
K = , /Cj, K2 E L ,

. 0 K2/2_

then K = sl(4)^so(6) if K2 = -KU otherwise K = gl(4).
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4. The discrete transformations. Reality conditions

Suppose we have a wave equation of the form (1.1), invariant under the proper
Lorentz group; thus, as in Section 3, we have a representation

{n, V) = [ © nh © Vt

of so(4, C), and a vector operator TA6(a). We now consider the equation of the
existence of operators P, C, T, corresponding to space reflection, charge conjuga-
tion and time reversal, respectively. The further assumption that (1.1) is invariant
under these transformations gives conditions on the ars. The Lie algebra structure
is not important here; in fact we must treat separately each member of the class
of wave equations corresponding to some Lie algebra L^>so(4, C), appending the
operators P, C, T "by hand" in each case.

In order to simplify the formulae, we shall assume throughout this section that
n has no repeated representations. It is not hard to derive the analogous formulae
for the general case.

(1) Space reflection

As is well known, if we define

W"(x') = PW(x),
(4.1)

X ^~ X y X ^~ "~ Xj

then we must have
PKJ=LJP. (4.2)

It follows that the matrix blocks of P are of the form

W s = co{r)dri8mrns8nrms. (4.3)

Here, 8rs means Skrksd,r,s, and f will always refer to the conjugate (lr,kr) of the
representation (kr,/r); co(r) is given in the table below

1 / (4.4)
±1 ±J

Thus, P exists if with each irreducible sub-representation nr of n, the conjugate
nr also appears in n.

The wave equation (1.1) is invariant under spatial reflection if

P<x° = <x°P, Pak=-akP. (4.5)

It is sufficient to consider the condition on a0; the conditions on a* will then follow
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from (4.2). Since a0 = ^(T1 l+T2i), if we substitute (3.7) and (4.3) into the equation

we obtain

co(r)afs= -ar-sco(s).

Replacing s by s, we may write

Clearly, we have

co(s)= - — co(r). (4.6)

a-rs= +ars if kr^lr, ks = ls,

and if kr ~ lr, ks = ls, then there is no condition on ars, but P must act in the oppo-
site way on Vr, Vs.

If y is a closed loop of the form (3.17), then by eliminating tw(r,) from the
equations (4.6), we obtain the further condition:

(since n must be even).

(2) Charge conjugation

We define [6b]
Wc(x) = VW(X) = CRx),

where ^ is antilinear and C linear, and require that y/c transforms like \ji under a
Lorentz transformation A:

yc'(x') = TT(A) W%X), X' = AX. (4.8)

This means that

Cn(A) = n(A)C,
and so

CK3 = -L3C, CK± = -LTC. (4.9)

From (4.9), it is clear that the matrix blocks of C are of the form:

{r\C\s)mrn,,msns = C(O(-l) t '+"v + ' '+"^r i<5m r.-n s<5n r .-m s, C(r)GC. (4.10)

The condition

ycc = y (that is CC = 1) (4.11)

implies that

« 0 « 0 ( 2 ( * + w ) . (4.12)
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If we also require that y/c transforms like y/ under space reflection, then

CP = PC, (4.13)

which means that

C(r)co(r) = «(/•) C(r). (4.14)

Thus we see that (4.12) and (4.14) are compatible provided that we take P2 = I
for particles with integer spin, and P2 = - / for particles with half-integer spin.

In the presence of an external electromagnetic field, with the assumption of
minimal coupling, the wave equation (1.1) becomes

a" (J^ - ieA^j ¥(x) + iKV,(x) = 0, (4.15)

where e is the charge. If we demand that i//c satisfies

a" (J^+ieA^J w%x) + iK^(x) = 0, (4.16)

then we obtain
= 0. (4.17)

The condition for a0, on using (3.7) and (4.10), becomes

If we use the identity

UJiMm^i) = {-\)h+h~J {Jd2J-m\-mi-m2),

and note that kr + lr and ks + ls are simultaneously integral or half-integral, we
obtain (replacing s by s):

C(*)=-«r) . <4-18)

Again, if y is the closed loop (3.17), we must also have:

^rif2flf2r3 ••• 5 f n - i f n _ <*f,fn ( 4 . 1 9 )
a r , r 2 f l r 2 r 3 " •«!•„-,.•„ flr,rn

(3) Time reversal
For physical reasons, we use the Wigner definition:

<pV) = -*>(*) = T^M. * ° ' = - * ° , x' = x, (4.20)

where &~ is antilinear and T linear. To obtain the multiplication relations for T
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with the generators /„„ of n, we observe that, since the orbital part of the angular
momentum tensor is

then under time reversal we should have

The spin part is J^ = il^ and so, by analogy, we take
or j <%--1 /
* / Jkl J ~ ~ Jkli

These relations give us
TK3 = -K3T, TK± = -KXT,

(4.21)
TL3 = —L3T, TL± — —Li—T.

The matrix blocks of T thus are of the form:

{r\T\s)mrnr.mstts = T(r)(-l)kr+lr + mr+"rSrsdm msdn, Bs, T(r)eC. (4.22)

It is well known that
^ " 2 = ± / , that is TT=±I, (4.23)

and this gives
|T(0|2(-l)2<*r+' r )= ±1. (4.24)

Thus, r(r) is a phase factor, and we must take ST1 = +1 for integer spin, and
ST2 = - / f o r half-integer spin.

We turn now to the question of when (1.1) is invariant under time reversal.
It is easy to see that this is so when

r o ° - a ° 7 = 0 , 7V= + a* r=0 . (4.25)

Imitating the argument used for charge conjugation, we can use the condition on
a0 to obtain

X(s)=a—T(r). (4.26)

Also, the further condition

must hold for the closed loop (3.17).
Finally, we discuss the conditions under which (1.1) is obtainable from an in-

variant Lagrangian [8]. We require the existence of a non-degenerate Hermitian
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form h{v,w) on V, invariant under proper Lorentz transformations A:

h{v,<x\\\ +/?ir2) = xh(v, ir,) + /?//(i;, w2),

h(aul +fiv2, w) = ah(vl,w) + jlh(v2, it), (4.28)

h(v, w) = h(w, v),

h(n(A)v,n(A)w) = h(v,w).

The last equation says that

h(I"v v,w) + h(v, 7"VH) = 0, (4.29)

or, if H is the matrix of h:

HFV= -(I»y H (4.30)

(where A^ means A?). Thus

HK3 =L\H = L3H,

HK± =L%H = L±H.

Therefore H has matrix blocks

(r\H\s)mrn,,msns = h(r)Sr-sSmrnsSnrms, h{r) = W\ (4-31)

Such a form exists, then, if for each sub-representation nr of n, the conjugate
nr also appears in V.

If h is also to be invariant under space reflection, we have

H = P^HP, that is h(r) eR.

The wave equation (1.1) is derivable from an invariant Lagrangian if, in addition
to the above [8],

h(<x°v,w) = h(v, a0 >v)
or (4.32)

/ /a 0 = (<x°y H.

By substituting (3.7) and (4.31) into (4.32), we obtain

h{s) = ers
a-2h(r), (4.33)

where £„ = (_ i)<*'+'»>-<*p+/r> = + 1 or - 1 according as Vr^±Vs is Type I or Type
II. Furthermore, we see that for the closed loop (3.17):

(the factors ers cancel).
It is interesting to observe here that, if we assume the wave equation (1.1)
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to be invariant under charge conjugation and also obtainable from an invariant
Lagrangian, then by combining (4.19) and (4.34) we have, for every closed loop y,

a+(y) = a-(y).

But this is exactly the condition that TA\a) be skew relative to some form B
(by Theorem 3.3). There is therefore some physical justification for taking S(a) to
be a sub-algebra of sp(V) (so(V)).

Finally, if we demand locality of the theory, then the equation (1.1) must be
invariant under the combined operation 0 = P^ST = PCT. Since 0 has matrix
blocks

(r\0\s)mrar;m,n, = K(r)drsSmrmsSnrns, (4.35)
where

we have invariance under 0 if

0a" + a" 0 = 0, that is x(r) = - K(S). (4.36)

The phases of P, <g, $~ are easily chosen to satisfy (4.36).

5. The Kursunoglu equation

Throughout this section, we shall take (TT, V) = {nx®n2, ^©K;,) , wither, = (l,$),
n2 = ( i . !)• The corresponding wave equation will be referred to as the Kursunoglu
equation, although it is not the most general form of his equation [13]. By Theorem
3.4, we know that S(a) = sp(V) = sp{\2), no matter how we choose the vector
operator TAB(ai2,a21). The Kursunoglu equation gives rise to a whole family of
wave equations: one for each irreducible representation of sp(ll).

First, we consider the Lorentz content of some of these equations, We must give
the branching rules for

sp( 12) => sp(6)®sp(6) 3 so(4)
Or (5.1)

C6=>C3@C3=>D2,

where the branching rule for the natural representation is

(100000)->(100; 000)0(000; 100)-+(l,*)e(|, 1). (5.2)

From Section 2, we know that (5.2) specifies the embedding D2<=C6 up to equiva-
lence.

The branching rules for C6=>C3@C3 are readily obtained from the formula
given in the proof of Proposition 3.2. In Table 1 we give a list of these branching
rules for the lowest dimensional irreducible representations of C6, where we have
made use of the tables for the division of S-functions given in [19]. Note that if
one of the arguments of the term (a-J) involves a Young diagram with more than
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three rows, we must use the modification rules [16] to express <<*;/?> in terms of

simpler quantities involving Young diagrams with thres rows or less.

To obtain the branching rules for C3®C3->D2, we need to make full use of

Dynkin's method. Consider the embedding

(5.3)

The weights of the representation (1,£) are

/z1' = 2A,' + A2,

jU2' = 2A1'-Ai',

t*3 = A2> (5.4)

<«4 = ~ ^ 2 .

/i5' = -2Xi+X2',

fi6 = -2A, ' -A 2 .

TABLE 1
Some branching rules for C6->-C3®C3 (see [19])

<A>

<o>
<1>

<2>
<13>
<3>
<14>

<21>
<15>
<22>

dim V{X)

1
12
65
78

208
364
429
429
560
572

1650

<0;0>
<1; 0>©<0; 1>
<l2;0>©<0; 12>©<1;1>€
<2;0>©<0;2>©<l;l>
<l3;0>©<0; 13>©<12; 1>

Branching rule

D<0; 0>

©<1;12>®<1;O>©<O;1
<3;0>©<0;3>©<2;l>©<l;2>
<13;1>©<1; 13>©<12; 12>©<12; 0>©<0; 12>©<1
<13; 13>©<12;12>©<1;1
<21;0>©<0;21>©<2;l>(
<13;12>©<12;13>©<12;
<22;0>©<0;22>©<21;l>

>©<0; 0>
B<1;2>©<12;1>©<1;1
1>©<1;12>©<1;O>©<O
©<1;21>©<2;2>©<12;

l>

;l>©<0;0>

2>©<l;0>©<0; 1>
; 1>
12>©<12;O>©<O;12>

These are ordered so that n[^... ^//g relative to the ordering induced by the

simple roots a t = 2X[ and <x2 = 2X2 of D2 = A^A^ The m a p / * is given by [12]:

= 2A1'-2A2> (5.5)

f*(«3) = n3-nA = 2X2,
or, equivalently, by [14]:

/*(A1) = /i l ' = 2A1' + A2)

4A1', (5.6)
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If now V(X) is an irreducible C3-module, with X =^f= 1w(A(, and we know the
full set IT(/l) of weights of V(X), then by applying the map/* according to (5.5) or
(5.6) we can immediately find the branching rules for (5.3). In the Appendix, we
shall indicate in general how these weights and their multiplicities may be calculated,
but for now we are content to use the weight diagrams for the lowest dimensional
C3-modules already given by Konuma, Shima and Wada [21]. The branching
rules are given in Table 2, where both the notations (ml,m2,m3) and (,rur2,r3y
for V(X) are used.

It is clear that the branching rules for the embedding

C3=>D2,

(5.7)
(ioo)-(i, i),

may be obtained from those for (5.3) by writing (l,k) instead of the (k, I) occurring
in Table 2.

We now observe that, since the irreducible C3©C3-modules are of the form
K(A)® K(I), with V(X), V(I) irreducible C3-modules, every weight n of V(X)® V(l)
is of the form v + v, where v(v) is a weight of K(A)(K(I)). Thus f*(n) = /*(v) +/*(v),
where/*(v) is specified from (5.3), and/*(v) from (5.7), and so, to obtain the branch-
ing rule for C3©C3->£>2, we take the tensor product of V(X) regarded as a D2-
module from (5.3) with V(X~) regarded as a £>2-module from (5.7) In Table 3,
we give some of these branching rules, listing only those <a;/?> with a,/MO; the
cases where one or both of a, /? are zero are covered by Table 2. Also, we only list
one of the pair <a; /?>, </?; a>, since the branching rules are related by interchanging
(it,/) with (/,*).

By combining these results, it is easy to find the branching rules (5.1) for all the
irreducible representations of sp(\2) listed in Table 1. In Fig. 1, we give diagrams

TABLE 2
Some branching rules for C3->-Z)2, where (100)->-(l,±) (see [16])

(« , ,m, ,m 2 ) <r l fr , ,ra>

(000) <0>
(100) <1>
(010) <12>
(001) <13>
(200) <2>
(300) <3>
(110) <21>
(101) <212>
(002) <23>
(020) <22>

dim V(X)

1
6

14
14
21
56
64
70
84
90

Branching rule

(0,0)
(l,i)
(2,0)0(1,1)
(2,i)0(O,l)
(2,1)0(1,0)0(0,1)
(3,4)0(2, i)©(l,l)©(l,i)
(3,i)©(2,})©(2,|)©(U)©(l,})©(0,i)
(3, l)©(3,0)©(2,1)©(1,2)©(1,1)©(1,O)
(4,1)0(2,2)8(3,0)8(0,3)0(2,1)0(0,1)
(4,0)0(3,1)0(2,2)9(2,1)0(2,0)0(1,1)0(0,2)0(0,0)
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A = A2

dim. 65

• 2 #

i ;
1 2

(a )

A = 2A
dim. 78

•

|2 '
1 2

( b )

3 k

i ,
3 k

Fig. 1. Some members of the Kursunoglu family of wave equations. Each graph represents the
branching rule for some irreducible representation V(X) of sp(l 2), restricted to so(4). If an irreducible

https://doi.org/10.1017/S1446181100001802 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100001802


476 A. Cant and C. A. Hurst [31]

dim. 208

- .2 .

?• .2

- . 2 .2
• 2 . 2

I . 2 •
0 1 2

(C)

3 k

dim. 572

l - I
. »0 1 2 3

(d)
representation (fc, /) of so(A) occurs more than once, its multiplicity is shown on the diagram next

to the point (k,l).
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illustrating these rules for the representations with highest weights X = X2, X
(the adjoint representation), X = X3 and X = Xs.

TABLE 3

Some branching rules for C}®C3-+D2

VW®VQ

<1;1>

< i 2 ; i>

< i 3 ; i >

<2; 1>

<21;1>

< l 2 ; l 2 >

<1 3 ; 12>

<1 3 ; 13>

<2;2>

,) Dimension

36

84

84

126

384

196

196

196

441

Branching rule

(1, i)®ft, 1 )^(l, })©(}, !)©(!, |)©(i, i)
[(2,0)©(l,l)]®(|,l)^(f, l)©2(3

f, l)©(l,2)©(i,2)©(|,0)©(i, 1)
©(1,0)

[(2,^)©(0, i)]®(i, lfetf, *)©(*, i)©«, *)©(},*)©(*, «©(*,»

[(2, l)©(l,0)©(0,1)]®(1, l)s(i,2)©(f D©(i,0)©(i,2)©2(|, 1)

[(3, i)©(2, ̂ ©(2, i)©(l, i)®(l, i)©(0, i)]®(j-, 1)^G, |)©G, |)
©3(|, |)©3(|, i)©(i, i)©2Q, 1)©4(1, |)©4(|, i)©(i, l)©3ft, i)

[(2,0)©(l, 1)]®[(O,2)©(1, l)]~2(2,2)©(3,1)©(1,3)©2(2,1)©2(1,2)
©2(l,l)©(2,0)©(0,2)©(l,l)©(l,0)©(0,l)©(0,0)

[(2, i)©(0,1)]® [(0,2)©(1,1)]^(2, i)©2(2, i)©(3, J)©(3, i)©(2, |)
©2(1, |)©2(1, i)©(l, i)©(0, i)©(0, i)©(0, |)©(0, i)

[(2, i)©(0, !)]©[(!, 2)©(|, 0)]~(|, i)®(i, i)@(i, 4)©2(|, i)©(i, 1)
©ft. i)©ft. *)©2(i, «©(*, i)ffift. i)©(i, 1)

[(2, l)©(l,0)©(0,1)]®[(1,2)©(1,O)©(0,1)1^(3,3)©(3,2)©2(3,l)
©(2,3)©3(2,2)©3(2,l)©2(l,3)©3(l,2)©5(l,l)©2(0,2)©2(2,0)
©(l,0)©(0,l)©2(0,0)

In order to discuss the mass spectra and external field problem for this family
of wave equations, we must consider the properties of the matrix <x"p^

For the Kursunoglu equation itself, it is convenient to enumerate the basis of

Vx as

We then take {vnm}, ordered in the same way, as a basis for V2. With respect to
this basis we see that, from (3.5),

r
- 1

5 , = B2 = i
- l

- l
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By direct calculation, using (3.8) and (3.10), we find that the matrices TAB(a12,a2i)
are given by:

where

J-21 _

0 0

0 1

0 0

0 0

0 0

0 0

i22\

K-a2iA
l i

0

0

0

0

2

0

0

0

0

0

0

0

0

0

V2
0

0

0

0

0

0

0

0

2_

*

0

-y/2

0

0

0

0

0 0 0

0 0 0

0 0 - 2

0 0 0

- 1 0 0

0 0 0

(5.8)

0 0

0 0

0 0

0 0

0 0

/2 0

A2i =

V2
0

0

0

0

0

0 0

0 0

0 0

-2 0

0 0

0 0

0

- I

0

0

0

0

0'

0

0

0

0

1 0 0 0 0 0

0 0 0 -v/2 0 0

0 0 0 0 0 0

0 V2 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 0

These matrices are skew relative to B = Bi®(ai2/a2l)Bl.
We take our Cartan sub-algebra H of sp{\2) to be the linear span of the matrices

h2 = e22-e55,

"3 ~ e13~e*4-i ,r g\

"5 ~ e88 e l 1,11>

"6 = e 9 9 ~ e 1 0 , 1 0 -
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If £,: H-*C are the coordinate functions on H, then the simple roots are

a! = £, - £ 2 ,

a2 = e 2 -£ 3 ,

a3 = £3-e4. (5.10)

a4 = £ 4 -£ 5 ,

a5 = £ 5 - £ 6 ,

a6 = 2£6)

and so the fundamental dominant weights are

Xt= t Ej, U i ^ 6 . (5.11)

To simplify the calculation, we shall take al2 = — an to be real, thus ensuring
that the Kursunoglu equation is invariant under spatial reflection and may be
derived from an invariant Lagrangian (see (4.6) and (4.33)). By changing K if
necessary, we may as well assume that al2 = —a2i = 1. By (5.8) we see that the
minimal and characteristic polynomials of oc^p^ are:

(where p2 — p^p" = (p0)2 — p2).

Thus, if />2^0, a"/?,, is semi-simple, and so it lies in some CSA/fof s/»(12)([15],
p. 35). We know then that there is an inner automorphism rjp of sp(\2) such that
r]p{K) = H. Such an automorphism is of the form:

r,P(X)=O(p)-iXO(p), Xesp(l2),

O(pYBO(p) = B

(see, for example, [22], p. 284). The matrix tjp(ix
l'pll)eH is diagonal, its diagonal

elements being the eigenvalues of <x"pll in some order. Now we demand further that,
when/? =p = (1,0,0,0) (that isa"/?,, = a0), the map tjp does not alter the embedding
so(3)csp(l2), where so(3) denotes the diagonal sub-algebra of so(4)^sl(2)®sl(2).
We therefore assume that

where

H3 = K3+L3 = diag&i, - i l , - i , - i f , i -hh -h - i}-

By direct calculation, we find that
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This now fixes the order of the diagonal elements of rjp(a
l'pl,), and we have

>/»„) = (iht+lhz + lhs-lht + hs+heKp1?. (5.12)

We now go over to an irreducible representation (nx, V(X)) of sp(l2) with highest
weight

1=1

It is clear that the characteristic polynomial of nx(t]p(tx'ipll)) (and hence of
will be

Y\(x-v{r,p{<x»p>,)),
V

the product being taken over all weights v of nx. If we write v = £ ntXt, and use
(5.11), then the characteristic polynomial of nx(a"pll) becomes

[1 (x-G(v)(/>2)*) (5.13)

(valid now for any p^), where

G(v) = In! + 4«2 + 6«3 + 4«4 + 5«5 + 6n6.

In particular, (5.13) tells us that n^ofp^) has exactly as many zero eigenvalues
as there are weights v of nx for which G(v) = 0. Now the irreducible representation
nx of 5/7(12) is one of two kinds; if ml +m3 + m5 is even, it is orthogonal (integral
spin), and if ml+m3 + m5 is odd, it is symplectic (half-integral spin). In the former
case, we observe that A is a sum of roots, and so 0 is a weight of nx. Since G(0) = 0,
we see that n^p^) will always be singular for integral spin equations. In the latter
case, nx(ix''pfl) may or may not be singular.

These results should be contrasted with the corresponding properties of the
so(5) equations, where afp^ is always singular for integral spin, and always non-
singular for half-integral spin [23].

From the above we may immediately write down the spectrum of rest masses
for the wave equation corresponding to nx. By going to the rest frame p = 0 in
(1.1), we see that p0 has the possible values

po = Ji- for all v such that G(v)#0.
G(y)

We exclude, therefore, the "states" in the null space of a0 since they would corres-
pond to (unphysical) infinite masses. This null space is invariant under so(3),
and so the corresponding spins will have to be excluded. They may easily be found
by applying the map /* associated with the embedding / : so(3)-*sp(\2). The
situation is analogous to that for the so(5) equations, where, for example, in the
five-dimensional representation the states corresponding to spin 1 are unphysical
[5].

16
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We conclude with some brief remarks on the causality properties of these
equations, with or without an external field being present. We refer the reader to
[23] for a thorough general discussion of this problem, and an analysis of the
causality properties of the so(5) equations.

If n^p^) is non-singular, then the corresponding wave equation is hyperbolic
(in the sense of Courant-Hilbert [24]). We know then that there exists a retarded
fundamental solution, and so propagation is causal. This remains true even in the
presence of an external field, provided we assume minimal coupling:

The situation is more complicated if nx(<x"/?„) happens to be singular, because the
wave equation is then not hyperbolic as it stands. In this case, the trick is to study
the associated multi-mass Klein-Gordon equation [23]:

d(d) A(d) y/(x) = n ( • - p ) V(*) = 0, (5.14)

where A(d) = <x"dll + iK, • = d^ and ±bt,..., ±br are the non-zero eigenvalues
of a0 (for brevity, we write a" now instead of rc^a")). The operator d(d) is called the
Klein—Gordon divisor; it exists because det(ot"^ + z/c) does not vanish identically.
The equation (5.14) is certainly hyperbolic. To study the effect of an external field,
we must find the order of the highest derivative term in d(d).

Going over to momentum space, if 0 is an j-fold eigenvalue of a0, we know from
above that OL^P^ — K is similar to the matrix

s factors

Thus (a"p^ — K)~1 will have highest power zero in/? (not —1). Therefore, d(p)

has the highest power 2r in p, the same as the operator

We now see that, if we use

[d~, d~ ] = - ieF^XFpy = dllAv-dvAll):

d(d-)A(d~)= f\

where B(d) has highest derivatives of order 2r— 1. By the same argument as in
[23], we can conclude that propagation is causal for the coupled equations.

In fact, a similar argument goes through for any wave equation of the form (1.1).
Problems with causality seem to be mainly associated with those wave equations
having subsidiary conditions [24].
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6. Conclusions. Suggestions for further work

The main point of this paper has been to show that the so(5) family of wave
equations is merely one possibility: as we have seen, there are an enormous number
of other equations, including those associated with the symplectic and orthogonal
Lie algebras. Our aim was not to discuss explicitly every possible wave equation,
but to indicate some general properties. It is ultimately a matter of taste and further
physical requirements which dictates the kinds of wave equations to allow. Current
work on wave equations has focused attention on the problems of second quantiza-
tion, causality and the appearance of negative probabilities. Some comments and
many recent references are given in [23,30]; in particular it is concluded in [30]
that for the so(5) equation there is a built-in or "kinematic" indefinite metric, and
it is hard to remove this feature in a quantized picture.

There are two further topics arising from this paper which are worth investiga-
tion. Firstly, one might consider the infinite-dimensional metaplectic representa-
tions of the appropriate real forms of sp(n) and so(n) as possible wave equations.
These would be analogous to the Majorana equations, which correspond to the
so-called "ladder" representations of sp(4, R) [25]. Secondly, there is the problem
of describing zero mass wave equations, which are more general than massive wave
equations in the sense that the invariance condition (1.3) now reads

where p,n are arbitrary representations of 5o(4)[8]. Thus the matrices a" may in
general be rectangular.
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Appendix

We discuss here the problem of calculating the multiplicity of a weight in an
irreducible C3-module. One way which is quite rapid is to use a character formula
derived recently by Demazure [26]. For modules of large dimension, Kostant's
formula is perhaps the most useful, since the Weyl group W of C3 has order 48,
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which is not too unwieldy. This formula involves the "partition function" for
C3, which does not seem to have been given explicitly elsewhere, so we now derive
an expression for it.

Recall that if L is a complex semi-simple Lie algebra, with H a Cartan sub-
algebra, then the multiplicity mx(ft) of the weight // e H* in the irreducible L-module
K(A) is given by Kostant's formula (see, for example, [15], p. 138):

Here, for ae W, sn{a) = + 1 or - 1 according as a is the product of an even or odd
number of simple reflections aX{ = ah and 8 = iZv>o a - For veH*,PL(v) is defined
to be the number of sets of non-negative integers {ka; a>0} such that

v= E
cc<0

and PL is called the partition function for L. Clearly PL(y) = 0 unless v lies in the

root lattice.
Tarski [27] found explicit formulae for PL where L is AUA2,A3,B2 or G2, but

his geometric method does not easily generalize to other Lie algebras. We can
calculate PL for the case L = C3 as follows.

The positive roots for C3 are

with simple roots A = {a1,a2,a3}. If veH*, write v = nt ax + n 2 a 2 + n 3 a 3 . Then the

condition

/ = 1

gives the following system of Diophantine equations:

nl = k1+kA.+k6+l'

n2 = k2 + ki + ks+l

which we write as
M lr 'ylr — ]f 4 - If 4- Irfl^ — /v g — ^A-9 — A-j T(V4Tfv6)

„ ^ / _ *\\j. ')lf K I lr I K I lr

tl2 — LK-i — Z/Cg —Z/Cg — " 2 ' " • ' " S ' " 6 '

The latter equations effectively reduce the problem to the situation L = A3,
already solved by Gruber and Zaccaria ([28], p. 928). This is clear because

The method of generating functions leads to a similar formula for the partition function [31].
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the positive roots for A3 are {<xi,<x2,<x3',ai + <X2,<x2 + <x3',ai+tx2 + <x3'}, with

ai,<x2,<x3 being the simple roots of A3. Thus, as far as combinatorial properties

are concerned, the positive root system for A3 behaves like the subset {/?,, ...,/?6}

of <D+. We therefore have

= I E I PA3(ni-j-2k,n2-2(i+j+k),n3-(i+j+lc)),
i>0 j*0 k>0

where PA} is given in terms of PAl by means of the formula [28]:

«i nj-i

^3(«i.«2.«3)= E E PA1{ni-i,n2-i-j) if nun2^n3

i = 0 y-o

n3 n, - 1

= E E PAjn2-i-j,n3-i) if /73 <«x ^« 2

1 = 0 ; = 0

"3 «2 - i

= E E PA,(n3-i,n2-i-j) if/js./i^n,
i = o ; = o
" l " 3 - 1

= E E PA2(n2-i-j,n1-i) if«,<«3^«2.
i=o y=o

Finally, the partition function for ^42 is given by

{1 +min (Ji,52) if Si,s2 are non-negative integers,

0 otherwise.

Thus we have obtained an explicit although rather complicated formula for

the partition function for C3, and we may use Kostant's formula to find the

multiplicity of a weight in an irreducible C3-module.
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