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m-BLOCKS COLLECTIONS AND

CASTELNUOVO-MUMFORD REGULARITY

IN MULTIPROJECTIVE SPACES

L. COSTA∗ and R. M. MIRÓ-ROIG∗∗

Abstract. The main goal of the paper is to generalize Castelnuovo-Mumford

regularity for coherent sheaves on projective spaces to coherent sheaves on n-

dimensional smooth projective varieties X with an n-block collection B which

generates the bounded derived category D
b(OX-mod). To this end, we use the

theory of n-blocks and Beilinson type spectral sequence to define the notion of

regularity of a coherent sheaf F on X with respect to the n-block collection

B. We show that the basic formal properties of the Castelnuovo-Mumford

regularity of coherent sheaves over projective spaces continue to hold in this

new setting and we compare our definition of regularity with previous ones.

In particular, we show that in case of coherent sheaves on P
n and for the n-

block collection B = (OPn ,OPn(1), . . . ,OPn(n)) on P
n Castelnuovo-Mumford

regularity and our new definition of regularity coincide. Finally, we carefully

study the regularity of coherent sheaves on a multiprojective space P
n1 × · · · ×

P
nr with respect to a suitable n1 + · · ·+ nr-block collection and we compare it

with the multigraded variant of the Castelnuovo-Mumford regularity given by

Hoffman and Wang in [14].

§1. Introduction

In Chapter 14 of [19] D. Mumford introduced the concept of regular-

ity for a coherent sheaf F on a projective space P
n to bound the family

of all projective subschemes having fixed Hilbert polynomial. Since then

Castelnuovo-Mumford regularity has become a fundamental invariant in

commutative algebra and algebraic geometry. It measures the complexity

of a module or a sheaf; more precisely the regularity of a module bounds

the largest degree of the minimal generators and the degree of syzygies and

the regularity of a sheaf estimates the smallest twist for which the sheaf is
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globally generated.

Let X be a smooth projective variety of dimension n and let B =

(E0, . . . , En) be an n-block collection of objects of Db(OX -mod) which gen-

erates the bounded derived category Db(OX -mod). The goal of this paper is

to introduce the notion of regularity of a coherent sheaf on X with respect

to B as a generalization of the notion of Castelnuovo-Mumford regularity of

coherent sheaves on projective spaces. To introduce this new notion of regu-

larity and to state the basic formal properties, we use helix theory, m-blocks

collections and Beilinson type spectral sequences.

We want to stress that Castelnuovo-Mumford regularity as well as the

notion of regularity developed for Grassmannians in [4] and multiprojective

spaces in [14] fall under the umbrella of B-regularity. Moreover, in this

new setting, we are able to prove analogs of some of the classical results on

m-regularity for coherent sheaves on projective spaces.

Next we outline the structure of the paper. In Section 2, we briefly

recall the notions and properties of full strongly exceptional collections of

sheaves on a smooth projective variety needed later. The notion of m-block

as well as the concept of mutations of blocks are presented in Section 3.

Sections 4 and 5 are the heart of the paper. In Section 4, we first introduce

the notion of helix of blocks associated to an m-block collection of objects

of Db(OX -mod) as a natural generalization of the notion of helix associated

to an exceptional collection of objects of Db(OX -mod). Then, using Beilin-

son type spectral sequences, we give the promised definition of regularity

of a coherent sheaf F on X with respect to an n-block collection B which

generates Db(OX -mod), we prove that the Castelnuovo-Mumford regularity

of a coherent sheaf F on P
n coincides with the regularity of F with respect

to a suitable n-block collection on P
n and we show that the main formal

properties of the Castelnuovo-Mumford regularity carry over to the new

setting. In Section 5, we restrict our attention to multiprojective spaces

X = P
n1 × · · · ×P

nr and we analyze the relationship between our definition

of regularity and the multigraded variant of the Castelnuovo-Mumford reg-

ularity introduced by Hoffman and Wang in [14]. Finally, in Section 6, we

collect some questions which naturally arise from this paper.

Notation. Throughout this paper X will be a smooth projective vari-

ety defined over the complex numbers C (most of the results are true for va-

rieties over an algebraically closed field) and we denote by D = Db(OX -mod)
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the derived category of bounded complexes of coherent sheaves of OX -

modules. Notice that D is an abelian linear triangulated category. We

identify, as usual, any coherent sheaf F onX to the object (0 → F → 0) ∈ D

concentrated in degree zero and we will not distinguish between a vector

bundle and its locally free sheaf of sections.

§2. Basic facts on exceptional collections

As we pointed out in the introduction, in this section we gather the

basic definitions and properties on full strongly exceptional collections of

sheaves on a smooth projective variety needed in the sequel. For general

facts on triangulated categories see [20].

Definition 2.1. Let X be a smooth projective variety.

(i) An object F ∈ D is exceptional if Hom•
D(F, F ) is a 1-dimensional

algebra generated by the identity.

(ii) An ordered collection (F0, F1, . . . , Fm) of objects of D is an excep-

tional collection if each object Fi is exceptional and Ext•D(Fk, Fj) = 0 for

j < k.

(iii) An exceptional collection (F0, F1, . . . , Fm) of objects of D is a

strongly exceptional collection if in addition Exti
D(Fj , Fk) = 0 for i 6= 0

and j ≤ k.

(iv) An ordered collection of objects of D, (F0, F1, . . . , Fm), is a full

(strongly) exceptional collection if it is a (strongly) exceptional collection

and F0, F1, . . . , Fm generate the bounded derived category D.

Remark 2.2. The existence of a full strongly exceptional collection

(F0, F1, . . . , Fm) of coherent sheaves on a smooth projective variety X im-

poses rather a strong restriction on X, namely that the Grothendieck group

K0(X) = K0(OX -mod) is isomorphic to Z
m+1.

Let us illustrate the above definition with precise examples:

Example 2.3. (1) (OPr ,OPr(1), . . . ,OPr(r)) is a full strongly excep-

tional collection of coherent sheaves on P
r and (Ωr

Pr(r),Ω
r−1
Pr (r − 1), . . . ,

Ω1
Pr(1),OPr ) is also a full strongly exceptional collection of coherent sheaves

on P
r.

(2) Let Fn = P(OP1 ⊕OP1(n)), n ≥ 0, be a Hirzebruch surface. Denote

by ξ (resp. F ) the class of the tautological line bundle (resp. the class of a
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fiber of the natural projection p : Fn → P
1). Then, (O,O(F ),O(ξ),O(F +

ξ)) is a full strongly exceptional collection of coherent sheaves on Fn.

(3) (OPn(−n)�OPm(−m),OPn(−n+1)�OPm(−m), . . . ,OPn�OPm(−m),

. . . ,OPn(−n) �OPm ,OPn(−n+ 1) �OPm , . . . ,OPn �OPm) is a full strongly

exceptional collection of locally free sheaves on P
n×P

m (see also [5]; Propo-

sition 4.16).

(4) Let π : P̃
2(l) → P

2 be the blow up of P
2 at l points and let E1 =

π−1(p1), . . . , El = π−1(pl) be the exceptional divisors. Then, the collection

of line bundles on P̃
2(l)

(O,O(E1),O(E2), . . . ,O(El),O(H),O(2H))

is a full strongly exceptional collection of coherent sheaves on P̃
2(l).

(5) Let X = Gr(k, n) be the Grassmannian of k-dimensional subspaces

of the n-dimensional vector space. We have the canonical exact sequence

0 −→ S −→ On
X −→ Q −→ 0

where S denotes the tautological k-dimensional bundle and Q the quotient

bundle. In the sequel, ΣαS denotes the space of the irreducible repre-

sentations of the group GL(S) with highest weight α = (α1, . . . , αs) and

|α| =
∑s

i=1 αi (see [10] for general facts on Weyl modules). Denote by

A(k, n) the set of locally free sheaves ΣαS on Gr(k, n) where α runs over

Young diagrams fitting inside a k × (n− k) rectangle. Notice that for any

ΣαS ∈ A(k, n), 0 ≤ |α| ≤ k(n − k). Set ρ(k, n) := ]A(k, n). By [15];

Proposition 2.2 (a), for any ΣαS,ΣβS ∈ A(k, n), Exti(ΣαS,ΣβS) 6= 0 only

if i = 0 and by [16] (3.5), Hom(ΣαS,ΣβS) 6= 0 only if αi ≥ βi for all i.

Denote by Er the set of bundles ΣαS ∈ A(k, n) with |α| = k(n− k)− r. Let

σ be the ordered collection of locally free sheaves on X constructed in the

following way. Going from the left to the right, first put all the ΣαS ∈ E0,

i.e. all the ΣαS ∈ A(k, n) with |α| = k(n − k). The i-th time put all the

ΣαS ∈ Ei, i.e. all the ΣαS ∈ A(k, n) with |α| = k(n− k)− i and so on until

i = k(n− k). By construction σ is a strongly exceptional collection and by

[15] Proposition 1.4, it is full. So, A(k, n) can be totally ordered in such a

way that we obtain a full strongly exceptional collection (E1, . . . , Eρ(k,n)) of

locally free sheaves on X.

(6) Let Qn ⊂ P
n+1, n > 2, be a hyperquadric surface. By [16]; Propo-

sition 4.9, if n is even and Σ1, Σ2 are the Spinor bundles on Qn, then

(Σ1(−n),Σ2(−n),OQn(−n+ 1), . . . ,OQn(−1),OQn)
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is a full strongly exceptional collection of locally free sheaves on Qn; and if

n is odd and Σ is the Spinor bundle on Qn, then

(Σ(−n),OQn(−n+ 1), . . . ,OQn(−1),OQn)

is a full strongly exceptional collection of locally free sheaves on Qn.

The importance of the existence of full strongly exceptional collections

relies on the fact that each full strongly exceptional collection (F0, F1, . . . ,

Fm) of coherent sheaves on a smooth projective variety X determines a tilt-

ing sheaf T =
⊕m

i=0 Fi and hence functors RHomX(T ,−) : Db(OX -mod) →

Db(A) and −⊗L

A T : Db(A) → Db(OX -mod) which define mutually inverse

equivalences between the bounded derived categories of coherent sheaves

on X and the bounded derived category of finitely generated right A =

HomX(T , T )-modules, respectively.

Definition 2.4. Let X be a smooth projective variety and let (A,B)

be an exceptional pair of objects of D. We define objects LAB and RBA

with the aid of the following distinguished triangles in the category D:

LAB −→ Hom•
D(A,B) ⊗A −→ B −→ LAB[1](2.1)

RBA[−1] −→ A −→ Hom×•
D (A,B) ⊗B −→ RBA.(2.2)

A left mutation of an exceptional pair σ = (A,B) is the pair

LAσ = (LAB,A) = (LB,A)

and a right mutation of an exceptional pair σ = (A,B) is the pair

RAσ = (B,RBA) = (B,RA).

Lower indices will be omitted whenever this does not cause confusion.

Definition 2.5. Let X be a smooth projective variety and let σ =

(E0, . . . , Em) be an exceptional collection of objects of D. A left mutation

(resp. right mutation) of σ is defined as a mutation of a pair of adjacent

objects in this collection, i.e. for any 1 ≤ i ≤ m a left mutation Li re-

places the i-th pair of consequent elements (Ei−1, Ei) by its left mutation

(LEi−1Ei, Ei−1) and a right mutation Ri replaces the same pair of conse-

quent elements (Ei−1, Ei) by its right mutation (Ei, REi
Ei−1):

Liσ = LEi−1σ = (E0, . . . , LEi−1Ei, Ei−1, . . . , Em)

Riσ = REi−1σ = (E0, . . . , Ei, REi
Ei−1, . . . , Em).
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Notation 2.6. Let X be a smooth projective variety and let σ =

(F0, . . . , Fm) be an exceptional collection of objects of D. It is convenient

to agree that for any 0 ≤ i, j ≤ m and i+ j ≤ m,

R(j)Fi = R(j−1)RFi = RFi+j
· · ·RFi+2RFi+1Fi =: RFi+j ···Fi+2Fi+1Fi

R
(0)
Fi−1

σ = σ R
(j)
Fi−1

σ = R
(j−1)
RFi−1

(RFi−1σ)

and similar notation for compositions of left mutations.

Remark 2.7. (1) If X is a smooth projective variety and σ = (F0, . . . ,

Fm) is an exceptional collection of objects of D, then any mutation of σ is

an exceptional collection. Moreover, if σ generates the category D, then the

mutated collection also generates D.

(2) In general, a mutation of a strongly exceptional collection is not a

strongly exceptional collection. In fact, take X = P
1 × P

1 and consider the

full strongly exceptional collection σ = (OX ,OX(1, 0),OX (0, 1),OX (1, 1))

of line bundles on X. It is not difficult to check that the mutated collection

(OX ,OX(1, 0), LOX (0,1)OX(1, 1),OX (0, 1))

= (OX ,OX(1, 0),OX (−1, 1),OX (0, 1))

is no more a strongly exceptional collection of line bundles on X.

Let X be a smooth projective variety of dimension n. It is well known

that if full strongly exceptional collections of coherent sheaves on X exist

then all of them have the same length and it is equal to the rank of K0(X).

Even more, this length is bounded below by n+ 1 because for any smooth

projective variety X of dimension n we have rank(K0(X)) ≥ n+ 1. In [6];

we give the following definition (see also [3] and [13]):

Definition 2.8. Let X be a smooth projective variety of dimension n.

We say that an ordered collection of coherent sheaves σ = (E0, . . . , En) is a

geometric collection if it is a full exceptional collection of coherent sheaves

on X of minimal length, n+1, i.e. of length one greater than the dimension

of X.

By [2]; Assertion 9.2, Theorem 9.3 and Corollary 9.4, geometric collec-

tions are automatically strongly exceptional collections of coherent sheaves

and the strongly exceptionality is preserved under mutations.
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Example 2.9. (1) The collection σ = (OPr (−r),OPr(−r+1),OPr (−r+

2), . . . ,OPr) of line bundles on P
r is a geometric collection of coherent

sheaves.

(2) If n is odd and Qn ⊂ P
n+1 is a quadric hypersurface, the collection

of locally free sheaves

(Σ(−n),OQn(−n+ 1), . . . ,OQn(−1),OQn)

being Σ the Spinor bundle on Qn is a geometric collection of locally free

sheaves on Qn.

(3) If n is even and Qn ⊂ P
n+1 is a quadric hypersurface, the collection

of locally free sheaves

(Σ1(−n),Σ2(−n),OQn(−n+ 1), . . . ,OQn(−1),OQn)

being Σ1 and Σ2 the Spinor bundles on Qn, is a full strongly exceptional

collection of locally free sheaves on Qn. Since all full strongly exceptional

collections of coherent sheaves on Qn have length n + 2, we conclude that

there are no geometric collections of coherent sheaves on Qn for even n.

(4) It follows from Example 2.3 (5) that there are no geometric collec-

tions of coherent sheaves on Gr(k, n) if k 6= n− 1.

(5) Any smooth Fano threefold X with Pic(X) ∼= Z and trivial inter-

mediate Jacobian has a geometric collection (see [6]; Proposition 3.6).

In [6], the authors extend the notion of Castelnuovo-Mumford regularity

for coherent sheaves on projective spaces to coherent sheaves on smooth

projective varieties with a geometric collection. So we are led to consider

the following problem:

Problem 2.10. To characterize the smooth projective varieties which

have a geometric collection.

To our knowledge Problem 2.10 is far of being solved (see [6] for more

information). Moreover, we want to stress that the existence of a geometric

collection on an n-dimensional smooth variety X imposes a strong restric-

tion on X; e.g. X has to be a Fano variety ([3]; Theorem 3.4) and the

Grothendieck group K0(X) has to be a Z-free module of rank n+ 1. So, it

is convenient to generalize the notion of geometric collection in order to be

able to extend the concept of Castelnuovo-Mumford regularity for coherent
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sheaves on projective spaces to coherent sheaves on smooth projective va-

rieties as Grassmannians, even-dimensional hyperquadrics, multiprojective

spaces, etc., which do not have geometric collections. This will be achieved

allowing exceptional collections σ = (F0, . . . , Fm) of arbitrary length but

packing the objects Fi ∈ D in suitable subcollections called blocks.

§3. m-blocks and mutations

The notion of block was introduced by Karpov and Nogin in [17]. We

start this section recalling its definition and properties (see also [13]).

Definition 3.1. (i) An exceptional collection (F0, F1, . . . , Fm) of ob-

jects of D is a block if Exti
D(Fj , Fk) = 0 for any i and j 6= k.

(ii) An m-block collection of type (α0, α1, . . . , αm) of objects of D is an

exceptional collection

B = (E0, E1, . . . , Em) = (E0
1 , . . . , E

0
α0
, E1

1 , . . . , E
1
α1
, . . . , Em

1 , . . . , E
m
αm

)

such that all the subcollections Ej = (Ej
1 , E

j
2, . . . , E

j
αj ) are blocks.

Note that an exceptional collection (E0, E1, . . . , Em) is an m-block of

type (1, 1, . . . , 1).

Example 3.2. (1) (OPr(−r),OPr(−r+1),OPr (−r+ 2), . . . ,OPr) is an

r-block of type (1, 1, . . . , 1).

(2) Let X = Gr(k, n) be the Grassmannian of k-dimensional subspaces

of the n-dimensional vector space, k > 1. In Example 2.3 (4), we have

seen that A(k, n) can be totally ordered in such a way that we obtain a full

strongly exceptional collection

σ = (E1, . . . , Eρ(k,n))

of locally free sheaves on X. Moreover, packing in the same block Er the

bundles ΣαS ∈ σ with |α| = k(n− k) − r we obtain

σ = (E1, . . . , Eρ(k,n)) = (E0, . . . , Ek(n−k))

a k(n−k)-block collection of locally free sheaves on X (see Example 2.3 (4)

for details).

(3) Let Qn ⊂ P
n+1, n ≥ 2, be a hyperquadric variety. According to

Example 2.3 (5), if n is even and Σ1, Σ2 are the Spinor bundles on Qn, then

(Σ1(−n),Σ2(−n),OQn(−n+ 1), . . . ,OQn(−1),OQn)

https://doi.org/10.1017/S0027763000009387 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009387


m-BLOCKS COLLECTIONS AND CASTELNUOVO-MUMFORD REGULARITY 127

is a full strongly exceptional collection of locally free sheaves on Qn; and if

n is odd and Σ is the Spinor bundle on Qn, then

(Σ(−n),OQn(−n+ 1), . . . ,OQn(−1),OQn)

is a full strongly exceptional collection of locally free sheaves on Qn. Since

Exti(Σ1,Σ2) = 0 for any i ≥ 0, we get that (E0, E1, . . . , En) where

Ej = OQn(−n+ j) for 1 ≤ j ≤ n, E0 =

{
(Σ1(−n),Σ2(−n)) if n even

(Σ(−n)) if n odd

is an n-block collection of locally free sheaves on Qn for all n.

(4) Let X = P
n1 × · · · × P

ns be a multiprojective space of dimension

d = n1 + · · · + ns. For any 1 ≤ i ≤ s, denote by pi : X → P
ni the natural

projection and write

OX(a1, a2, . . . , as) := p∗1OPn1 (a1) ⊗ p∗2OPn2 (a2) ⊗ · · · ⊗ p∗sOPns (as).

For any 0 ≤ j ≤ d, denote by Ej the collection of all line bundles on X

OX(aj
1, a

j
2, . . . , a

j
s)

with −ni ≤ a
j
i ≤ 0 and

∑s
i=1 a

j
i = j − d. Using the Künneth formula for

locally free sheaves on algebraic varieties, we prove that each Ej is a block

and that

B = (E0, E1, . . . , Ed)

is a d-block collection of line bundles on X.

We will now introduce the notion of mutation of block collections.

Definition 3.3. Let X be a smooth projective variety and consider a

1-block collection (E ,F) = (E1, . . . , En, F1, . . . , Fm) of objects of D. A left

mutation of Fj by E is the object defined by (see Notation 2.6)

LEFj := LE1E2···EnFj

and a right mutation of Ej by F is the object defined by

RFEj := RFmFm−1···F1Ej .

A left mutation of (E ,F) is the pair (LEF , E) where

LEF := (LEF1, LEF2, . . . , LEFm)

and a right mutation of (E ,F) is the pair (F , RFE) where

RFE := (RFE1, RFE2, . . . , RFEn).
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Note that by [11] (2.2), LEF and RFE are blocks and the pairs (LEF , E)

and (F , RFE) are 1-block collections.

Remark 3.4. It follows from the proof of [17]; Proposition 2.2 and

Proposition 2.3 that given a 1-block collection (E ,F) = (E1, . . . , En, F1, . . . ,

Fm), the objects LEFj and RFEj can be defined with the aid of the following

distinguished triangles in the category D

LEFj −→
⊕n

i=1 Hom•
D(Ei, Fj) ⊗Ei −→ Fj −→ LEFj [1](3.1)

RFEj[−1] −→ Ej −→
⊕m

i=1 Hom×•
D (Ej , Fi) ⊗ Fi −→ RFEj .(3.2)

Applying Hom•
D(Ei, ∗) to the triangle (3.1) we get the orthogonality

relation

(3.3) Hom•
D(Ei, LEFj) = 0 for all 1 ≤ i ≤ n

i.e., LEFj ∈ [E ]⊥ := {F ∈ D | Hom•
D(E,F ) = 0 for all E ∈ [E ]}, where we

denote by [E ] the full triangulated subcategory of D generated by E1, . . . , En.

Similarly, Hom•
D(∗, Fj) applied to the triangle (3.2) gives the orthogo-

nality relation

(3.4) Hom•
D(RFEi, Fj) = 0 for all 1 ≤ j ≤ m

i.e., RFEi ∈
⊥[F ] := {E ∈ D | Hom•

D(E,F ) = 0 for all F ∈ [F ]}.

Notation 3.5. It is convenient to agree that

R(j)Ei = R(j−1)REi = REi+j
· · ·REi+2REi+1Ei =: REi+j ···Ei+2Ei+1Ei

L(j)Ei = L(j−1)LEi = LEi−j
· · ·LEi−2LEi−1Ei =: LEi−j ···Ei−2Ei−1Ei.

Let B = (E0, . . . , Em) be an m-block collection of type α0, . . . , αm of

objects of D which generates D. Twom-block collections H = (H0, . . . ,Hm)

and G = (G0, . . . ,Gm) of type β0, . . . , βm with βi = αm−i of objects of D are

called left dual m-block collection of B and right dual m-block collection of

B if

(3.5) Hom•
D(Hi

j, E
k
l ) = Hom•

D(Ek
l , G

i
j) = 0

except for

(3.6) Extk
D(Hk

i , E
m−k
i ) = Extm−k

D (Em−k
i , Gk

i ) = C.
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Remark 3.6. Let X be a smooth projective variety. Given an m-block

collection B = (E0, . . . , Em) of type α0, . . . , αm of objects of D which gener-

ates D, left dual m-block collections and right dual m-block collections of B

exist and they are unique up to isomorphism. In fact, by [7]; Proposition 3.9,

the m-block collection

(3.7) H = (R(0)Em, R
(1)Em−1, . . . , R

(m)E0)

where by definition

R(i)Em−i = (R(i)Em−i
1 , . . . , R(i)Em−i

αm−i
)

= (REmEm−1 ···Em−i+1E
m−i
1 , . . . , REmEm−1 ···Em−i+1E

m−i
αm−i

)

satisfies the orthogonality conditions (3.5) and (3.6). Therefore, H is the left

dual m-block collection of B. By consequent left mutations of the m-block

collection B and arguing in the same way we get the right dual m-block

collection of B.

Let X be an n-dimensional smooth projective variety with an m-block

collection B = (E0, . . . , Em) which generates the bounded derived category

D. The left dual m-block collection of B will play an important role in our

definition of regularity of a coherent sheaf F on X with respect to B (see

Definition 4.5). Therefore, we will now describe explicitly the left dual m-

block collection of the examples of m-block collections given in Example 3.2.

Example 3.7. (1) Let V be a C-vector space of dimension n+ 1 and

set P
n = P(V ). We consider the n-block collection B = (OPn ,OPn(1), . . . ,

OPn(n)) on P
n. Using the exterior powers

0 −→
∧k−1 TPn −→

∧k V ⊗OPn(k) −→
∧k TPn −→ 0

of the Euler sequence

0 −→ OPn −→ V ⊗OPn(1) −→ TPn −→ 0

we compute the left dual n-block collection of B = (OPn ,OPn(1), . . . ,

OPn(n)) and we get

(OPn(n), R(1)OPn(n− 1), . . . , R(j)OPn(n− j), . . . , R(n)OPn)

= (OPn(n), TPn(n− 1), . . . ,
∧j TPn(n− j), . . . ,

∧n TPn).
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(2) Let X = P
n1 × · · · × P

ns be a multiprojective space of dimension

d = n1 + · · · + ns. For any 0 ≤ j ≤ d, denote by Ej the collection of all line

bundles on X

OX(aj
1, a

j
2, . . . , a

j
s)

with −ni ≤ a
j
i ≤ 0 and

∑s
i=1 a

j
i = j − d. By Example 3.2 (4), B =

(E0, E1, . . . , Ed) is a d-block collection of line bundles on X. By Remark 3.6,

the left dual d-block collection of B is given by

(3.8) H = (R(0)Ed, R
(1)Ed−1, . . . , R

(d)E0)

where by definition

R(k)Ed−k = (. . . , R(k)OX(t1, . . . , ts), . . .)

= (. . . , REd···Ed−k+1
OX(t1, . . . , ts), . . .).

A straightforward computation shows that for any OX(t1, . . . , ts) ∈ Ed−k

and any 0 ≤ k ≤ d,

R(k)OX(t1, . . . , ts) = REd···Ed−k+1
OX(t1, . . . , ts)

=

−t1∧
TPn1 (t1) � · · · �

−ts∧
TPns (ts).

(3) Let Qn ⊂ P
n+1, n ≥ 2, be a hyperquadric variety and let B =

(E0, E1, . . . , En) where

Ej = OQn(−n+ j) for 1 ≤ j ≤ n, E0 =

{
(Σ1(−n),Σ2(−n)) if n even

(Σ(−n)) if n odd

be the n-block collection of locally free sheaves on Qn described in Exam-

ple 3.2 (3). To define the left dual n-block collection of B we need to fix

some notation. We set Ωj := Ωj

Pn+1 and we define inductively ψj :

ψ0 := OQn , ψ1 := Ω1(1)|Qn

and, for all j ≥ 2, we define the locally free sheaf ψj as the unique non-

splitting extension (note that Ext1(ψj−2,Ω
j(j)|Qn

) = C):

0 −→ Ωj(j)|Qn
−→ ψj −→ ψj−2 −→ 0.

By [16]; Proposition 4.11 and using the fact that the left dual n-block col-

lection of a given n-block collection is uniquely determined up to unique
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isomorphism by the orthogonality conditions described in Remark 3.6, we

get that the left dual n-block collection of the n-block collection B is

H = (R(0)En, R
(1)En−1, . . . , R

(n)E0)

where

R(j)En−j = ψ∗
j for 1 ≤ j ≤ n, R(n)E0 =

{
(Σ∗

1(1),Σ
∗
2(1)) if n even

(Σ∗(1)) if n odd.

(4) Let X = Gr(k, n) be the Grassmannian of k-dimensional subspaces

of the n-dimensional vector space and let B = (E0, E1, . . . , Ek(n−k)) with

Er = {ΣαS | |α| = k(n− k) − r} be the k(n− k)-block collection of locally

free sheaves on X described in Example 3.2 (2). The sequence α defines

a Young diagram and we denote by α̃ the sequence corresponding to the

conjugate diagram. By [16] Lemma 3.2, for any two indices: α : n − k ≥

α1 ≥ · · · ≥ αk ≥ 0 and β : k ≥ β1 ≥ · · · ≥ βn−k ≥ 0 we have

Hi(X,ΣαS ⊗ ΣβQ∗) =

{
C if α = β̃ and i = |α|

0 otherwise.

Therefore, the left dual k(n − k)-block collection of B = (E0, E1, . . . ,

Ek(n−k)) with Er = {ΣαS | |α| = k(n− k) − r} is

H = (R(0)Ek(n−k), R
(1)Ek(n−k)−1, . . . , R

(j)Ek(n−k)−j, . . . , R
(k(n−k))E0)

where R(r)Ek(n−k)−r = {Σα̃Q | |α| = r}.

We want to point out that the notion of m-block collection is the conve-

nient generalization of the notion of geometric collection we were looking for.

Indeed, we will see that the behavior of n-block collections, n = dim(X),

is really good in the sense that they are automatically strongly exceptional

collections and that their structure is preserved under mutations through

blocks. More precisely we have:

Proposition 3.8. Let X be a smooth projective variety of dimension

n and let B = (E0, . . . , En) be an n-block collection of coherent sheaves on X

and assume that B generates the category D. Then, we have:

(1) The sequence B is a full strongly exceptional collection of coherent

sheaves on X.
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(2) All mutations through the blocks Ej can be computed using short

exact sequences of coherent sheaves.

(3) Any mutation of B through any block Ej is a full strongly exceptional

collection of pure sheaves, i.e. complexes concentrated in the zero component

of the grading.

(4) Any mutation of B through any block Ej is an n-block collection.

Proof. See [2]; Theorem 9.5 and Remark b) below and [13]; Theorem 1.

Remark 3.9. By Remark 2.7 (2), a mutation of a strongly exceptional

collection is not, in general, a strongly exceptional collection. In fact,

σ = (OX ,OX(1, 0),OX (0, 1),OX (1, 1)) is a strongly exceptional collection

on X = P
1 × P

1 and the mutated collection

(OX ,OX(1, 0), LOX (0,1)OX(1, 1),OX (0, 1))

= (OX ,OX(1, 0),OX (−1, 1),OX (0, 1))

is no more a strongly exceptional collection on X. However, we can pack

the objects of σ in a suitable subcollections of blocks B = (E0, E1, E2) =

(OX , (OX(1, 0),OX (0, 1)),OX (1, 1)) and according to Proposition 3.8 any

mutation of B through any block Ej is a full strongly exceptional collection.

So, for instance, the mutation of B through the block E1 is the full strongly

exceptional collection

(E0, LE1E2, E1) = (OX , LOX(1,0)OX (0,1)OX(1, 1), (OX (1, 0),OX (0, 1))

= (OX , TX(−1,−1), (OX (1, 0),OX (0, 1))).

To compute LE1E2 = LOX(1,0)OX (0,1)OX(1, 1) = TX(−1,−1) we have

used the exact sequences

0 −→ OX(−1, 1) −→ V ∗ ⊗OX(0, 1) −→ OX(1, 1) −→ 0, and

0 −→ OX(−1, 1) −→ TX(−1,−1) −→
∧2 V ∗ ⊗OX(1, 0) −→ 0

being X = P
1 × P

1 and P
1 = P(V ).

Beilinson Theorem was stated in 1978 [1] and since then it has became

a major tool in classifying vector bundles over projective spaces. Beilin-

son spectral sequence was generalized by Kapranov to hyperquadrics and

https://doi.org/10.1017/S0027763000009387 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000009387


m-BLOCKS COLLECTIONS AND CASTELNUOVO-MUMFORD REGULARITY 133

Grassmannians ([15] and [16]) and by the authors to any smooth projec-

tive variety with a geometric collection [6]. We are now ready to generalize

Beilinson Theorem to any smooth projective variety X of dimension n with

an n-block collection B = (E0, E1, . . . , En), Ej = (Ej
1, . . . , E

j
αj ) of coherent

sheaves on X which generates D.

Theorem 3.10. (Beilinson type spectral sequence) Let X be a smooth

projective variety of dimension n with an n-block collection B = (E0, E1, . . . ,

En), Ei = (Ei
1, . . . , E

i
αi

) of coherent sheaves on X which generates D. Then

for any coherent sheaf F on X there are two spectral sequences situated in

the square −n ≤ p ≤ 0, 0 ≤ q ≤ n, with E1-term

IE
pq
1 =





⊕αp+n

i=1 Extq(REn···Ep+n+1E
p+n
i , F ) ⊗E

p+n
i

if −n ≤ p ≤ −1
⊕αn

i=1 Extq(En
i , F ) ⊗En

i if p = 0

(3.9)

IIE
pq
1 =





⊕αp+n

i=1 Extq((Ep+n
i )∗, F ) ⊗ (REn ···Ep+n+1E

p+n
i )∗

if −n ≤ p ≤ −1
⊕αn

i=1 Extq(En
i
∗, F ) ⊗En

i
∗ if p = 0

(3.10)

and differentials d
pq
r : Ep,q

r → E
p+r,q−r+1
r which converge to

IE
i
∞ = IIE

i
∞ =

{
F for i = 0

0 for i 6= 0.

Proof. We will only prove the existence of the first spectral sequence.

The other can be done similarly. For any γ, 0 ≤ γ ≤ n, we write iV •
γ for

the graded vector spaces

iV •
γ = Hom•

D(REn···Eγ+1E
γ
i , F ) = Hom•

D(Eγ
i , LEγ+1···EnF )

where the second equality follows from standard properties of mutations

([11]; Pag. 12–14).

By Remark 3.4, the triangles defining the consequent right mutations

of F and the consequent left mutations of F [n] through (E0, . . . , En) can be

written as

( αγ⊕

i=1

iV •
γ ⊗E

γ
i

)
[−1]

kγ
−→ REγ ···E0F [−1]

iγ
−→ REγ−1 ···E0F

jγ
−→

αγ⊕

i=1

iV •
γ ⊗E

γ
i

αγ⊕

i=1

iV •
γ ⊗Eγ

i

jγ+1

−→ LEγ+1···EnF [n]
iγ+1

−→ LEγ ···EnF [n+ 1]
kγ+1

−→
( αγ⊕

i=1

iV •
γ ⊗Eγ

i

)
[1].
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We arrange them into the following big diagram:

REn···E0F

in

��

F [n]

i0

��

⊕αn

i=1
iV •

n ⊗En
i

kn

iiRRRRRRRRRRRRRR

j0

55kkkkkkkkkkkkkkkk

REn−1 ···E0F

jn

55llllllllllllll

in−1

��

LEnF [n]

k0
iiSSSSSSSSSSSSSS

i1

��

⊕αn−1

i=1
iV •

n−1 ⊗En−1
i

kn−1

iiRRRRRRRRRRRRR

dn−1

OO

j1
55kkkkkkkkkkkkkk

REn−2 ···E0F

jn−1

55llllllllllllll

LEn−1EnF [n]

k1
iiRRRRRRRRRRRRRR

⊕αn−2

i=1
iV •

n−2 ⊗En−2
i

kn−2

iiRRRRRRRRRRRRRR

dn−2

OO

j2
55llllllllllllll

RE1E0F

i1

��

LE2···EnF [n]

in−1

��

⊕α1
i=1

iV •
1 ⊗E1

i

k1

iiRRRRRRRRRRRRRR

jn−1
55kkkkkkkkkkkkkk

RE0F

j1
55lllllllllllllll

i0

��

LE1···EnF [n]

kn−1
iiSSSSSSSSSSSSSS

in

��

⊕α0
i=1

iV •
0 ⊗E0

i

k0

iiRRRRRRRRRRRRRRR

d0

OO

jn
55kkkkkkkkkkkkkk

F

j0
55lllllllllllllllll

LE0···EnF [n]

kn
iiSSSSSSSSSSSSSS

At this diagram, all oriented triangles along left and right vertical bor-

ders are distinguished, the morphisms i• and i• have degree one, and all
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triangles and rhombuses in the central column are commutative. So, there

is the following complex, functorial on F ,

L• : 0 −→
⊕α0

i=1
iV •

0 ⊗E0
i −→

⊕α1
i=1

iV •
1 ⊗E1

i −→ · · ·

· · · −→
⊕αn−1

i=1
iV •

n−1 ⊗En−1
i −→

⊕αn

i=1
iV •

n ⊗En
i −→ 0

and by the above Postnikov-system we have that F is a right convolution of

this complex. Then, for an arbitrary linear covariant cohomological functor

Φ•, there exists an spectral sequence with E1-term

IE
pq
1 = Φq(Lp)

situated in the square 0 ≤ p, q ≤ n and converging to Φp+q(F ) (see [16];

1.5). Since Φ• is a linear functor, we have

Φq(Lp) =

αp⊕

i=1

Φq(iV •
p ⊗E

p
i ) =

αp⊕

i=1

⊕

l

iV l
p ⊗ Φq−l(Ep

i )(3.11)

=

αp⊕

i=1

⊕

α+β=q

iV α
p ⊗ Φβ(Ep

i ).

In particular, if we consider the covariant linear cohomology functor which

takes a complex to its cohomology sheaf and acts identically on pure sheaves,

i.e.

Φβ(F ) =

{
F for β = 0

0 for β 6= 0

on any pure sheaf F , in the square 0 ≤ p, q ≤ n, we get

IE
pq
1 =

αp⊕

i=1

iV q
p ⊗E

p
i =

αp⊕

i=1

Extq(REn···Ep+1E
p
i , F ) ⊗E

p
i

which converges to

IE
i
∞ =

{
F for i = 0

0 for i 6= 0.

Finally, if we call p′ = p− n, we get the spectral sequence

IE
p′q
1 =

αp′+n⊕

i=1

Extq(REn···Ep′+n+1
E

p′+n
i , F ) ⊗E

p′+n
i
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situated in the square −n ≤ p′ ≤ 0, 0 ≤ q ≤ n which converges to

IE
i
∞ =

{
F for i = 0

0 for i 6= 0.

Remark 3.11. We want to point out that in Theorem 3.10 the number

of blocks is one greater than the dimension of X but a priori there is no

restriction on the length αj of each block Ej = (Ej
1, . . . , E

j
αj ).

Arguing as in [6]; Lemma 2.23 but using the distinguished triangles (3.1)

and (3.2) instead of exact sequences, we can prove the following technical

Lemma that will be used in next sections.

Lemma 3.12. Let X be a smooth projective variety of dimension n and

let B = (E0, . . . , En) be an n-block collection of coherent sheaves on X. For

any i < j and any locally free sheaf F on X, it holds:

(a) (LEi
E

j
k)

∗ = RE∗

i
E

j
k

∗
for any E

j
k ∈ Ej;

(b) (REj
Ei

k)
∗ = LE∗

j
Ei

k

∗
for any Ei

k ∈ Ei;

(c) (REj
Ei

k)⊗ F ∼= REj⊗F (Ei
k ⊗F ) for any Ei

k ∈ Ei and (LEi
E

j
k)⊗ F ∼=

LEi⊗F (Ej
k ⊗ F ) for any E

j
k ∈ Ej.

§4. Regularity with respect to n-blocks collections

The goal of this section is to extend the notion of Castelnuovo-Mumford

regularity for coherent sheaves on a projective space to coherent sheaves on

an n-dimensional smooth projective variety with an n-block collection of

coherent sheaves on X which generates D. We establish for coherent sheaves

on P
n the agreement of the new definition of regularity with the old one and

we prove that many formal properties of Castelnuovo-Mumford regularity

continue to hold in our more general setup.

To extend the notion of Castelnuovo-Mumford regularity, we will first

introduce the notion of helix of blocks associated to an m-block collection

of objects of D as a natural generalization of the notion of helix associated

to an exceptional collection of objects of D introduced by J. M. Drezet and

J. Le Potier in [8] and L. Gorodentsev and A. N. Rudakov in [12] (see also

[13]).

Definition 4.1. Let X be a smooth projective variety and let B =

(E0, E1, . . . , Em), Ej = (Ej
1, . . . , E

j
αj ) be an m-block collection of objects of
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D. We extend, in both directions, the collection B to an infinite sequence

of blocks defining by induction:

Ei+m := R(m)Ei−1 and E−i = L(m)Em−i+1 i > 0.

The collection HB = {Ei}i∈Z is called the helix of blocks associated to B.

Each helix HB = {Ei}i∈Z is uniquely recovered from any collection of (m+1)

of its consequent blocks Bi = (Ei, Ei+1, . . . , Ei+m).

Remark 4.2. Let X be a smooth projective variety, let B = (E0, E1, . . . ,

Em), Ej = (Ej
1, . . . , E

j
αj ), be an m-block collection and let HB = {Ei}i∈Z be

the helix of blocks associated to B. If we consider HB just as a collection

of objects of D (we forget the blocks) then it turns out to be the helix

associated to the exceptional collection

σ = (E0, E1, . . . , Em) = (E0
1 , . . . , E

0
α0
, E1

1 , . . . , E
1
α1
, . . . , Em

1 , . . . , E
m
αm

).

Definition 4.3. Let X be a smooth projective variety of dimension n

with canonical bundle KX . A sequence {Ei}i∈Z of blocks of objects of D

will be called a helix of blocks of period (m+ 1) if for any i ∈ Z,

Ei = Ei+m+1 ⊗KX [n−m]

where Ej ⊗KX [n −m] denotes the block (Ej
1 ⊗KX [n −m], Ej

2 ⊗KX [n −

m], . . . , Ej
αj ⊗KX [n −m]) and the number in square brackets denotes the

multiplicity of the shift of an object to the left viewed as a graded complex

in D.

It follows from Remark 4.2 and [2]; Theorem 4.1 that if X is a smooth

projective variety of dimension n and B = (E0, E1, . . . , Em), Ej = (Ej
1, . . . ,

E
j
αj ), is an m-block collection of objects of D, then the helix of blocks

HB = {Ei}i∈Z associated to B is an helix of blocks of period m+ 1, i.e., for

any i ∈ Z, Ei = Ei+m+1 ⊗KX [n−m].

As an immediate consequence of Proposition 3.8, we have:

Corollary 4.4. Let X be a smooth projective variety of dimension n,

let B = (E0, . . . , En), Ej = (Ej
1, . . . , E

j
αj ) be an n-block collection of coherent

sheaves on X which generates D and denote by HB = {Ei}i∈Z the helix of

blocks associated to B. Then, HB is an helix of period n+1 and any n-block

collection Bi = (Ei, Ei+1, . . . , Ei+n) of n + 1 subsequent blocks is an n-block

collection of coherent sheaves on X which generates D.
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Let X be a smooth projective variety of dimension n and let B =

(E0, E1, . . . , En), Ej = (Ej
1, . . . , E

j
αj ) be an n-block collection of coherent

sheaves on X which generates D. Associated to B we have a helix of blocks

HB = {Ei}i∈Z; and for any n-block collection Bi = (Ei, Ei+1, . . . , Ei+n) of

n+1 subsequent blocks and any coherent OX -module F we have a spectral

sequence (see Theorem 3.10)

(4.1) i
IE

pq
1 =





⊕αp+n+i

s=1 Extq(REi+n···Ei+p+n+1E
i+p+n
s , F ) ⊗E

i+p+n
s

if −n ≤ p ≤ −1
⊕αi+n

s=1 Extq(Ei+n
s , F ) ⊗Ei+n

s if p = 0

situated in the square 0 ≤ q ≤ n, −n ≤ p ≤ 0 which converges to

Er
∞ =

{
F for r = 0

0 for r 6= 0.

Definition 4.5. Let X be a smooth projective variety of dimension

n with an n-block collection B = (E0, E1, . . . , En), Ei = (Ei
1, . . . , E

i
αi

) of

coherent sheaves on X which generates D, let HB = {Ei}i∈Z be the helix of

blocks associated to B and let F be a coherent OX -module. We say that F

is m-regular with respect to B if for q > 0 we have

{⊕α−m+p

s=1 Extq(RE−m ···E−m+p+1E
−m+p
s , F ) = 0 for −n ≤ p ≤ −1

⊕α−m

s=1 Extq(E−m
s , F ) = 0 for p = 0.

So, F is m-regular with respect to B if −n−mE
pq
1 = 0 for q > 0 in (4.1).

In particular, if F is m-regular with respect to B the spectral sequence
−n−mE

pq
1 collapses at E2 and we get the following exact sequence:

(4.2) 0 −→ L−n −→ · · · −→ L−1 −→ L0 −→ F −→ 0

where

Lp =





⊕α−m+p

s=1 H0(X, (RE−m ···E−m+p+1E
−m+p
s )∗ ⊗ F ) ⊗E

−m+p
s

if −n ≤ p ≤ −1
⊕α−m

s=1 H0((E−m
s )∗ ⊗ F ) ⊗E−m

s if p = 0.

Definition 4.6. Let X be a smooth projective variety of dimension

n with an n-block collection B = (E0, E1, . . . , En), Ej = (Ej
1, . . . , E

j
αj ) of
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coherent sheaves on X which generates D and let F be a coherent OX -

module. We define the regularity of F with respect to B (or B-regularity of

F ), RegB(F ), as the least integer m such that F is m-regular with respect

to B in the sense of Definition 4.5. We set RegB(F ) = −∞ if there is no

such integer.

Remark 4.7. Let X be a smooth projective variety of dimension n.

Since a geometric collection σ = (E0, E1, . . . , En) is an n-block collection

of type (1, . . . , 1), Definitions 4.5 and 4.6 extend the definition of regularity

with respect to a geometric collection introduced by the authors in [6].

Example 4.8. We consider the n-block collection B = (OPn ,OPn(1),

. . . ,OPn(n)) on P
n and the associated helix HB = {OPn(i)}i∈Z. According

to Example 3.7 (1), the left dual n-block collection of an n-block collection

Bi = (OPn(i),OPn(i+ 1), . . . ,OPn(i+ n)) of n+ 1 subsequent blocks of HB

is

(OPn(i+ n), R(1)OPn(i+ n− 1), . . . , R(j)OPn(i+ n− j), . . . , R(n)OPn(i))

= (OPn(i+ n), TPn(i+ n− 1), . . . ,
∧j TPn(i+ n− j), . . . ,

∧n TPn(i)).

Therefore, for any coherent sheaf F on P
n our definition reduces to say: F is

m-regular with respect to B if Extq(
∧−p T (−m+ p), F ) = Hq(Pn,Ω−p(m−

p) ⊗ F ) = 0 for all q > 0 and all p, −n ≤ p ≤ 0.

We will now compute the regularity with respect to B = (E0, E1, . . . , En)

of any coherent sheaf Ei
t ∈ Ei.

Proposition 4.9. Let X be a smooth projective variety of dimension

n with an n-block collection B = (E0, E1, . . . , En), Ej = (Ej
1 , . . . , E

j
αj ), which

generates D and let HB = {Ei}i∈Z be the associated helix. Then, for any

i ∈ Z and any Ei
t ∈ Ei, RegB(Ei

t) = −i.

Proof. First of all we will see that RegB(Ei
t) ≤ −i. By the orthogonality

relation (3.4), for q > 0 and −n ≤ p ≤ 0, we have

αi+p⊕

s=1

Extq(REi···Ei+p+1E
i+p
s , Ei

t) = 0 for −n ≤ p ≤ −1, and

αi⊕

s=1

Extq(Ei
s, E

i
t) = 0 for p = 0.
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So, Ei
t is (−i)-regular with respect to B or, equivalently, RegB(Ei

t) ≤ −i.

Let us now see that Ei
t is not (−i − 1)-regular with respect to B. To

this end, it is enough to see that

αi⊕

s=1

Ext1(REi+1E
i
s, E

i
t) 6= 0.

To prove it, we write i = αn + j with 0 ≤ j < n, α ∈ Z. We consider

the n-block collection

Bαn = (Eαn, Eαn+1, . . . , Eαn+j = Ei, . . . , Eαn+n)

and its left dual n-block collection

(Eαn+n, R
(1)Eαn+n−1, . . . , R

(n−j)Eαn+j , . . . , R
(n)Eαn).

By Remark 3.6 and the equality (3.6)

Extn−j(R(n−j)Ei
t , E

i
t) = Extn−j(REαn+n···Ei+2Ei+1E

i
t , E

i
t) = C.

So, if j = n− 1 we are done. Assume j < n− 1. Since Extq(Ei
s, E

i
t) = 0

for q > 0 and 1 ≤ s ≤ αi, applying the contravariant functor Hom( · , E i
t) to

the exact sequence

0 −→ REαn+n−1···Ei+1E
i
t −→

⊕αi

s=1 Hom∗(REαn+n−1 ···Ei+1E
i
t , E

i
s) ⊗Ei

s

−→ R(n−j)Ei
t −→ 0

we obtain

Extn−j−1(REαn+n−1···Ei+1E
i
t , E

i
t) = C.

We repeat the process using the consequent right mutations and we get

Extn−j−k(REαn+n−k ···Ei+1E
i
t , E

i
t) = C

for 0 ≤ k ≤ n− 1 − j. In particular,

Ext1(REi+1E
i
t , E

i
t) = C

and, hence,
αi⊕

s=1

Ext1(REi+1E
i
s, E

i
t) 6= 0

which implies that Ei
t is not (−i−1)-regular and we conclude that RegB(Ei

t)

= −i.
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Let us now compare our new definition of regularity with the previous

ones.

Castelnuovo-Mumford regularity. In [19], Lecture 14, D. Mum-

ford defined the notion of regularity for a coherent sheaf over a projective

space. Let us recall it.

Definition 4.10. A coherent sheaf F on P
n is said to be m-regular in

the sense of Castelnuovo-Mumford if H i(Pn, F (m − i)) = 0 for i > 0. We

define the Castelnuovo-Mumford regularity of F , RegCM (F ), as the least

integer m such that F is m-regular. We say that the Castelnuovo-Mumford

regularity is −∞ if such integer does not exist.

Let us now establish for coherent sheaves on P
n the agreement of the

B-regularity in the sense of Definition 4.5 with Castelnuovo-Mumford defi-

nition.

Proposition 4.11. A coherent sheaf F on P
n is m-regular in the sense

of Castelnuovo-Mumford if and only if it is m-regular with respect to the

n-block collection B = (OPn ,OPn(1), . . . ,OPn(n)) in the sense of Defini-

tion 4.5. Hence, we have

RegB(F ) = RegCM (F ).

Proof. Since B is not only an n-block collection but also a geometric

collection, the result follows from [6]; Proposition 4.6.

Chipalkatti’s regularity. In [4], Definition 1.1, J. V. Chipalkatti

introduced the notion of regularity for a coherent sheaf on a Grassmannian

variety and he showed that when the Grassmannian is a projective space

his definition of regularity agrees with Castelnuovo-Mumford regularity. We

will now see that the notion of regularity introduced in Definition 4.6 is

closely related to Chipalkatti’s regularity but they do not coincide. Let us

recall Chipalkatti’s definition.

Definition 4.12. A sheaf F on X = Gr(k, n) is regular if H q(X,F ⊗

ΣβQ∗) = 0 for all β such that k ≥ β1 ≥ · · · ≥ βn−k ≥ 0 and all q ≥ 1. It is

said to be m-regular if F ⊗OX(m) is regular. RegC(F ) is the least integer

m such that F (m) is regular, set RegC(F ) = −∞ if there is no such integer.
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Proposition 4.11 together with [4]; Theorems 1.5 and 1.6, establishes,

when the Grassmannian is a projective space, the agreement of Chipalkatti’s

definition (Definition 4.12), Castelnuovo-Mumford’s definition (Definition

4.10) and our definition (Definition 4.5). Nevertheless, next example shows

that, in general, Chipalkatti’s definition and our definition do not coincide.

Example 4.13. We consider the 4-dimensional Grassmann variety

X = Gr(2, 4) and the 4-block collection described in Example 3.2 (2) ten-

sored with OX(2)

B = (E0, E1, E2, E3, E4) =
(
Σ(2,2)S ⊗OX(2),Σ(2,1)S ⊗OX(2),

(Σ(2,0)S ⊗OX(2),Σ(1,1)S ⊗OX(2)),Σ(1,0)S ⊗OX(2),Σ(0,0)S ⊗OX(2)
)
.

Since Σ(2,2)S ⊗OX(2) = OX and Σ(0,0)S ⊗OX(2) = OX(2), by [4]; Exam-

ple 1.3 (a), RegC(Σ(0,0)S ⊗ OX(2)) = −2 and RegC(Σ(2,2)S ⊗ OX(2)) = 0.

On the other hand, by Proposition 4.9, RegB(Σ(0,0)S ⊗ OX(2)) = −4 and

RegB(Σ(2,2)S ⊗OX(2)) = 0.

Hoffman-Wang regularity. In [14], J.W. Hoffman and H. H.Wang

introduced a multigraded variant of the Castelnuovo-Mumford regularity

and we will devote Section 5 of this paper to relate it to our new definition

of regularity.

To emphasize the similarities between the new notion of regularity and

the original definition in Chapter 14 of [19], we will end this section prov-

ing that the basic formal properties of Castelnuovo-Mumford regularity of

coherent sheaves over projective spaces remain to be true in this new setting.

Proposition 4.14. Let X be a smooth projective variety of dimension

n with an n-block collection of coherent sheaves B = (E0, E1, . . . , En), Ej =

(Ej
1, . . . , E

j
αj ), which generates D and let F be a coherent OX -module. If F

is m-regular with respect to B then the canonical map
⊕α−m

s=1 Hom(E−m
s , F )⊗

E−m
s � F is surjective and F is k-regular with respect to B for any k ≥ m

as well.

Proof. The first assertion follows from the exact sequence (4.2). To

prove the second assertion it is enough to check it for k = m + 1. Since F

is m-regular with respect to B we have for q > 0

(4.3)

{⊕α−m+p

s=1 Extq(RE−m···E−m+p+1E
−m+p
s , F ) = 0 if −n ≤ p ≤ −1

⊕α−m

s=1 Extq(E−m
s , F ) = 0 if p = 0.
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In order to see that F is (m+1)-regular with respect to B we have to prove

(4.4)





⊕α−m−1+p

s=1 Extq(RE−m−1 ···E−m+p
E

−m−1+p
s , F ) = 0

for q > 0, −n ≤ p ≤ −1
⊕α−m−1

s=1 Extq(E−m−1
s , F ) = 0 for q > 0, p = 0.

Using the equalities (4.3) and applying, for any s, 1 ≤ s ≤ α−m−1, the

functor Hom( · , F ) to the exact sequence

0 −→ E−m−1
s −→

⊕α−m

t=1 Hom∗(E−m−1
s , E−m

t ) ⊗E−m
t

−→ RE−m
E−m−1

s −→ 0

we obtain

Extq(E−m−1
s , F ) = 0 for q > 0 and 1 ≤ s ≤ α−m−1

and, hence,
α−m−1⊕

s=1

Extq(E−m−1
s , F ) = 0 for q > 0.

Using again the equalities (4.3) and, for any s, 1 ≤ s ≤ α−m−2, the

exact sequence

0 −→ RE−m−1E
−m−2
s −→

⊕α−m

t=1 Hom∗(RE−m−1E
−m−2
s , E−m

t ) ⊗E−m
t

−→ RE−mE−m−1E
−m−2
s −→ 0

we get
α−m−2⊕

s=1

Extq(RE−m−1E
−m−2
s , F ) = 0 for any q > 0.

Going on and using the consequent right mutations of blocks, we get

for all p, −n+ 1 ≤ p ≤ −1,

α−m−1+p⊕

s=1

Extq(RE−m−1 ···E−m+p
E−m−1+p

s , F ) = 0 for all q > 0.

Therefore, it only remains to see that

α−m−1−n⊕

s=1

Extq(RE−m−1 ···E−m−n
E−m−1−n

s , F ) = 0 for all q > 0.
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The vanishing of these last Ext’s groups follows again from the equalities

(4.3) taking into account that, by Definition 4.1

RE−m−1RE−m−2 · · ·RE−m−n
E−m−n−1 = R(n)E−m−n−1 = E−m.

Proposition 4.15. Let X be a smooth projective variety of dimension

n with an n-block collection of coherent sheaves B = (E0, E1, . . . , En), Ej =

(Ej
1, . . . , E

j
αj ), which generates D. Let F and G be coherent OX -modules

and let

(4.5) 0 −→ F1 −→ F2 −→ F3 −→ 0

be an exact sequence of coherent OX-modules. Then,

(a) RegB(F2) ≤ max{RegB(F1),RegB(F3)},

(b) RegB(F ⊕G) = max{RegB(F ),RegB(G)}.

Proof. (a) Let m = max{RegB(F1),RegB(F3)}. Since, by Proposi-

tion 4.14, F1 and F3 are both m-regular with respect to B considering the

long exact sequences

· · · −→
⊕α−m+p

s=1 Extq(RE−m···E−m+p+1E
−m+p
s , F1)

−→
⊕α−m+p

s=1 Extq(RE−m···E−m+p+1E
−m+p
s , F2)

−→
⊕α−m+p

s=1 Extq(RE−m···E−m+p+1E
−m+p
s , F3) −→ · · ·

and

· · · −→
⊕α−m

s=1 Extq(E−m
s , F1) −→

⊕α−m

s=1 Extq(E−m
s , F2)

−→
⊕α−m

s=1 Extq(E−m
s , F3) −→ · · ·

associated to (4.5) we get

{⊕α−m+p

s=1 Extq(RE−m···E−m+p+1E
−m+p
s , F2) = 0 if −n ≤ p ≤ −1

⊕α−m

s=1 Extq(E−m
s , F2) = 0 if p = 0,

which implies that RegB(F2) ≤ m.

(b) It easily follows from the additivity of the functor

Extq(RE−m ···E−m+p+1E
−m+p
s , · ).
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§5. Regularity of sheaves on multiprojective spaces

In this section, we will restrict our attention to coherent sheaves over

multiprojective spaces X = P
n1×· · ·×P

nr and we will relate our definition of

regularity to the multigraded variant of the Castelnuovo-Mumford regularity

introduced by Hoffman and Wang [14] (see also [18]).

We first fix the notation we need in this section. For each integer i > 0,

let

Sti = {(l, s) ∈ Z
2 | l + s = −1 − i, l < 0, s < 0}

= {(−i,−1), (−i + 1,−2), . . . , (−2,−i + 1), (−1,−i)},

for i ≤ 0, let

Sti = {(l, s) ∈ Z
2 | l + s = −i, l ≥ 0, s ≥ 0}

= {(−i, 0), (−i − 1, 1), . . . , (1,−i − 1), (0,−i)}.

For each (p, p′) ∈ Z
2, let Sti(p, p

′) = (p, p′) + Sti.

Definition 5.1. Let F be a coherent sheaf on X = P
m × P

n. We say

that F is (p, p′)-regular if, for all i ≥ 1,

Hi(X,F (k, k′)) = 0

whenever (k, k′) ∈ Sti(p, p
′).

Remark 5.2. Definition 5.1 generalizes in an obvious way to coherent

sheaves on multiprojective spaces P
n1 × · · · × P

nr .

Set d = m + n, X = P
m × P

n and denote by B = (E0, E1, . . . , Ed) the

d-block collection where for any 0 ≤ j ≤ d, we have

Ej = {OX(a, b) | a+ b = j − d, 0 ≥ a ≥ −m, 0 ≥ b ≥ −n}

and we set αj := ]Ej . By Remark 3.6, the left dual d-block collection

(R(0)Ed, R
(1)Ed−1, . . . , R

(j)Ed−j, . . . , R
(d)E0)

of B is univocally determined by the orthogonality relations (3.5) and (3.6),

and an intricate computation using Künneth formula for locally free sheaves

on algebraic varieties shows that for any OX(a, b) ∈ Ed−j and any 0 ≤ j ≤ d

we have

(5.1) R(j)OX(a, b) =
−a∧
TPm(a) �

−b∧
TPn(b).
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Lemma 5.3. With the above notation, let HB = {Ei}i∈Z be the helix

of blocks associated to B. Let us denote by Bk(d+1) the d-block collection of

d+ 1 consecutive blocks (Ek(d+1), Ek(d+1)+1, . . . , Ek(d+1)+d). Then, we have

(1) Ek(d+1)+i = {OX (a+ k(m+1), b+ k(n+ 1)) | a+ b = i− d, 0 ≥ a ≥

−m, 0 ≥ b ≥ −n}

(2) The left dual d-block collection of Bk(d+1) is

(R(0)Ek(d+1)+d, R
(1)Ek(d+1)+d−1, . . . , R

(j)Ek(d+1)+d−j , . . . R
(d)Ek(d+1))

where for any OX(a+ k(m+ 1), b + k(n+ 1)) ∈ Ek(d+1)+d−j

R(j)OX(a+ k(m+ 1), b+ k(n+ 1))

=

−a∧
TPm(a+ k(m+ 1)) �

−b∧
TPn(b+ k(n+ 1)).

Proof. (1) Applying Corollary 4.4, we get Ek(d+1)+i = Ei ⊗ K−k
X and

the result follows taking into account that K−λ
X = OX(λ(m+ 1), λ(n+ 1)).

(2) Straightforward computation taking into account that the left dual

d-block collection of B0 = (E0, E1, . . . , Ed) is determined (up to isomorphism)

by (5.1), Lemma 3.12 and the equalities

R(j)Ek(d+1)+d−j := REk(d+1)+d···Ek(d+1)+d−j+1
Ek(d+1)+d−j

= REd⊗K−k
X

···Ed−j+1⊗K−k
X

Ed−j ⊗K−k
X

= R(j)(Ed−j ⊗K−k
X )

= (REd···Ed−j+1
Ed−j) ⊗K−k

X

= (R(j)Ed−j) ⊗K−k
X .

We have the following technical lemma.

Lemma 5.4. Let F be a coherent sheaf on X = P
m × P

n. We have:

(a) F is (p, p′)-regular in the sense of Hoffman and Wang if and only

if F (p, p′) is (0, 0)-regular in the sense of Hoffman and Wang.

(b) F is k(d+1)+t-regular with respect to B in the sense of Definition 4.5

if and only if F (k(m+1), k(n+1)) is t-regular with respect to B in the sense

of Definition 4.5.
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Proof. (a) It obviously follows from Definition 5.1.

(b) By Definition 4.5, F is k(d+ 1) + t-regular with respect to B if and

only if for q > 0 we have





⊕β
−k(d+1)−t+p

s=1 Extq(RE
−k(d+1)−t···E−k(d+1)−t+p+1

E
−k(d+1)−t+p
s , F ) = 0

if −d ≤ p ≤ −1
⊕β

−k(d+1)−t

s=1 Extq(E
−k(d+1)−t
s , F ) = 0 if p = 0.

Since E−k(d+1)+i
∼= Ei ⊗Kk

X , applying Lemma 3.12, it is equivalent to

say that for q > 0, we have

{⊕β−t+p

s=1 Extq(RE−t···E−t+p+1E
−t+p
s ⊗Kk

X , F ) = 0 if −d ≤ p ≤ −1
⊕β−t

s=1 Extq(E−t
s ⊗Kk

X , F ) = 0 if p = 0

or, equivalent, for q > 0, we have

{⊕β−t+p

s=1 Extq(RE−t···E−t+p+1E
−t+p
s , F ⊗K−k

X ) = 0 if −d ≤ p ≤ −1
⊕β−t

s=1 Extq(E−t
s , F ⊗K−k

X ) = 0 if p = 0

which means that F (k(m+1), k(n+1)) is t-regular with respect to B in the

sense of Definition 4.5.

We are now ready to state the main result of this section.

Theorem 5.5. Let F be a coherent sheaf on X = P
m × P

n and set

d = n+m. Then F is (0, 0)-regular in the sense of Hoffman and Wang if

and only if F is (−d)-regular with respect to B in the sense of Definition 4.5.

Proof. According to Definitions 5.1 and 4.5 we have to see that

(5.2) H i(X,F (r, s)) = 0 for all i > 0, r + s = −i− 1, r < 0, s < 0

if and only if for q > 0 we have

(5.3)





⊕αp+d

s=1 Extq(REd···Ep+1+d
E

p+d
s , F )

=
⊕

a+b=p
0≥a≥−m
0≥b≥−n

Hq(Ω−a
Pm(−a) � Ω−b

Pn(−b) ⊗ F ) = 0

for −d ≤ p ≤ −1;
⊕αd

s=1 Extq(Ed
s , F ) = Hq(X,F ) = 0 for p = 0.
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Let us first see that (5.2) implies (5.3). Since by [14]; Proposition 2.7,

any (0, 0)-regular sheaf is also (p, p′)-regular for p ≥ 0, p′ ≥ 0, we have

(5.4) H i(X,F (r, s)) = 0 for all i > 0, r + s ≥ −i− 1, r ≥ −i, s ≥ −i.

We will see that (5.4) implies the following stronger result

(5.5) Hq(Ω−a
Pm(−a) � Ω−b

Pn(−b) ⊗ F (r, s)) = 0

for any q > 0, 0 ≥ a ≥ −m, 0 ≥ b ≥ −n, r + s ≥ −q + 1 and r, s ≥ −q + 1.

To this end, we will first prove the following claim:

Claim. For any i > 0, 0 ≥ b ≥ −n, r+s ≥ −i, r ≥ −i and s ≥ −i+1

Hi(Ω−b
Pn(−b) ⊗ F (r, s)) = 0.

Proof of Claim. We will prove it by induction on b. By (5.4), for i > 0,

b = −n, r + s ≥ −i, r ≥ −i and s ≥ −i+ 1, we have

Hi(Ωn
Pn(n) ⊗ F (r, s)) = H i(F (r, s− 1)) = 0.

Now take 0 ≤ b < −n and consider on X the exact sequence

0 −→ Ω−b+1
Pn (−b+ 1) ⊗ F (r, s− 1) −→ OPn(−1)(

n+1
−b+1) ⊗ F (r, s)

−→ Ω−b
Pn(−b) ⊗ F (r, s) −→ 0

and the cohomological exact sequence associated to it

· · · −→ H i(F (r, s− 1)(
n+1
−b+1)) −→ H i(Ω−b

Pn(−b) ⊗ F (r, s))

−→ H i+1(Ω−b+1
Pn (−b+ 1) ⊗ F (r, s− 1)) −→ · · · .

Applying (5.4) and hypothesis of induction we getH i(Ω−b
Pn(−b)⊗F (r, s)) = 0

for all i > 0, r + s ≥ −i, r ≥ −i and s ≥ −i+ 1 which finishes the proof of

the claim.

Let us now prove (5.5) by decreasing induction on p := −a− b, 0 ≤ p ≤

d. If p = d, then a = −m, b = −n and by (5.4) for any q > 0, r+s ≥ −q+1

and r, s ≥ −q + 1 we have

Hq(Ωm
Pm(m) � Ωn

Pn(n) ⊗ F (r, s)) = Hq(F (r − 1, s− 1)) = 0.
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Assume that (5.5) holds for p+1 and fix a, b such that 0 < p = −a− b < d.

If a = 0 or a = −m the result follows from the claim. So, we can assume

0 > a > −m and we consider on X the exact sequence

0 −→ Ω−a+1
Pm (−a+ 1) � Ω−b

Pn(−b) ⊗ F (r − 1, s)

−→ OPm(−1)(
m+1
−a+1) � Ω−b

Pn(−b) ⊗ F (r, s)

−→ Ω−a
Pm(−a) � Ω−b

Pn(−b) ⊗ F (r, s) −→ 0

and the cohomological exact sequence associated to it

· · · −→ Hq(OPm(−1)(
m+1
−a+1) � Ω−b

Pn(−b) ⊗ F (r, s))

−→ Hq(Ω−a
Pm(−a) � Ω−b

Pn(−b) ⊗ F (r, s))

−→ Hq+1(Ω−a+1
Pm (−a+ 1) � Ω−b

Pn(−b) ⊗ F (r − 1, s)) −→ · · · .

By hypothesis of inductionHq+1(Ω−a+1
Pm (−a+1)�Ω−b

Pn (−b)⊗F (r−1, s)) = 0

for any q > 0, 0 ≥ a ≥ −m, 0 ≥ b ≥ −n, r+s ≥ −q+1 and r, s ≥ −q+1 and

it follows from the Claim that Hq(OPm(−1)(
m+1
−a+1) � Ω−b

Pn(−b)⊗F (r, s)) = 0

for any q > 0, 0 ≥ a ≥ −m, 0 ≥ b ≥ −n, r + s ≥ −q + 1 and r, s ≥ −q + 1.

Hence Hq(Ω−a
Pm(−a) � Ω−b

Pn(−b) ⊗ F (r, s)) = 0 for any q > 0, 0 ≥ a ≥ −m,

0 ≥ b ≥ −n, r+ s ≥ −q+ 1 and r, s ≥ −q+ 1 and this finishes the proof of

(5.5).

Let us prove the converse. We will prove that (5.3) implies

(5.6) H i(X,F (−s,−t)) = 0 for all i > 0, i ≥ s+ t− 1, s, t > 0.

First of all, we will prove by induction on t that for all i ≥ t

(5.7) H i(X,F (−1,−t)) = 0.

By (5.3), for t = 1 and i > 0 we have

Hi(X,F (−1,−1)) = H i(X,Ωm
Pm(m) � Ωn

Pn(n) ⊗ F ) = 0.

For t > 1, we consider on X the exact sequence

0 −→ F (−1,−t) −→ F (−1,−(t−1))n+1 −→ Ωn−1
Pn (n−t+1)⊗F (−1, 0) −→ 0

and the cohomological exact sequence associated to it

· · · −→ H i−1(Ωn−1
Pn (n− t+ 1) ⊗ F (−1, 0)) −→ H i(F (−1,−t))

−→ H i(F (−1,−(t− 1))n+1) −→ · · · .

By hypothesis of induction H i(F (−1,−(t−1))) = 0 for any i > t−1. Hence

it is enough to prove the following Claim:
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Claim 1. For any j, 0 ≤ j ≤ t− 2 and i ≥ j + 1,

Hi(Ωn−t+1+j
Pn (n− t+ 1) ⊗ F (−1, 0)) = 0.

Proof of Claim 1. We will proceed by induction on j. For j = 0 and

i > 0, by (5.3)

Hi(Ωn−t+1
Pn (n−t+1)⊗F (−1, 0)) = H i(Ωm

Pm(m)�Ωn−t+1
Pn (n−t+1)⊗F ) = 0.

For 0 < j ≤ t− 2, consider the exact sequence on X

0 −→ Ωn−t+1+j
Pn (n− t+ 1) ⊗ F (−1, 0) −→ F (−1,−j)(

n+1
n+1−t+j)

−→ Ωn−t+j
Pn (n− t+ 1) ⊗ F (−1, 0) −→ 0

and the cohomological exact sequence associated to it

· · · −→ H i−1(Ωn−t+j
Pn (n− t+ 1) ⊗ F (−1, 0))

−→ H i(Ωn−t+1+j
Pn (n− t+ 1) ⊗ F (−1, 0))

−→ H i(F (−1,−j))(
n+1

n+1−t+j) −→ · · · .

By hypothesis of induction H i−1(Ωn−t+j
Pn (n− t+ 1)⊗F (−1, 0)) = 0 for any

i > j and since j < t, by hypothesis of induction on t, H i(F (−1,−j)) = 0

for any i ≥ j. Thus H i(Ωn−t+1+j
Pn (n−t+1)⊗F (−1, 0)) = 0 for any i ≥ j+1.

This finishes the proof of the Claim 1 and the proof of (5.7).

By symmetry, for all i ≥ t we also have

(5.8) H i(X,F (−t,−1)) = 0.

Now, by induction on s > 0 we will prove that (5.6) holds for any t > 0,

i ≥ t+ s− 1. The case s = 1 is already done. Take s > 1 and we will see

that

(5.9) H i(F (−s,−t)) = 0 for any t ≤ i, i ≥ s+ t− 1.

To this end, we will prove that the following cohomology groups vanish on

X:

(a) For any i ≥ s ≥ 1,

Hi(Ωn−t+1
Pn (n− t+ 1) ⊗ F (−s, 0)) = 0.
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(b) For any j, 1 ≤ j ≤ t− 1, t > 0 and i ≥ s+ t− 1,

Hi(Ωn−t+j
Pn (n− t+ 1) ⊗ F (−s, 0)) = 0.

(a) We proceed by induction on s. For s = 1, by (5.3), for any i > 0

Hi(Ωn−t+1
Pn (n−t+1)⊗F (−1, 0)) = H i(Ωm

Pm(m)�Ωn−t+1
Pn (n−t+1)⊗F ) = 0.

Fix s > 1 and let us prove

Claim 2. For any j, 1 ≤ j ≤ s− 1 and i ≥ j,

Hi(Ωm−s+j
Pm (m− s+ 1) � Ωn−t+1

Pn (n− t+ 1) ⊗ F ) = 0.

Proof of Claim 2. For j = 1, by (5.3)

Hi(Ωm−s+1
Pm (m− s+ 1) � Ωn−t+1

Pn (n− t+ 1) ⊗ F ) = 0.

For 1 < j ≤ s− 1 consider the exact sequence on X

0 −→ Ωm−s+j
Pm (m− s+ 1) � Ωn−t+1

Pn (n− t+ 1) ⊗ F

−→ Ωn−t+1
Pn (n− t+ 1) ⊗ F (−j + 1, 0)(

m+1
m−s+j)

−→ Ωm−s+j−1
Pm (m− s+ 1) � Ωn−t+1

Pn (n− t+ 1) ⊗ F −→ 0

and the cohomological exact sequence associated to it

· · · −→ H i−1(Ωm−s+j−1
Pm (m− s+ 1) � Ωn−t+1

Pn (n− t+ 1) ⊗ F )

−→ H i(Ωm−s+j
Pm (m− s+ 1) � Ωn−t+1

Pn (n− t+ 1) ⊗ F )

−→ H i(Ωn−t+1
Pn (n− t+ 1) ⊗ F (−j + 1, 0))(

m+1
m−s+j) −→ · · · .

By hypothesis of induction on j,

Hi−1(Ωm−s+j−1
Pm (m− s+ 1) � Ωn−t+1

Pn (n− t+ 1) ⊗ F ) = 0

and by hypothesis of induction on s, for j − 1 < s,

Hi(Ωn−t+1
Pn (n− t+ 1) ⊗ F (−j + 1, 0)) = 0.

Thus

Hi(Ωm−s+j
Pm (m− s+ 1) � Ωn−t+1

Pn (n− t+ 1) ⊗ F ) = 0

and this finishes the proof of Claim 2.
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Using the cohomological exact sequence on X

· · · −→ H i−1(Ωm−1
Pm (m− s+ 1) � Ωn−t+1

Pn (n− t+ 1) ⊗ F )

−→ H i(Ωn−t+1
Pn (n− t+ 1) ⊗ F (−s, 0))

−→ H i(Ωn−t+1
Pn (n− t+ 1) ⊗ F (−s+ 1, 0))m+1 −→ · · ·

by hypothesis of induction and by Claim 2, we get that for any i ≥ s, s ≥ 1,

Hi(Ωn−t+1
Pn (n− t+ 1) ⊗ F (−s, 0)) = 0 which finishes the proof of (a).

(b) The case j = 1 follows from (a). Fix j > 0 and consider the

cohomological exact sequence

· · · −→ H i−1(Ωn−t+j−1
Pn (n− t+ 1) ⊗ F (−s, 0))

−→ H i(Ωn−t+j
Pn (n− t+ 1) ⊗ F (−s, 0))

−→ H i(F (−s,−j + 1))(
n+1

n−t+j) −→ · · ·

associated to the exact sequence on X

0 −→ Ωn−t+j
Pn (n− t+ 1) ⊗ F (−s, 0) −→ F (−s,−j + 1)(

n+1
n−t+j)

−→ Ωn−t+j−1
Pn (n− t+ 1) ⊗ F (−s, 0) −→ 0.

Since j − 1 < t, by the first cases H i(F (−s,−j + 1)) = 0 and by hypothesis

of induction H i−1(Ωn−t+j−1
Pn (n − t + 1) ⊗ F (−s, 0)) = 0. Thus, for any j,

1 ≤ j ≤ t− 1 and i ≥ s+ t− 1, H i(Ωn−t+j
Pn (n− t+1)⊗F (−s, 0)) = 0 which

finishes the proof of (b).

Finally, to prove (5.9), we proceed by induction on t > 0. By (5.8), the

case t = 1 is already done, so we fix t > 1 and we consider the following

exact sequence on X

0 −→ F (−s,−t) −→ F (−s,−t+1)n+1 −→ Ωn−1
Pn (n− t+1)⊗F (−s, 0) −→ 0

and the associated cohomological exact sequence

· · · −→ H i−1(Ωn−1
Pn (n− t+ 1) ⊗ F (−s, 0)) −→ H i(F (−s,−t))

−→ H i(F (−s,−t+ 1))n+1 −→ · · · .

By hypothesis of induction H i(F (−s,−t + 1)) = 0 and it follows from (b)

that H i−1(Ωn−1
Pn (n− t+ 1) ⊗ F (−s, 0)) = 0. Hence, H i(F (−s,−t)) = 0 for

any t > 0, i ≥ s+ t− 1 and this proves what we want.
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As a consequence of this last Theorem we have,

Corollary 5.6. Let F be a coherent sheaf on X = P
m × P

n. Set

d = n+m.

(1) If F is p-regular with respect to B in the sense of Definition 4.5 and

p = λ(d+ 1) + ρ, 0 < ρ ≤ d+ 1, then F is ((λ+ 2)(m+ 1), (λ+ 2)(n+ 1))-

regular in the sense of Hoffman and Wang ; and

(2) If F is (s, r)-regular in the sense of Hoffman and Wang with r =

λ(m + 1) + t, 0 < t ≤ m + 1, and s = µ(m + 1) + x, 0 < x ≤ n + 1

then F is (max(λ, µ)(d + 1) + 1)-regular with respect to B in the sense of

Definition 4.5.

Proof. (1) By Proposition 4.14, if F is p = λ(d + 1) + ρ-regular with

respect to B, then F is ((λ + 2)(d + 1) − d)-regular with respect to B as

well. By Lemma 5.4, F ((λ+ 2)(m+ 1), (λ+ 2)(n+ 1)) is (−d)-regular with

respect to B. Applying Theorem 5.5, we get that F ((λ + 2)(m + 1), (λ +

2)(n+1)) is (0, 0)-regular in the sense of Hoffman and Wang and hence F is

((λ+ 2)(m+ 1), (λ+ 2)(n+ 1))-regular in the sense of Hoffman and Wang.

(2) Set φ = max(λ, µ). By [14]; Proposition 2.7, F is ((φ + 1)(m +

1), (φ + 1)(n + 1))-regular in the sense of Hoffman and Wang. Therefore,

F ((φ + 1)(m + 1), (φ + 1)(n + 1)) is (0, 0)-regular in the sense of Hoffman

and Wang and applying Theorem 5.5 we obtain that F ((φ+1)(m+1), (φ+

1)(n+1)) is (−d)-regular with respect to B and so F is (φ(d+1)+1)-regular

with respect to B in the sense of Definition 4.5.

§6. Final remark and open problem

The notion of regularity that we have introduced in Section 4 applies to

any coherent sheaf on a large class of smooth projective varieties: projective

spaces, multiprojective spaces, hyperquadric varieties, Grassmannians, etc.

More precisely, it applies to coherent sheaves on any n-dimensional smooth

projective variety which has an n-block collection B = (E0, E1, . . . , En) of

type (α0, α1, . . . , αn) of coherent sheaves on X which generates the derived

category of bounded complexes D = Db(OX -mod). Hence, we are led to

pose the following question/problem:

Problem 6.1. To characterize n-dimensional smooth projective vari-

eties which have an n-block collection B = (E0, E1, . . . , En), Ej = (Ej
1 , E

j
2, . . . ,

E
j
αj ) of coherent sheaves on X which generates D.
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Note added in Proof. Problem 2.10 is closely related to Dubrovin’s

conjecture concerning the semisimplicity of the quantum cohomology alge-

bra. More precisely, it states

Conjecture 6.2. (Dubrovin [9]; Conjecture 4.2.2 (1)) Let X be a

smooth complex compact variety. The even quantum cohomology ring of X

is generically semisimple if and only if X is a Fano variety and the category

D admits a full exceptional collection of length equal to
∑

q H
q,q(X).
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