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m-BLOCKS COLLECTIONS AND
CASTELNUOVO-MUMFORD REGULARITY
IN MULTIPROJECTIVE SPACES

L. COSTA* aAND R. M. MIRO-ROIG**

Abstract. The main goal of the paper is to generalize Castelnuovo-Mumford
regularity for coherent sheaves on projective spaces to coherent sheaves on n-
dimensional smooth projective varieties X with an n-block collection B which
generates the bounded derived category Db(Ox -mod). To this end, we use the
theory of n-blocks and Beilinson type spectral sequence to define the notion of
regularity of a coherent sheaf F' on X with respect to the n-block collection
B. We show that the basic formal properties of the Castelnuovo-Mumford
regularity of coherent sheaves over projective spaces continue to hold in this
new setting and we compare our definition of regularity with previous ones.
In particular, we show that in case of coherent sheaves on P™ and for the n-
block collection B = (Opn, Opn(1),...,0pn(n)) on P* Castelnuovo-Mumford
regularity and our new definition of regularity coincide. Finally, we carefully
study the regularity of coherent sheaves on a multiprojective space P! x - - - x
P"" with respect to a suitable ni + - - - + n.-block collection and we compare it
with the multigraded variant of the Castelnuovo-Mumford regularity given by
Hoffman and Wang in [14].

§1. Introduction

In Chapter 14 of [19] D. Mumford introduced the concept of regular-
ity for a coherent sheaf F' on a projective space P™ to bound the family
of all projective subschemes having fixed Hilbert polynomial. Since then
Castelnuovo-Mumford regularity has become a fundamental invariant in
commutative algebra and algebraic geometry. It measures the complexity
of a module or a sheaf; more precisely the regularity of a module bounds
the largest degree of the minimal generators and the degree of syzygies and
the regularity of a sheaf estimates the smallest twist for which the sheaf is
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globally generated.

Let X be a smooth projective variety of dimension n and let B =
(€0, ..., &n) be an n-block collection of objects of D*(Ox-mod) which gen-
erates the bounded derived category D?(Ox -mod). The goal of this paper is
to introduce the notion of regularity of a coherent sheaf on X with respect
to B as a generalization of the notion of Castelnuovo-Mumford regularity of
coherent sheaves on projective spaces. To introduce this new notion of regu-
larity and to state the basic formal properties, we use helix theory, m-blocks
collections and Beilinson type spectral sequences.

We want to stress that Castelnuovo-Mumford regularity as well as the
notion of regularity developed for Grassmannians in [4] and multiprojective
spaces in [14] fall under the umbrella of B-regularity. Moreover, in this
new setting, we are able to prove analogs of some of the classical results on
m-regularity for coherent sheaves on projective spaces.

Next we outline the structure of the paper. In Section 2, we briefly
recall the notions and properties of full strongly exceptional collections of
sheaves on a smooth projective variety needed later. The notion of m-block
as well as the concept of mutations of blocks are presented in Section 3.
Sections 4 and 5 are the heart of the paper. In Section 4, we first introduce
the notion of helix of blocks associated to an m-block collection of objects
of D°(Ox-mod) as a natural generalization of the notion of helix associated
to an exceptional collection of objects of D®(Ox-mod). Then, using Beilin-
son type spectral sequences, we give the promised definition of regularity
of a coherent sheaf F' on X with respect to an n-block collection B which
generates D°(Ox -mod), we prove that the Castelnuovo-Mumford regularity
of a coherent sheaf F' on P" coincides with the regularity of F' with respect
to a suitable n-block collection on P"™ and we show that the main formal
properties of the Castelnuovo-Mumford regularity carry over to the new
setting. In Section 5, we restrict our attention to multiprojective spaces
X =P" x-.- x P and we analyze the relationship between our definition
of regularity and the multigraded variant of the Castelnuovo-Mumford reg-
ularity introduced by Hoffman and Wang in [14]. Finally, in Section 6, we
collect some questions which naturally arise from this paper.

NoTATION. Throughout this paper X will be a smooth projective vari-

ety defined over the complex numbers C (most of the results are true for va-
rieties over an algebraically closed field) and we denote by D = D?(Ox-mod)
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the derived category of bounded complexes of coherent sheaves of O x-
modules. Notice that D is an abelian linear triangulated category. We
identify, as usual, any coherent sheaf F' on X to the object (0 — F' — 0) € D
concentrated in degree zero and we will not distinguish between a vector
bundle and its locally free sheaf of sections.

§2. Basic facts on exceptional collections

As we pointed out in the introduction, in this section we gather the
basic definitions and properties on full strongly exceptional collections of
sheaves on a smooth projective variety needed in the sequel. For general
facts on triangulated categories see [20].

DEFINITION 2.1. Let X be a smooth projective variety.

(i) An object F' € D is exceptional if Hom%,(F, F') is a 1-dimensional
algebra generated by the identity.

(ii) An ordered collection (Fy, F1,..., Fy,) of objects of D is an excep-
tional collection if each object F; is exceptional and Ext} (Fy, Fj) = 0 for
Jj<k.

(iii) An exceptional collection (Fy, F1,...,F,,) of objects of D is a
strongly exceptional collection if in addition ExtiD(Fj,Fk) =0fori #0
and j < k.

(iv) An ordered collection of objects of D, (Fy, F1,...,Fy), is a full
(strongly) exceptional collection if it is a (strongly) exceptional collection
and Fy, F1,..., F), generate the bounded derived category D.

Remark 2.2. The existence of a full strongly exceptional collection
(Fo, F1,. .., Fy,) of coherent sheaves on a smooth projective variety X im-
poses rather a strong restriction on X, namely that the Grothendieck group
Ko(X) = Ko(Ox-mod) is isomorphic to Z™ 1.

Let us illustrate the above definition with precise examples:

EXAMPLE 2.3. (1) (Opr,Opr(1),...,0pr(r)) is a full strongly excep-
tional collection of coherent sheaves on P" and (%, (r), Q5 (r — 1),...,
Q4. (1), Opr) is also a full strongly exceptional collection of coherent sheaves
on P".

(2) Let F,, = P(Op1 @ Op1(n)), n > 0, be a Hirzebruch surface. Denote
by & (resp. F') the class of the tautological line bundle (resp. the class of a
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fiber of the natural projection p : F,, — P!). Then, (O, O(F), O(¢), O(F +
€)) is a full strongly exceptional collection of coherent sheaves on F,,.

(3) (O]pm(—n)xOPm(—m), O]pm (—n—f—l)&OﬂDm(—m), N O[pm &Oﬂmm(—m),
ey Opn(—n) K Opm, Opn(—n + 1) K Opm, ..., Opn K Opm) is a full strongly
exceptional collection of locally free sheaves on P™ x P™ (see also [5]; Propo-
sition 4.16).

(4) Let 7 : P2(1) — P2 be the blow up of P? at [ points and let By =
7 1(p1),..., B, = 7 1(p;) be the exceptional divisors. Then, the collection
of line bundles on P2(l)

(O,0(E1),0(Es),...,O(E;),O(H),0(2H))

is a full strongly exceptional collection of coherent sheaves on ﬁQ(l).
(5) Let X = Gr(k,n) be the Grassmannian of k-dimensional subspaces
of the n-dimensional vector space. We have the canonical exact sequence

0—S—0% —Q9—0

where S denotes the tautological k-dimensional bundle and Q the quotient
bundle. In the sequel, %S denotes the space of the irreducible repre-
sentations of the group GL(S) with highest weight a = (aq,...,as) and
la| = Y77, a; (see [10] for general facts on Weyl modules). Denote by
A(k,n) the set of locally free sheaves ¥*S on Gr(k,n) where « runs over
Young diagrams fitting inside a k x (n — k) rectangle. Notice that for any
XS € A(k,n), 0 < |of < k(n — k). Set p(k,n) := tA(k,n). By [15];
Proposition 2.2 (a), for any ¢S, %8S € A(k,n), Ext!(2°S,%AS) # 0 only
if i = 0 and by [16] (3.5), Hom(X°S,%AS) # 0 only if a; > f; for all i.
Denote by &, the set of bundles XS € A(k,n) with |o| = k(n — k) —r. Let
o be the ordered collection of locally free sheaves on X constructed in the
following way. Going from the left to the right, first put all the ¥*S € &,
i.e. all the ¥¢S € A(k,n) with |a| = k(n — k). The i-th time put all the
¥eS € &, ie. all the XS € A(k,n) with |a| = k(n — k) — ¢ and so on until
i = k(n — k). By construction o is a strongly exceptional collection and by
[15] Proposition 1.4, it is full. So, A(k,n) can be totally ordered in such a
way that we obtain a full strongly exceptional collection (E1, ..., Eyq p)) of
locally free sheaves on X.

(6) Let @, C P"*!1 n > 2, be a hyperquadric surface. By [16]; Propo-
sition 4.9, if n is even and X1, 9 are the Spinor bundles on @,,, then

(21(—=n),X2(—n),0q9,(—n+1),...,0q,(-1),0q,)
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is a full strongly exceptional collection of locally free sheaves on @),; and if
n is odd and X is the Spinor bundle on @, then

(X(=n),0q,(=n+1),...,0q,(-1),0q,)
is a full strongly exceptional collection of locally free sheaves on Q,,.

The importance of the existence of full strongly exceptional collections
relies on the fact that each full strongly exceptional collection (Fy, Fi, ...,
F,,,) of coherent sheaves on a smooth projective variety X determines a tilt-
ing sheaf 7 = @, F; and hence functors RHom x (7', —) : D*(Ox-mod) —
Db(A) and — ®@% 7 : D¥(A) — Db(Ox-mod) which define mutually inverse
equivalences between the bounded derived categories of coherent sheaves
on X and the bounded derived category of finitely generated right A =
Hom x (7, 7)-modules, respectively.

DEFINITION 2.4. Let X be a smooth projective variety and let (A, B)
be an exceptional pair of objects of D. We define objects L 4B and RgA
with the aid of the following distinguished triangles in the category D:

(2.1) LaB — Hom%(A,B) @ A — B — LaB[l]

(2.2) RpA[—1] — A — Hom3*(A, B) ® B — RpA.

A left mutation of an exceptional pair o = (A, B) is the pair
Lao = (LaB,A) = (LB, A)

and a right mutation of an exceptional pair o = (A, B) is the pair
Ryo = (B,RpA) = (B, RA).

Lower indices will be omitted whenever this does not cause confusion.

DEFINITION 2.5. Let X be a smooth projective variety and let ¢ =
(Eo, ..., En) be an exceptional collection of objects of D. A left mutation
(resp. right mutation) of o is defined as a mutation of a pair of adjacent
objects in this collection, i.e. for any 1 < ¢ < m a left mutation L; re-
places the i-th pair of consequent elements (E;_1, E;) by its left mutation
(Lg, ,Ei,E;i—1) and a right mutation R; replaces the same pair of conse-
quent elements (E;_1, E;) by its right mutation (E;, Rg, Ei—1):

LZ‘O' = LEi_IO' = (E(), e 7LEi_1EiaEi—17- - ,Em)
RZ‘J = REZ._IJ = (E(), ce 7Ei7REiE’i—17 . ,Em)
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NoTATION 2.6. Let X be a smooth projective variety and let o =
(Fo,...,Fy) be an exceptional collection of objects of D. It is convenient
to agree that for any 0 < 4,5 <m and i + j < m,

RYE = RU-VRE = Rp,, - Rp,Rr Fi = Rpy koo
Rg{la =0 R%)AU = R}(!%;‘il,)l (RFFlU)

and similar notation for compositions of left mutations.

Remark 2.7. (1) If X is a smooth projective variety and o = (Fy,...,
F),) is an exceptional collection of objects of D, then any mutation of o is
an exceptional collection. Moreover, if o generates the category D, then the
mutated collection also generates D.

(2) In general, a mutation of a strongly exceptional collection is not a
strongly exceptional collection. In fact, take X = P! x P! and consider the
full strongly exceptional collection 0 = (Ox,0x(1,0),0x(0,1),0x(1,1))
of line bundles on X. It is not difficult to check that the mutated collection

(OX7 OX(1’0)7LOX(O,1)OX(]-7 1)7 OX(Oa 1))
= (0x,0x(1,0),0x(—1,1),0x(0,1))

is no more a strongly exceptional collection of line bundles on X.

Let X be a smooth projective variety of dimension n. It is well known
that if full strongly exceptional collections of coherent sheaves on X exist
then all of them have the same length and it is equal to the rank of Ky(X).
Even more, this length is bounded below by n + 1 because for any smooth
projective variety X of dimension n we have rank(Ky(X)) > n + 1. In [6];
we give the following definition (see also [3] and [13]):

DEFINITION 2.8. Let X be a smooth projective variety of dimension n.
We say that an ordered collection of coherent sheaves o = (Ey,..., E,) is a
geometric collection if it is a full exceptional collection of coherent sheaves
on X of minimal length, n+ 1, i.e. of length one greater than the dimension
of X.

By [2]; Assertion 9.2, Theorem 9.3 and Corollary 9.4, geometric collec-

tions are automatically strongly exceptional collections of coherent sheaves
and the strongly exceptionality is preserved under mutations.
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EXAMPLE 2.9. (1) The collection o = (Opr(—7), Opr(—1+1), Opr (—7+
2),...,0pr) of line bundles on P" is a geometric collection of coherent
sheaves.

(2) If n is odd and Q,, C P"*! is a quadric hypersurface, the collection
of locally free sheaves

(Z(—n), OQn(_n +1),..., OQn(_l)v OQn)

being ¥ the Spinor bundle on @, is a geometric collection of locally free
sheaves on @,,.

(3) If n is even and Q,, C P"*! is a quadric hypersurface, the collection
of locally free sheaves

(21(—=n),22(—n),0q9,(—n+1),...,0q,(-1),0q,)

being ¥ and X9 the Spinor bundles on @, is a full strongly exceptional
collection of locally free sheaves on @,. Since all full strongly exceptional
collections of coherent sheaves on (), have length n 4+ 2, we conclude that
there are no geometric collections of coherent sheaves on @,, for even n.

(4) It follows from Example 2.3 (5) that there are no geometric collec-
tions of coherent sheaves on Gr(k,n) if k # n — 1.

(5) Any smooth Fano threefold X with Pic(X) = Z and trivial inter-
mediate Jacobian has a geometric collection (see [6]; Proposition 3.6).

In [6], the authors extend the notion of Castelnuovo-Mumford regularity
for coherent sheaves on projective spaces to coherent sheaves on smooth
projective varieties with a geometric collection. So we are led to consider
the following problem:

PrOBLEM 2.10. To characterize the smooth projective varieties which
have a geometric collection.

To our knowledge Problem 2.10 is far of being solved (see [6] for more
information). Moreover, we want to stress that the existence of a geometric
collection on an n-dimensional smooth variety X imposes a strong restric-
tion on X; e.g. X has to be a Fano variety ([3]; Theorem 3.4) and the
Grothendieck group Ky(X) has to be a Z-free module of rank n + 1. So, it
is convenient to generalize the notion of geometric collection in order to be
able to extend the concept of Castelnuovo-Mumford regularity for coherent
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sheaves on projective spaces to coherent sheaves on smooth projective va-
rieties as Grassmannians, even-dimensional hyperquadrics, multiprojective
spaces, etc., which do not have geometric collections. This will be achieved
allowing exceptional collections o = (Fy,..., F,,) of arbitrary length but
packing the objects F; € D in suitable subcollections called blocks.

83. m-blocks and mutations

The notion of block was introduced by Karpov and Nogin in [17]. We
start this section recalling its definition and properties (see also [13]).

DEFINITION 3.1. (i) An exceptional collection (Fy, Fi,..., Fy,) of ob-
jects of D is a block if ExtiD(Fj, Fy) =0 for any i and j # k.
(ii) An m-block collection of type (ag, 1, ..., ) of objects of D is an

exceptional collection

B=(&,&,....&n) = (EY,...,E° JEl ... E}

[eTopd a1t

L E™ ... E™)

Qm
such that all the subcollections &; = (E{, Eg, . ,Eglj) are blocks.

Note that an exceptional collection (Ey, E1, ..., E,,) is an m-block of
type (1,1,...,1).

ExXAMPLE 3.2. (1) (Opr(—r),Opr(—r+1),0pr(—r+2),...,0pr) is an
r-block of type (1,1,...,1).

(2) Let X = Gr(k,n) be the Grassmannian of k-dimensional subspaces
of the n-dimensional vector space, k > 1. In Example 2.3 (4), we have
seen that A(k,n) can be totally ordered in such a way that we obtain a full
strongly exceptional collection

o= (Elu . )Ep(k,n))

of locally free sheaves on X. Moreover, packing in the same block &, the
bundles ¥%S € ¢ with |a| = k(n — k) — r we obtain

g = (Elu cee 7Ep(k,n)) = (507 .. 7gk(n77€))

a k(n — k)-block collection of locally free sheaves on X (see Example 2.3 (4)
for details).

(3) Let Q, C P"*1 n > 2 be a hyperquadric variety. According to
Example 2.3 (5), if n is even and X1, X9 are the Spinor bundles on @, then

(21(—=n),X2(—n),0q9,(—n+1),...,0q,(-1),0q,)
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is a full strongly exceptional collection of locally free sheaves on @),; and if
n is odd and X is the Spinor bundle on @, then

(2(—n), 00, (—n+1),...,00,(-1),0q,)

is a full strongly exceptional collection of locally free sheaves on @,. Since
Exti(El, Y9) =0 for any ¢ > 0, we get that (£, &1,...,E,) where
Y1(—n), 3o (— if
Ei=0g,(—n+j) forl1<j<n, &= (X1(=n), X2(=n)) if n even
(E(=n)) if n odd

is an n-block collection of locally free sheaves on @, for all n.

(4) Let X = P™ X ... x P™ be a multiprojective space of dimension
d=mn1+---+ns Forany 1 <i < s, denote by p; : X — P™ the natural
projection and write

Ox(ay,ag,...,as) := piOpni(a1) @ p5Opnz (az) ® - -+ @ piOpns (as).
For any 0 < j < d, denote by &; the collection of all line bundles on X

OX(G{,G%,. .- 7ag)

with —n; < ag <0and )} @ = j — d. Using the Kiinneth formula for

i=1"
locally free sheaves on algebraic varieties, we prove that each £; is a block
and that

B=(&,&1,...,&)
is a d-block collection of line bundles on X.

We will now introduce the notion of mutation of block collections.

DEFINITION 3.3. Let X be a smooth projective variety and consider a
1-block collection (€, F) = (E1,...,E,, F1,..., Fy) of objects of D. A left
mutation of F; by £ is the object defined by (see Notation 2.6)

LeF; = Lp, gy, Fj
and a right mutation of E; by F is the object defined by
RfE; := Rp,,p,, -1 Ej.
A left mutation of (£, F) is the pair (LgF,E) where
LeF = (LgFy, LeF,...,LeFy)
and a right mutation of (€, F) is the pair (F, RzE) where
Rr& = (RrE1,RFEs, ..., RrEy).
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Note that by [11] (2.2), L¢F and R#£€E are blocks and the pairs (LgF, E)
and (F, Rr€&) are 1-block collections.

Remark 3.4. Tt follows from the proof of [17]; Proposition 2.2 and
Proposition 2.3 that given a 1-block collection (£, F) = (E1,..., E,, F1,...,
F.,.), the objects Lg Fj and Rz E; can be defined with the aid of the following
distinguished triangles in the category D

(31) LgF‘] — @?:1 HOHI.D(EZ, Fj) QR FE;, — Fj — LgF‘][l]
(32) R}‘E]’[—l] — Ej — @Zzl HOIILZ;.(E]', -Fz) QR F, — R]:Ej.

Applying Hom%, (E;, ) to the triangle (3.1) we get the orthogonality
relation

(3.3) Hom%(E;, LeF;) =0 forall 1<i<n

ie., LeFy € [€]F :== {F € D | Hom}(E, F) = 0 for all E € [€]}, where we
denote by [€] the full triangulated subcategory of D generated by E1, ..., E,.

Similarly, Hom%, (*, F;) applied to the triangle (3.2) gives the orthogo-
nality relation

(3.4) Hom%(RrE;, F;) =0 foralll<j<m
ie., RrE; € L[F]:= {E € D | Hom%(E, F) =0 for all F € [F]}.
NoOTATION 3.5. It is convenient to agree that
RVE = RUTVRE = Re,, -+~ Re,., Re, & =t Reyjratini Ei
LW =LUVLE = Le, ;- Le, yLe, & = Ley e, y6, 15

Let B = (&,...,&En) be an m-block collection of type ag,...,a,, of
objects of D which generates D. Two m-block collections H = (Ho, ..., Hm)
and G = (Go, ..., Gm) of type By, ..., Bm with 3; = ay,—; of objects of D are
called left dual m-block collection of B and right dual m-block collection of

B if

(3.5) Hom}, (H}, Ef') = Hom$, (B}, G%) = 0
except for

(3.6) Extih(HF, E"F) = Extm = (E"F GF) = C.
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Remark 3.6. Let X be a smooth projective variety. Given an m-block
collection B = (&, ...,En) of type aq, ..., au, of objects of D which gener-
ates D, left dual m-block collections and right dual m-block collections of B
exist and they are unique up to isomorphism. In fact, by [7]; Proposition 3.9,
the m-block collection

(3.7) H=(ROE,, RVE,_1,...,R™&)
where by definition

RWE, ;= (RVEM™ ... ROE™)

QAm—q

m—1

= (Rgmgm—l"'gm7i+1 Einia tee ’Rgmgm—l"'gmfiﬁ»lEam,i)

satisfies the orthogonality conditions (3.5) and (3.6). Therefore, H is the left
dual m-block collection of B. By consequent left mutations of the m-block
collection B and arguing in the same way we get the right dual m-block
collection of B.

Let X be an n-dimensional smooth projective variety with an m-block
collection B = (&, ..., &) which generates the bounded derived category
D. The left dual m-block collection of B will play an important role in our
definition of regularity of a coherent sheaf F' on X with respect to B (see
Definition 4.5). Therefore, we will now describe explicitly the left dual m-
block collection of the examples of m-block collections given in Example 3.2.

EXAMPLE 3.7. (1) Let V be a C-vector space of dimension n + 1 and
set P* = P(V)). We consider the n-block collection B = (Opn, Opn(1),...,
Opn(n)) on P". Using the exterior powers

0— A o0 — A"V @ Opn (k) — N Tpn — 0
of the Euler sequence
0 —>0Pn —>V®O]P>n(1) —>T]P>n — 0

we compute the left dual n-block collection of B = (Opn,Opn(1),...,
Opn(n)) and we get

(Opn(n), RYOpn(n —1),...,RDOpn(n — j),..., R Opn)
= (Opn(n),TPn(n — 1), ce ,/\‘7 Tpn(’n —]), ey /\n Tpn)
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(2) Let X = P™ x --- x P™ be a multiprojective space of dimension
d=mn1+---+n, For any 0 < j < d, denote by &; the collection of all line

bundles on X o

Ox(al,a), ..., al)
with —n; < a! < 0 and 337 ,a] = j —d. By Example 3.2 (4), B =
(&0, &1, --.,E&q) is a d-block collection of line bundles on X. By Remark 3.6,
the left dual d-block collection of B is given by

(3.8) H= (RO, RVE,; ,...,RDE)
where by definition
RME& 1 =(..,RPOx(t,...,ts),...)
= ( .. 7R£d"'5d7k+1OX(t17 R ,ts), .. )

A straightforward computation shows that for any Ox(t1,...,ts) € Eq—k
and any 0 < k < d,

ROy (t1, ... ts) = Reyugy 01 Ox(t1s. .. ts)
*tl _ts

= N\ o (t1) B - &\ Thos (1),

(3) Let @, C P"' n > 2 be a hyperquadric variety and let B =
(50, 51, .o ,gn) where

(X1(—n),¥2(—n)) if n even

£ =0q,(—n+j) forl<j<n, &=
1=0qu(nty) forl<j<n, & {(z(—n)) if 1 odd

be the n-block collection of locally free sheaves on @), described in Exam-
ple 3.2 (3). To define the left dual n-block collection of B we need to fix
some notation. We set )/ := Qﬂmﬂ and we define inductively 1;:

Yo :=0q,, 1= 1)q,

and, for all j > 2, we define the locally free sheaf v; as the unique non-
splitting extension (note that Ext'(1j_2,97(j)g,) = C):

0— V(j)g, — ¥ — Yj—2 — 0.

By [16]; Proposition 4.11 and using the fact that the left dual n-block col-
lection of a given n-block collection is uniquely determined up to unique
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isomorphism by the orthogonality conditions described in Remark 3.6, we
get that the left dual n-block collection of the n-block collection B is

H=(RYe, RVE,_1,...,RMEy)

where

(27(1),%5(1)) if n even

RUE, . =4 for1<j< ’ RMEg, =
j=vy forlsi<n T\ (=) it n odd.

(4) Let X = Gr(k,n) be the Grassmannian of k-dimensional subspaces
of the n-dimensional vector space and let B = (£o,&1,- ., Epn—k)) With
E =A{X%S | |a| = k(n — k) — r} be the k(n — k)-block collection of locally
free sheaves on X described in Example 3.2 (2). The sequence « defines
a Young diagram and we denote by & the sequence corresponding to the
conjugate diagram. By [16] Lemma 3.2, for any two indices: o :n —k >
a;>-->ap>0and B: k> >+ > B, > 0 we have

: C ifa=pfandi=
HZ(X,ZQS®EﬁQ*): I o .ﬂan (3 ’O{|
0 otherwise.
Therefore, the left dual k(n — k)-block collection of B = (€, &1, ...,
Ekn—k)) With & = {X°S | [a| = k(n — k) —r} is

H = (R(O)gk:(n—k)’ R(l)gk(n_k)_l, . ,R(j)gk(n—k)—j’ cee ,R(k(n_k))go)
where R(T)Sk(n,k),r = {EdQ |l =1}

We want to point out that the notion of m-block collection is the conve-
nient generalization of the notion of geometric collection we were looking for.
Indeed, we will see that the behavior of n-block collections, n = dim(X),
is really good in the sense that they are automatically strongly exceptional
collections and that their structure is preserved under mutations through
blocks. More precisely we have:

PROPOSITION 3.8. Let X be a smooth projective variety of dimension
n and let B = (&, ...,En) be an n-block collection of coherent sheaves on X
and assume that B generates the category D. Then, we have:

(1) The sequence B is a full strongly exceptional collection of coherent
sheaves on X.
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(2) All mutations through the blocks £; can be computed using short
exact sequences of coherent sheaves.

(3) Any mutation of B through any block &; is a full strongly exceptional
collection of pure sheaves, i.e. complexes concentrated in the zero component
of the grading.

(4) Any mutation of B through any block E; is an n-block collection.

Proof. See [2]; Theorem 9.5 and Remark b) below and [13]; Theorem 1.
O

Remark 3.9. By Remark 2.7 (2), a mutation of a strongly exceptional
collection is not, in general, a strongly exceptional collection. In fact,
o= (0x,0x(1,0),0x(0,1),0x(1,1)) is a strongly exceptional collection
on X = P! x P! and the mutated collection

(OXa OX(L 0)7 LOX(O,l)OX(lv 1)7 Ox (07 1))
= (OXu OX(]-a 0)7 OX(_l’ ]-)a OX(O’ 1))

is no more a strongly exceptional collection on X. However, we can pack
the objects of ¢ in a suitable subcollections of blocks B = (&g, &1,&2) =
(Ox,(0x(1,0),0x(0,1)),0x(1,1)) and according to Proposition 3.8 any
mutation of B through any block &; is a full strongly exceptional collection.
So, for instance, the mutation of B through the block &; is the full strongly
exceptional collection

(507 L51527 51) = (OXa LOX(l,O)OX(O,l)OX(lv 1)7 (OX(L 0)7 Ox (07 1))
= (OXaTX(_]-v _1)5 (OX(]-a 0)7 OX(Oa 1)))

To compute Lg, &2 = Loy (1,00050,1)0x(1,1) = Tx(~1,—1) we have
used the exact sequences

0—>Ox(—1,1) —>V*®Ox(0,1) — O0x(1,1) — 0, and
0— Ox(—l,l) — Tx(—l,—l) — /\2 Vv* ®OX(1;0) — 0

being X = P! x P! and P! = P(V).

Beilinson Theorem was stated in 1978 [1] and since then it has became
a major tool in classifying vector bundles over projective spaces. Beilin-
son spectral sequence was generalized by Kapranov to hyperquadrics and
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Grassmannians ([15] and [16]) and by the authors to any smooth projec-
tive variety with a geometric collection [6]. We are now ready to generalize
Beilinson Theorem to any smooth projective variety X of dimension n with
an n-block collection B = (&£y,&1,...,&n), & = (E{, o ,Eéj) of coherent
sheaves on X which generates D.

THEOREM 3.10. (Beilinson type spectral sequence) Let X be a smooth
projective variety of dimension n with an n-block collection B = (£g, &1, . . .,
&n), &= (E},...,EL)) of coherent sheaves on X which generates D. Then
for any coherent sheaf F' on X there are two spectral sequences situated in
the square —n < p <0, 0 < q < n, with Ei-term

Dir " Ext?(Re,..ep, 0 BV F) @ EPTT

(39) ]Ezfq = Zf —n S p S -1
@i Ext?(E!", F) ® B if p=0
?zln i " En - Epintl "
@ p+ Eth((Ep-i- ) ) (R Ep+ )*
(3.10) pEY = if —n<p<-—1
@y ExtY(EM, F) @ B if p=0

and differentials di? : EP? — Ef+r’q_r+1 which converge to

- - F fori=0
E. =y E_ =
[Foo = 1100 {0 fori #0.

Proof. We will only prove the existence of the first spectral sequence.
The other can be done similarly. For any v, 0 < v < n, we write "V; for
the graded vector spaces

'V = Homp(Re,..c

B!, F)=Hom%(E], Lg_, .., F)
where the second equality follows from standard properties of mutations
([11]; Pag. 12-14).

By Remark 3.4, the triangles defining the consequent right mutations
of F' and the consequent left mutations of F'[n] through (&o,...,&,) can be

written as

Qy .
(@’LV’; ®E?)[—1] ﬂ ng,,,goF[—l] N Re, ;. 5OF @ V- ®E7

Qy

. iv+1 +1
DV @E] T Le, s, Fln) " Ly, Fln +11* 69 vy oF])]
=1
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We arrange them into the following big diagram:

Rgn...gOF

=
=

%
x

in D, Ve o Er 0
/ TK
Rgn—l"'gOF d”_l LgnF[n]

kn—1 /
in—1 [ Y AR i i
Re, .6 F dn—2 Lg,_ 1€nF[ ]
: kn—2 /
@an 2 ZV. 9 ® ETL 2
RgléoF L52"'énF[n]
X j”—l
i @Oll ZVl ® El in—1
/ kn71
RgOF do Lgl...gnF[n]
N /
io @Olo Z‘/O ® EO in
F Lgo...gnF[n]

At this diagram, all oriented triangles along left and right vertical bor-
ders are distinguished, the morphisms i, and #* have degree one, and all
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triangles and rhombuses in the central column are commutative. So, there
is the following complex, functorial on F',

0_>®040 Z‘/O ®EO_>@Q1 zvl ®E1
'_>®;1nllzvo 1®ETL 1_>®Oén ZV.®ETL—>0

and by the above Postnikov-system we have that F' is a right convolution of
this complex. Then, for an arbitrary linear covariant cohomological functor
®°®, there exists an spectral sequence with F{-term

PV = 39(17)

situated in the square 0 < p,q < n and converging to ®PTI(F) (see [16];
1.5). Since ®* is a linear functor, we have

ap ap
(3.11) 9(LP) =P eV 0 EY) = PPV, @ 247H(ED)
i=1 =1 1
Qp )
D @ pevien
i=1 a+pB=q

In particular, if we consider the covariant linear cohomology functor which
takes a complex to its cohomology sheaf and acts identically on pure sheaves,

i.e.
o5() — {F for B =0
0 for B£0

on any pure sheaf F', in the square 0 < p,q < n, we get

Qp Ap
1BV = PV @ EY = D Ext?(Re,...e,, BV F) @ EV
=1 =1

which converges to
(B = F fori=0
0 fori#0.

Finally, if we call p’ = p — n, we get the spectral sequence

QAplin
(EVT = P Ext!(Re,.
=1

'+ '+
EVT F) @ EF

Epl int1
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situated in the square —n < p’ <0, 0 < ¢ < n which converges to

i) F fort=0
70 fori#0. [

Remark 3.11. We want to point out that in Theorem 3.10 the number
of blocks is one greater than the dimension of X but a priori there is no
restriction on the length a; of each block & = (EY,..., El,).

Arguing as in [6]; Lemma 2.23 but using the distinguished triangles (3.1)
and (3.2) instead of exact sequences, we can prove the following technical
Lemma that will be used in next sections.

LEMMA 3.12. Let X be a smooth projective variety of dimension n and
let B=(&,...,E) be an n-block collection of coherent sheaves on X. For
any i < j and any locally free sheaf F' on X, it holds:

(a) (LgiE%)* = Rgi*EJ,? for any E,{. € &j;

(b) (Re; E})* = Lg;Eli* for any Ej, € &; |

() (Re,B}) ® F = Re,or (B}, ® F) for any B}, € & and (Lg,E}) @ F =
Legr(E, ® F) for any Ej, € &;.

84. Regularity with respect to n-blocks collections

The goal of this section is to extend the notion of Castelnuovo-Mumford
regularity for coherent sheaves on a projective space to coherent sheaves on
an n-dimensional smooth projective variety with an n-block collection of
coherent sheaves on X which generates D. We establish for coherent sheaves
on P" the agreement of the new definition of regularity with the old one and
we prove that many formal properties of Castelnuovo-Mumford regularity
continue to hold in our more general setup.

To extend the notion of Castelnuovo-Mumford regularity, we will first
introduce the notion of helix of blocks associated to an m-block collection
of objects of D as a natural generalization of the notion of helix associated
to an exceptional collection of objects of D introduced by J. M. Drezet and
J. Le Potier in [8] and L. Gorodentsev and A. N. Rudakov in [12] (see also
13)).

DEFINITION 4.1. Let X be a smooth projective variety and let B =
(£0:&1,-- - Em), & = (EY,..., E};) be an m-block collection of objects of
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D. We extend, in both directions, the collection B to an infinite sequence
of blocks defining by induction:

Eivm =R™E& 1 and &, =L"™E, 11 i>0.

The collection Hp = {&;}iez is called the heliz of blocks associated to B.
Each helix Hp = {&; }icz is uniquely recovered from any collection of (m-+1)
of its consequent blocks B; = (&;, i1y - -+ Eitm)-

Remark 4.2. Let X be a smooth projective variety, let B = (€9, &1, .. -,
Em), & = (E{,...,E};), be an m-block collection and let Hp = {&;}icz be
the helix of blocks associated to B. If we consider Hz just as a collection
of objects of D (we forget the blocks) then it turns out to be the helix
associated to the exceptional collection

o=(£,E1,. . Em) = (EY, ... E°

aQ?

El,...,EL ... E™ ... E™).

a1 Qam

DEFINITION 4.3. Let X be a smooth projective variety of dimension n
with canonical bundle Kx. A sequence {&;}icz of blocks of objects of D
will be called a helix of blocks of period (m + 1) if for any ¢ € Z,

& = Eiprmy1 © Kx[n —m]

where &; ® Kx[n —m] denotes the block (E{ ® Kx[n —m), E% ® Kx[n —

ml,...,E}, ® Kx[n —m]) and the number in square brackets denotes the
multiplicity of the shift of an object to the left viewed as a graded complex
in D.

It follows from Remark 4.2 and [2]; Theorem 4.1 that if X is a smooth
projective variety of dimension n and B = (&£o,€&1,...,En), & = (E{, el
Eéj), is an m-block collection of objects of D, then the helix of blocks
Hp = {&;}icz associated to B is an helix of blocks of period m + 1, i.e., for
any i € Z, & = gz‘+m+1 & Kx[’n — m]

As an immediate consequence of Proposition 3.8, we have:

COROLLARY 4.4. Let X be a smooth projective variety of dimension n,
let B=(,...,&n), & = (EB,...,EL;) be an n-block collection of coherent
sheaves on X which generates D and denote by Hg = {&;}icz the helixz of
blocks associated to B. Then, Hp is an heliz of period n+1 and any n-block
collection B; = (£;,&i41,---,Ei+n) of n+ 1 subsequent blocks is an n-block
collection of coherent sheaves on X which generates D.
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Let X be a smooth projective variety of dimension n and let B =
(&0, &1,...,En), & = (E{,,Eé]) be an n-block collection of coherent
sheaves on X which generates D. Associated to B we have a helix of blocks
Hp = {&i}iez; and for any n-block collection B; = (&;,Ei+1,--+,Eitn) oOf
n + 1 subsequent blocks and any coherent O x-module F' we have a spectral
sequence (see Theorem 3.10)

@?iimri Eth(R5i+n"'5i+p+n+1EéerJrn’ F) 2 EéerJrn
(4.1) 1EM = if —n<p<-—1
@l ExtI(EBI, F) © BT ifp=0

situated in the square 0 < g < n, —n < p < 0 which converges to

B = F forr=20
0 forr #0.

DEFINITION 4.5. Let X be a smooth projective variety of dimension
n with an n-block collection B = (&y,&1,...,&n), & = (Eiv’Esz) of
coherent sheaves on X which generates D, let Hp = {&; }icz be the helix of
blocks associated to B and let F' be a coherent O x-module. We say that F'
is m-reqular with respect to B if for ¢ > 0 we have

Doy Ext!(Re_, gy Bs P F) =0 for —n<p< -1
@7 Exti(E;™ F)=0 for p=0.

So, F is m-regular with respect to B if ~*"™E}? =0 for ¢ > 0 in (4.1).
In particular, if F' is m-regular with respect to B the spectral sequence
—nmmEPT collapses at Eo and we get the following exact sequence:

(4.2) 0—L_,— - —L 41— Ly)— F—0
where
Do HOX, (Re_ ey B ") @ F) @ B
L,= if n<p<-—1

@ HO(E;™)* @ F) @ E;™ if p = 0.

DEFINITION 4.6. Let X be a smooth projective variety of dimension
n with an n-block collection B = (€y,&1,...,&n), & = (E1,...,EL;) of
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coherent sheaves on X which generates D and let F' be a coherent Ox-
module. We define the regularity of F with respect to B (or B-reqularity of
F), Regg(F), as the least integer m such that F' is m-regular with respect
to B in the sense of Definition 4.5. We set Regg(F) = —oo if there is no
such integer.

Remark 4.7. Let X be a smooth projective variety of dimension n.
Since a geometric collection o = (Ey, F1,..., FEy,) is an n-block collection
of type (1,...,1), Definitions 4.5 and 4.6 extend the definition of regularity
with respect to a geometric collection introduced by the authors in [6].

EXAMPLE 4.8. We consider the n-block collection B = (Opn, Opn (1),
.,Opn(n)) on P" and the associated helix Hg = {Opn (i) }icz. According
to Example 3.7 (1), the left dual n-block collection of an n-block collection
B; = (Opn(i),Opn(i 4+ 1),...,0pn(i +n)) of n + 1 subsequent blocks of Hp
is
(Opn (i +n), RVOpn(i +n—1),...,RDOpn(i +n—3),..., R Opn(i))
= (Opn(i4n),Tpn(i+n—1), ..., N Ton(i +n—3),..., \" Tpn(i)).

Therefore, for any coherent sheaf F' on P our definition reduces to say: F'is
m-regular with respect to B if Ext¢(A"? T'(—m+p), F) = H{(P",QP(m —
p)®F)=0for all ¢ >0 and all p, —n < p <0.

We will now compute the regularity with respect to B = (£, &1,...,En)
of any coherent sheaf E} € &;.

PROPOSITION 4.9. Let X be a smooth projective variety of dimension
n with an n-block collection B = (€, &1,...,En), & = (E{, ) Eé]), which

generates D and let Hg = {&; }zeZ be the associated heliz. Then for any
i € Z and any E! € &;, Regg(E}) = —i.

Proof. First of all we will see that Reg(FE}) < —i. By the orthogonality
relation (3.4), for ¢ > 0 and —n < p <0, we have

Qitp
P Ext(Re, e, B, E]) =0 for —n<p< -1, and
s=1

@Extq (EL,E))=0 for p=0.
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So, Ej} is (—i)-regular with respect to B or, equivalently, Regg(E}) < —i.
Let us now see that E} is not (—i — 1)-regular with respect to B. To
this end, it is enough to see that

;
Pt (e, B E) £,
s=1

To prove it, we write ¢ = an 4 j with 0 < 7 < n, o € Z. We consider
the n-block collection
Ban = (Ean, Eant1y -+ Eantj = Eiy -+ s Eantn)
and its left dual n-block collection
(Eansns RYEmmin—1,. .., R DE i RMEL).
By Remark 3.6 and the equality (3.6)

Bt (RO B}, 1) = Ext" (R B B) =C.

antn-Eirait1

So, if j = n—1 we are done. Assume j < n — 1. Since Ext?(E% E}) =0
for ¢ > 0 and 1 < s < «;, applying the contravariant functor Hom( -, E}) to
the exact sequence

0 — Reg E; - 69?;1 Hom*(Rfan+n—1---5¢+1E§7 E;) ® E;

— ROIDE — 0

antn—1Eit1

we obtain
Ext? i1 (Re

an+n—1 "'gi+1

Ei, E}) =C.
We repeat the process using the consequent right mutations and we get

Extnfjfk(Rg

an+n7k"'gi+1EtZ7 Etz) = C
for 0 <k <n—1-—j. In particular,

C

Ext!(Re, , E}, E})

i+1
and, hence,

o
@ Eth(RgiJrlEé’ Ei) # 0
s=1

which implies that E} is not (—i— 1)-regular and we conclude that Reg;(E?)
= —i. [
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Let us now compare our new definition of regularity with the previous
ones.

CASTELNUOVO-MUMFORD REGULARITY. In [19], Lecture 14, D. Mum-
ford defined the notion of regularity for a coherent sheaf over a projective
space. Let us recall it.

DEFINITION 4.10. A coherent sheaf ' on P" is said to be m-reqular in
the sense of Castelnuovo-Mumford if H*(P", F(m —1i)) = 0 for i > 0. We
define the Castelnuovo-Mumford regularity of F, Reg®™ (F), as the least
integer m such that F'is m-regular. We say that the Castelnuovo-Mumford
regularity is —oo if such integer does not exist.

Let us now establish for coherent sheaves on P” the agreement of the
B-regularity in the sense of Definition 4.5 with Castelnuovo-Mumford defi-
nition.

PROPOSITION 4.11. A coherent sheaf F' on P™ is m-regular in the sense
of Castelnuovo-Mumford if and only if it is m-reqular with respect to the
n-block collection B = (Opn,Opn(1),...,0pn(n)) in the sense of Defini-
tion 4.5. Hence, we have

Regg(F) = Reg™ (F).

Proof. Since B is not only an n-block collection but also a geometric
collection, the result follows from [6]; Proposition 4.6. [

CHIPALKATTI’S REGULARITY. In [4], Definition 1.1, J. V. Chipalkatti
introduced the notion of regularity for a coherent sheaf on a Grassmannian
variety and he showed that when the Grassmannian is a projective space
his definition of regularity agrees with Castelnuovo-Mumford regularity. We
will now see that the notion of regularity introduced in Definition 4.6 is
closely related to Chipalkatti’s regularity but they do not coincide. Let us
recall Chipalkatti’s definition.

DEFINITION 4.12. A sheaf F' on X = Gr(k,n) is regular if H4(X, F ®
EﬂQ*) =0 for all Bsuch that k> (1> --- >3,y >0and all ¢ > 1. It is
said to be m-regular if F ® Ox(m) is regular. Reg®(F) is the least integer
m such that F(m) is regular, set Reg”(F) = —oo if there is no such integer.
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Proposition 4.11 together with [4]; Theorems 1.5 and 1.6, establishes,
when the Grassmannian is a projective space, the agreement of Chipalkatti’s
definition (Definition 4.12), Castelnuovo-Mumford’s definition (Definition
4.10) and our definition (Definition 4.5). Nevertheless, next example shows
that, in general, Chipalkatti’s definition and our definition do not coincide.

ExaMpPLE 4.13. We consider the 4-dimensional Grassmann variety
X = Gr(2,4) and the 4-block collection described in Example 3.2 (2) ten-
sored with Ox (2)

B = (£,&1,2,E3,61) = (2PPS © 0x(2), 23VS © 0x(2),
(208 ® 0x(2),21VS © 0x(2)), 2198 © 0x(2), 2C0S @ Ox(2)).

Since X228 ® 0x(2) = Ox and X008 @ Ox(2) = Ox(2), by [4]; Exam-
ple 1.3 (a), Reg®(B0S ® Ox(2)) = —2 and Reg®(222S ® Ox(2)) = 0.
On the other hand, by Proposition 4.9, Regz(X98 ® Ox(2)) = —4 and
Regp(2?2S ® 0x(2)) = 0.

HOFFMAN-WANG REGULARITY. In [14], J. W. Hoffman and H. H. Wang
introduced a multigraded variant of the Castelnuovo-Mumford regularity
and we will devote Section 5 of this paper to relate it to our new definition
of regularity.

To emphasize the similarities between the new notion of regularity and
the original definition in Chapter 14 of [19], we will end this section prov-
ing that the basic formal properties of Castelnuovo-Mumford regularity of
coherent sheaves over projective spaces remain to be true in this new setting.

PROPOSITION 4.14. Let X be a smooth projective variety of dimension
n with an n-block collection of coherent sheaves B = (£9,&1,...,&n), & =
(E{, ... ,Eglj), which generates D and let F' be a coherent Ox-module. If F
1s m-reqular with respect to B then the canonical map @2:{" Hom(E;™, F)®
ES™ — F is surjective and F is k-reqular with respect to B for any k > m
as well.

Proof. The first assertion follows from the exact sequence (4.2). To
prove the second assertion it is enough to check it for k = m + 1. Since F
is m-regular with respect to B we have for ¢ > 0
(4.3) PP ExtU(Re_ ey Ba P F) =0 if —n<p< -1

Do Exti(E;™ F) =0 if p=0.
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In order to see that F'is (m + 1)-regular with respect to B we have to prove
BT Ry =0
forg>0, -n<p<—1
for g > 0, p=0.

D P ExtY(Rs_,, . &t

(4.4)
D Ext(E; L F) =0
Using the equalities (4.3) and applying, for any s, 1 < s < a_,—1, the

functor Hom( -, F') to the exact sequence

0— E;" 7 — @ Hom*(E;™ L E;™) @ By ™
— Re  E;™1 —0

we obtain

Extq(ES_m_l,F) =0 forg>0and1<s<a_,_1

and, hence,
Q—m—1
P Ext(E;™,F)=0 forq>0.
s=1

Using again the equalities (4.3) and, for any s, 1 < s < a_;,_9, the

exact sequence
E;m72’Etfm) ® E;m

" — @y Hom*(Re_,,_,
RN 0

0— Reg ,, B
- Rg—mg—m—lESim72

we get
d—m—2

@ Ext?(Rg_,, ,E;™ 2 F)=0 forany ¢ > 0.
Going on and using the consequent right mutations of blocks, we get
forallp, —n+1<p< -1,

A—m—1+p
P Ext'(Re, e, B P F) =0 forall g>0.

s=
Therefore, it only remains to see that
A—m—1—n
Ext!(Re_,, ,.e ., B 7" F)=0 forallq>0.

s=1
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The vanishing of these last Ext’s groups follows again from the equalities
(4.3) taking into account that, by Definition 4.1

RS_m_1 Rg_m_g to Rg_m_ngfmfnfl = R(n)gfmfnfl = E,m, D

ProPOSITION 4.15.  Let X be a smooth projective variety of dimension

n with an n—block: collection of coherent sheaves B = (£9,&1,...,En), & =
(E{,...,El;), which generates D. Let F and G be coherent Ox-modules
and let

(4.5) 0—F — I —F;3—0

be an exact sequence of coherent Ox-modules. Then,
(a) Regp(F2) < max{Regps(F1), Regp(F3)},
(0) Regp(F & G) = max{Regp(F), Reg(G)}.

Proof. (a) Let m = max{Regg(F1), Regg(F3)}. Since, by Proposi-
tion 4.14, Fy and Fj are both m-regular with respect to B considering the
long exact sequences

C— @‘S}:Tﬂ’ Eth(Rgim...g E—m-i—p’ Fl)

—m+p+1-7$

— @I Ext?(Re E;™P Ry)

—m - Emypr1s

— @I Ext?(Re E;™P Fy) — ...

—m - E—mipr11¥s
and

c— @ Extd(E;™ Fy) — @ Extd(E;™, Fy)
— @ ExtI(E;, F3) — -

associated to (4.5) we get

Doy Ext!(Re_,e_pipir Bs P F) =0 if —n<p< -1
Do Ext?(E;", ) =0 if p=0,

which implies that Regp(Fz) < m.
(b) It easily follows from the additivity of the functor

Ext?(Re_, ..e E;™P 0[]

—m+p+17TS
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§5. Regularity of sheaves on multiprojective spaces

In this section, we will restrict our attention to coherent sheaves over
multiprojective spaces X = P™ x. .- xP"™ and we will relate our definition of
regularity to the multigraded variant of the Castelnuovo-Mumford regularity
introduced by Hoffman and Wang [14] (see also [18]).

We first fix the notation we need in this section. For each integer ¢ > 0,
let

St;={(l,s) €Z* |l +s=—-1—4,1<0,5<0}

{
= {(=i,=1), (=i + 1,-2),...,(=2,—i + 1), (=1, —i)},

for ¢ <0, let
St;={(l,s) €Z* |l +s=—i,1>0,5s>0}
={(-1,0),(—i —1,1),...,(1,—t — 1), (0, —3)}.
For each (p,p) € Z2%, let St;(p,p’) = (p,p’) + St;.

DEFINITION 5.1. Let F' be a coherent sheaf on X = P™ x P*. We say
that F' is (p,p’)-regular if, for all 4 > 1,

H'(X,F(k,k')) =0
whenever (k, k') € St;(p,p').

Remark 5.2. Definition 5.1 generalizes in an obvious way to coherent
sheaves on multiprojective spaces P"* x - .. x P",

Set d = m +n, X = P™ x P" and denote by B = (&,&1,...,&q) the
d-block collection where for any 0 < j < d, we have

& ={0x(a,b) |a+b=j—d,0>a>-m,0>b>—-n}
and we set o := §€;. By Remark 3.6, the left dual d-block collection
(ROE€;, RVE; 1,...,RIE ;,...,RDE&)

of B is univocally determined by the orthogonality relations (3.5) and (3.6),
and an intricate computation using Kiinneth formula for locally free sheaves
on algebraic varieties shows that for any Ox(a,b) € £;—; and any 0 < j < d
we have

—b
(5.1) R( OX a b /\Tpm & /\Tpn(b)
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LEMMA 5.3.  With the above notation, let Hp = {&;}icz be the helix
of blocks associated to B. Let us denote by Byqy1) the d-block collection of
d+ 1 consecutive blocks (Ex(at1)s En(a+1)+1s - - > En(dr1)+a)- Then, we have

(1) Exary+i = {Ox(a+k(m+1),b+k(n+1)) |atb=i—d, 0>a>
—m,0>b>—-n}

(2) The left dual d-block collection of Bjg11y is

(R(O)gk(dJrl)ery R<1)5k(d+1)+d717 e ,R(j)gk(dJrl)erij e R(d)gk(dJrl))
where for any Ox(a+k(m +1),b+k(n+1)) € Exar1)+d—;
RYOx(a+k(m+1),b+ k(n+1))

—a —b
= N\ Tem(a+k(m+1)) 8 A Tpe(b+ k(n +1)).

Proof. (1) Applying Corollary 4.4, we get Ey(ap1)4i = & ® K;(k and
the result follows taking into account that Ky* = Ox (A(m + 1), A(n + 1)).

(2) Straightforward computation taking into account that the left dual
d-block collection of By = (£, &1, - - -, E4) is determined (up to isomorphism)
by (5.1), Lemma 3.12 and the equalities

(4) e )
R gk(d—f—l)-i-d—J = ng(d+1)+d'"5k(d+1)+d—j+1gk(d—i—l)-i-d—J

—k
= R5d®K§k---5d_j+1®K;{k5d—j ® Ky
= RV j @ KM

= (Rgd...gd7j+15d_j) ® K)_(k

= (RY&;_ ) @ Kx". 0

We have the following technical lemma.

LEMMA 5.4. Let F be a coherent sheaf on X =P x P*. We have:

(a) F is (p,p')-regular in the sense of Hoffman and Wang if and only
if F(p,p') is (0,0)-regular in the sense of Hoffman and Wang.

(b) F is k(d+1)+t-regular with respect to B in the sense of Definition 4.5
if and only if F(k(m+1),k(n+1)) is t-regular with respect to B in the sense
of Definition 4.5.
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Proof. (a) It obviously follows from Definition 5.1.

(b) By Definition 4.5, F'is k(d 4 1) 4 t-regular with respect to B if and
only if for ¢ > 0 we have

@f I{d+1) “P Bxtd(Re E; —k(d+1)—t+p JF)=0

k(d4+1)—t"E—k(d+1)—t4pt1

if —d<p< -1
@ﬁ Rd+D)—t p tq(E_k(d+1) JF)=0 if p=0.

Since E_pas1)4i = E QK §(, applying Lemma 3.12, it is equivalent to
say that for ¢ > 0, we have

B ExtU(Re gy B PO KE F) =0 if —d<p<—1
At Extt(E-t @ K5, F) =0 if p=10
@571 s X p

or, equivalent, for ¢ > 0, we have

P Extd(Re_,..e. t+P+1E P FPoKf) =0 if-d<p< -1
P Extd (BT F o KF) =0 ifp=0

which means that F'(k(m+1),k(n+1)) is t-regular with respect to B in the
sense of Definition 4.5. [

We are now ready to state the main result of this section.

THEOREM 5.5. Let F be a coherent sheaf on X = P™ x P" and set
d=mn+m. Then F is (0,0)-reqular in the sense of Hoffman and Wang if
and only if F' is (—d)-regular with respect to B in the sense of Definition 4.5.

Proof. According to Definitions 5.1 and 4.5 we have to see that
(5.2) H'(X,F(r,s)) =0 foralli>0,r+s=—i—1,7r<0,5<0

if and only if for ¢ > 0 we have

@ap-&-d Eth(Rgd p+1+dEp+d F)
=@ wrvp HUQRE(—a) KON~ @ F) =0
(5.3) 0>a>—m
0>b>—n
o for —d <p < —1;
Do, Ext(EY, F) = HY(X,F) =0 for p = 0.
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Let us first see that (5.2) implies (5.3). Since by [14]; Proposition 2.7,
any (0,0)-regular sheaf is also (p,p’)-regular for p > 0, p’ > 0, we have

(5.4) HY(X,F(r,s))=0 foralli>0,7r+s>—i—1,1r>—i, s> —i.
We will see that (5.4) implies the following stronger result
(5.5) (050 (—a) B Q52(~8) & F(r,5)) = 0

forany ¢ >0,0>a>-m,0>b>-n,r+s>—qg+1landr,s > —q+1.
To this end, we will first prove the following claim:

CLam. Foranyi>0,0>b>—n,r+s>—i,r>—iands> —i+1
H (Qpl(=b) @ F(r,s)) = 0.

Proof of Claim. We will prove it by induction on b. By (5.4), for i > 0,
b=-n,r+s>—t,r>—iand s > —i + 1, we have

HY(O2.(n) ® F(r,s)) = H(F(r,s — 1)) = 0.
Now take 0 < b < —n and consider on X the exact sequence
0 — Qs (—b+1) ® F(r,s — 1) — Opn(—1)5051) @ F(r, 5)
— Q]Pm(—b) ® F(r,s) — 0
and the cohomological exact sequence associated to it
s H(F(r, s — 1)) — HI(Q3(—b) @ F(r, 5))
— HTH QM b+ 1) @ F(r,s — 1)) —

Applying (5.4) and hypothesis of induction we get H%Q@f(—b)@F(r, s))=0
foralli>0,r+s> —i,r > —iand s > —i + 1 which finishes the proof of
the claim.

Let us now prove (5.5) by decreasing induction on p := —a—0,0 <p <
d. If p=d, then a = —m, b = —n and by (5.4) for any ¢ > 0, 7 +s > —q+1
and r,s > —q + 1 we have

HYQpm (m) X Qpn(n) @ F(r,s)) = HY(F(r—1,s —1)) = 0.
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Assume that (5.5) holds for p+1 and fix a, b such that 0 < p = —a—b < d.
If @ = 0 or @ = —m the result follows from the claim. So, we can assume
0 > a > —m and we consider on X the exact sequence

0— Qpotl(—a+1) RO (~b) @ F(r —1,5)
— Opn (1) ") R QP (—0) ® F(r, 5)
— Qpi(—a) R Q5L (—b) ® F(r,s) — 0
and the cohomological exact sequence associated to it
- — HY(Opn (—1) ("5 R Q32 (—b) @ F(r,5))
— Q55 (~0) R GH(-D) & F (1))
— HIPH QR (—a + 1) R QpP(—b) @ F(r — 1,58)) — ---
By hypothesis of induction H9+ Qg4 (—a+1)RQ N (~b)@ F(r—1,5)) = 0
foranyg>0,0>a>-m,0>b> —n,r+s> —g+landr,s > —qg+1 and
m—+1
it follows from the Claim that Hq(OPm(—l)(*‘“rl) X ngnb(—b) ®F(r,s))=0
forany ¢ >0,0>a>-m,0>b>—-n,r+s>—q+1andr,s > —q+ 1.
Hence H(Qp2(—a) X Qpl(—b) @ F(r,s)) = 0 for any ¢ > 0, 0 > a > —m,
0>b>-n,r+s>—qg+1andr,s > —q-+ 1 and this finishes the proof of
(5.5).
Let us prove the converse. We will prove that (5.3) implies
(5.6) HY(X,F(-s,—t)) =0 foralli>0,i>s+t—1,s,t>0.
First of all, we will prove by induction on ¢ that for all ¢ > ¢
(5.7) HY(X,F(-1,-t)) =0.
By (5.3), for t =1 and ¢ > 0 we have
HY(X,F(-1,-1)) = H'(X, Q. (m) R Q. (n) @ F) = 0.
For t > 1, we consider on X the exact sequence
0— F(~1,—t) — F(-1,—(t-1))""" — Q2 (n—t+1)®F(-1,0) — 0
and the cohomological exact sequence associated to it
s HTH QR (n —t 4+ 1) ® F(—1,0)) — HY(F(-1,—t))
— HY(F(=1,—(t = 1))"™) — ... .

By hypothesis of induction H*(F(—1,—(t—1))) = 0 for any i > ¢t —1. Hence
it is enough to prove the following Claim:
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CramM 1. Forany j,0<j<t—2andi>j+1,
HY(Qp " (n —t+1) @ F(~1,0)) = 0.

Proof of Claim 1. We will proceed by induction on j. For j7 = 0 and
i >0, by (5.3)

H(Qp " (n—t+1)®@F(-1,0)) = H(Qp (m)RQE " (n—t+1)® F) = 0.
For 0 < j <t — 2, consider the exact sequence on X
n—t+1+j A (i)
0 — Qpn (n—t+1)® F(=1,0) — F(=1,—j)\n+1-t+
— QT —t+1)® F(-1,0) — 0
and the cohomological exact sequence associated to it

s HHOR T (0 — t+1) ® F(—1,0))
— H(Qp " (0 —t +1) ® F(—1,0))
N Hi(F(_l,_ﬁ)(nﬁﬂﬂ) .
By hypothesis of induction Hi_l(Qg;tH(n —t+1)® F(—1,0)) = 0 for any
i > j and since j < t, by hypothesis of induction on t, H*(F(—1,—7)) = 0

for any i > j. Thus Hi(Qg;HHj(n—t—H)@F(—l,0)) =0 foranyi > j+1.
This finishes the proof of the Claim 1 and the proof of (5.7).

By symmetry, for all ¢ > ¢ we also have
(5.8) HY(X,F(~t,—1)) = 0.

Now, by induction on s > 0 we will prove that (5.6) holds for any ¢ > 0,
1 >t+s—1. The case s = 1 is already done. Take s > 1 and we will see
that

(5.9) H{(F(—s,—t)) =0 foranyt<i,i>s+t— 1.

To this end, we will prove that the following cohomology groups vanish on
X:
(a) For any i > s > 1,

H(Qp " (n—t+1)® F(—s,0)) = 0.
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(b) Forany j,1<j<t—1,t>0andi>s+1t—1,
H(Qp ™ (n—t+1) @ F(—s,0)) = 0.
(a) We proceed by induction on s. For s = 1, by (5.3), for any i > 0
H(QE " (n—t+1)@F(-1,0)) = H (Qp (m)RQE " (n—t+1)® F) = 0.
Fix s > 1 and let us prove
CLamM 2. Forany j, 1<j<s—1andi>j,
H(QE " (m— s+ )R (n—t+1) @ F) =0.
Proof of Claim 2. For j =1, by (5.3)
HOQp T m - s+ )R n—t+ 1)@ F) =0.
For 1 < 7 < s —1 consider the exact sequence on X
0— Q" (m—s+ )R n—t+1)@ F

— QR (£ 4 1) © F(—j +1,0)(n55)
— O T - s+ D) RO -t 4+ 1)@ F — 0

and the cohomological exact sequence associated to it

s HTHOE T T m - s+ )R QT —t + 1) @ F)
— H(Qp T (m—s+ 1) R (n—t+1) @ F)
. 1 ( m+1 )
— H'(Qp " =t +1) @ F(—j 4+ 1,0))\m-sts) — -
By hypothesis of induction on 7,
HH Qg 7 m—s+ )RR ™ (n—t+ 1)@ F) =0
and by hypothesis of induction on s, for j — 1 < s,
H(QE " n—t+ 1)@ F(—j +1,0)) = 0.

Thus '
H(Qp " (m— s+ 1) ROQE T n—t+ 1)@ F) =0

and this finishes the proof of Claim 2.
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Using the cohomological exact sequence on X
s NPT (m - s+ D) RO T n—t+ 1) @ F)
— H'(Qp " (n —t+1) ® F(—s,0))
— H'(Qp " n—t+ 1) @ F(—s+1,0))" T — ...
by hypothesis of induction and by Claim 2, we get that for any ¢ > s, s > 1,
H(Qp " (n —t 4+ 1) ® F(—s,0)) = 0 which finishes the proof of (a).
(b) The case j = 1 follows from (a). Fix j > 0 and consider the
cohomological exact sequence
s HTY QR T (=t 4 1) ®@ F(—s,0))
— HY(Qp " (n —t+ 1) @ F(—s5,0))
. n+1
SN HZ(F(—S, —j + 1))(n—Jtr+]') SN
associated to the exact sequence on X

n+1

0 — OB (n—t+1)® F(—5,0) — F(—s,—j + 1))
—Qp T — 4+ 1) @ F(—5,0) — 0.
Since j —1 < ¢, by the first cases HY(F(—s,—j+1)) =0 and by hypothesis
of induction Hifl(Qg;HJ*l(n —t+4+1)® F(—s,0)) = 0. Thus, for any j,
1<j<t—landi>s+t—1, H(Qp "7 (n—t+1)® F(—s,0)) = 0 which
finishes the proof of (b).

Finally, to prove (5.9), we proceed by induction on ¢ > 0. By (5.8), the
case t = 1 is already done, so we fix t > 1 and we consider the following
exact sequence on X

0— F(—s,—t) — F(—s,—t+1)""' — Q. (n—t+1)® F(~s,0) — 0
and the associated cohomological exact sequence

o H O (0 — 4+ 1) @ F(—5,0)) — HY(F(—s, 1))
— HY(F(=s,—t +1))"™ — ...
By hypothesis of induction H*(F(—s,—t + 1)) = 0 and it follows from (b)

that H~1(Qp.  (n —t + 1) ® F(—s,0)) = 0. Hence, H*(F(—s,—t)) = 0 for
any t > 0, 1 > s+t — 1 and this proves what we want. 0
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As a consequence of this last Theorem we have,

COROLLARY 5.6. Let F be a coherent sheaf on X = P x P". Set
d=n+m.

(1) If F is p-regular with respect to B in the sense of Definition 4.5 and
p=Ad+1)+p, 0<p<d+1, then Fis (A+2)(m+1),(A+2)(n+1))-
reqular in the sense of Hoffman and Wang; and

(2) If F is (s,r)-regular in the sense of Hoffman and Wang with r =
Am+1)+t, 0<t<m+1,and s =pum+1)+z, 0<z<n+1
then F is (max(\, pu)(d + 1) + 1)-reqular with respect to B in the sense of
Definition 4.5.

Proof. (1) By Proposition 4.14, if F'is p = A(d + 1) + p-regular with
respect to B, then F'is ((A + 2)(d + 1) — d)-regular with respect to B as
well. By Lemma 5.4, F(A+2)(m+1),(A+2)(n+1)) is (—d)-regular with
respect to B. Applying Theorem 5.5, we get that F((A + 2)(m + 1), (A +
2)(n+1)) is (0,0)-regular in the sense of Hoffman and Wang and hence F' is
(A+2)(m+1),(A+2)(n+ 1))-regular in the sense of Hoffman and Wang,.

(2) Set ¢ = max(A, ). By [14]; Proposition 2.7, F'is ((¢ + 1)(m +
1),(¢ + 1)(n + 1))-regular in the sense of Hoffman and Wang. Therefore,
F(¢+1)(m+1),(¢+1)(n+1)) is (0, 0)-regular in the sense of Hoffman
and Wang and applying Theorem 5.5 we obtain that F'((¢+1)(m+1), (¢ +
1)(n+1)) is (—d)-regular with respect to B and so F' is (¢(d+1)+1)-regular
with respect to B in the sense of Definition 4.5. 0

§6. Final remark and open problem

The notion of regularity that we have introduced in Section 4 applies to
any coherent sheaf on a large class of smooth projective varieties: projective
spaces, multiprojective spaces, hyperquadric varieties, Grassmannians, etc.
More precisely, it applies to coherent sheaves on any n-dimensional smooth
projective variety which has an n-block collection B = (&g, &1,...,&,) of
type (g, aq,...,a,) of coherent sheaves on X which generates the derived
category of bounded complexes D = D®(Ox-mod). Hence, we are led to
pose the following question/problem:

PROBLEM 6.1. To characterize n-dimensional smooth projective vari-
eties which have an n-block collection B = (&9, &1, ...,&n), & = (B, E3, ...,
FEY,;) of coherent sheaves on X which generates D.
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NoOTE ADDED IN PROOF. Problem 2.10 is closely related to Dubrovin’s
conjecture concerning the semisimplicity of the quantum cohomology alge-
bra. More precisely, it states

CONJECTURE 6.2. (Dubrovin [9]; Conjecture 4.2.2 (1)) Let X be a
smooth complex compact variety. The even quantum cohomology ring of X
is generically semisimple if and only if X is a Fano variety and the category
D admits a full exceptional collection of length equal to »  H*(X).
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