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Abstract

In this paper we consider the problem of finding standing waves – solutions to nonlinear Schrödinger
equations with vanishing potential and sign-changing nonlinearities. This involves searching for solutions
of the problem

−ε21u + V (x)u = Q(x)|u|p−1u in RN . (0.1)

We show that the problem has a solution, and the maximum point of the solution is concentrated on a
minimum point of some function as ε→ 0.
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1. Introduction

In this paper we are concerned with the nonlinear Schrödinger equation

ih
∂ψ

∂t
=−

h2

2m
1xψ + V (x)ψ − Q(x)|ψ |p−1ψ, (1.1)

where m and h are positive constants, ψ :R+ ×RN
→C, V ∈ C(RN ,R). One of

the basic principles of quantum mechanics states that it contains classical mechanics
as its limit as h→ 0. The presence of the nonlinear term in the equation makes
possible the appearance of solitary waves. It is also interesting in mathematics to
analyze the behavior of solutions of (1.1) as h→ 0. There has been much attention
in the literature to the so-called standing waves, namely solutions of (1.1) of the form
ψ(x, t)= e−(i Et)/hu(x), where E is some real constant and u(x) is real-valued. This
is the simplest form of solitary wave. After conveniently relabeling the parameters,
u(x) satisfies

−ε21u + V (x)u = Q(x)|u|p−1u in RN , (1.2)
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116 J. Long and J. Yang [2]

where ε > 0 is a parameter. We assume in this paper that N ≥ 3, 1< p <
(N + 2)/(N − 2). The potential V vanishes at infinity, and the coefficient Q is sign-
changing, that is Q = Q+ − Q−, Q± 6≡ 0.

In the case where V and Q are positive, the problem has been studied in [2, 7, 9, 10]
and references therein. In particular, it is shown in [9, 10] that positive ground state
solutions of (1.2) are concentrated at a global minimum point of the function

A(x) := V (p+1)/(p−1)−N/2(x)Q−2/(p−1)(x) as ε→ 0.

A important ingredient of the proof is the monotonicity of critical values with respect
to the parameters related to the coefficients V and Q. Similar results are obtained
in [2] for the case where both V (x) and Q(x) vanish at infinity.

On the other hand, if Q is sign-changing, various existence results are obtained in,
for example, [1, 4]. The main difficulties are that, firstly, the negative part Q− of Q
will push the level of the associated energy functional up, making it hard to verify that
the functional has minimax geometry if the variational method is applied; secondly, the
boundedness of the Palai–Smale sequence is difficult to show due to the presence of
Q−. This is why a ‘thickness’ condition or a nondegeneracy condition on the set where
Q = 0 has been required in previous work. Various techniques are then developed to
deal with the problem.

In this paper we assume that both V and Q vanish at infinity, and Q is also sign-
changing. To be precise, we suppose that:

(H1) V ∈ C(RN ), and there exist a > 0, A > 0, α > 0 such that

a

1+ |x |α
≤ V (x)≤ A;

(H2) Q ∈ C(RN ) is sign-changing, the set �+ := {x ∈RN
| Q(x) > 0} is bounded,

lim|x |→∞ Q(x) < 0, and there exist C > 0 and β > 0 such that

0< Q−(x)≤
C

1+ |x |β
;

(H3) σ ≤ p < (N + 2)/(N − 2), where

σ =


N + 2
N − 2

−
4β

α(N − 2)
if 0< β < α,

1 otherwise.

We shall show that there exist nonnegative solutions of (1.2), which belong to H1(RN )

and are concentrated at a global minimum point of

B(x) := V (p+1)/(p−1)−N/2(x)(Q+)−2/(p−1)(x).

Since the potential decays to zero at infinity, the variational theory in H1(RN )

cannot be employed. Inspired by [2], we shall work in the weighted Sobolev space
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Hε, defined by

Hε =

{
u ∈D1,2(RN )

∣∣∣∣ ∫
RN
(ε2
|∇u|2 + V (x)u2) dx <∞

}
.

Hε is a Hilbert space with norm induced by the inner product

(u, v)ε =
∫
RN
(ε2
∇u · ∇v + V (x)uv) dx . (1.3)

We also denote by L p+1
Q− (R

N ) the weighted L p space with norm

‖u‖p+1
p+1,Q− =

∫
RN

Q−(x)|u|p+1 dx .

We begin with an existence result.

THEOREM 1.1. Suppose that (H1)–(H3) hold with α ∈ (0, 2), β > 0. Then for every
ε > 0 problem (1.2) has a nonnegative classical solution uε ∈ H1(RN ).

Next, we investigate the limiting behavior of solutions uε obtained in Theorem 1.1
as ε→ 0. We remark that critical values of the associated functional described in
Theorem 1.1 are not monotone in parameters related to the coefficients V and Q as
critical values in [10], hence the arguments in [9, 10] cannot applied. Nevertheless,
the following result holds.

THEOREM 1.2. Suppose that (H1)–(H3) hold with α ∈ (0, 2), β > 0. Then the
solution uε has a unique maximum xε ∈�+ when ε > 0 is sufficiently small. Moreover,
uε is concentrated at a global minimum x∗ of A(x), that is, xε→ x∗ as ε→ 0 and

uε(x)=U∗(x)

(
x − xε
ε

)
+ wε(x),

where wε→ 0 in C2
loc(RN ) as ε→ 0, and U∗ is the unique positive solution of

−1U∗(x)+ V (x∗)U∗(x)= Q(x∗)(U∗)p(x) in RN .

In Section 2, the applying mountain-pass theorem, we find a nonnegative solution
of (1.2) in Hε, and then we show that it belongs to H1(RN ). In Section 3 we discuss
the concentration phenomenon of uε, and prove Theorem 1.2.

2. Existence results

In this section, we establish the existence results for problem (1.2), that is, we
prove Theorem 1.1. Solutions of problem (1.2) will be found as critical points of
the associated functional

Iε(u)=
1
2

∫
RN
(ε2
|∇u|2 + V (x)u2) dx −

1
p + 1

∫
RN

Q(x)u p+1
+ dx,

in Hε. By the following result, which was discussed in [2], we see that Iε is well
defined and C1 in Hε.
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LEMMA 2.1. Suppose that (H1) and (H2) hold with α ∈ (0, 2] and β > 0. Then
for all ε > 0, the inclusion Hε ↪→ L p+1

Q− is continuous provided that σ ≤ p
≤ (N + 2)/(N − 2); and it is compact provided that σ < p < (N + 2)/(N − 2).

To look for critical points of Iε, we use the mountain-pass lemma in [8]. It is
apparent that Iε has a mountain-pass geometry in Hε, that is, there exist ρ, σ > 0, such
that Iε(u)≥ σ for ‖u‖ = ρ, and there exists e ∈ Hε such that for t ≥ 1, Iε(te) < 0. By
the mountain-pass theorem without the (P S)c condition, there is a (P S)cε sequence
{un} of Iε, that is,

Iε(un)→ cε, I ′ε(un)→ 0,

where
cε := inf

γ∈0ε
max

0≤t≤1
Iε(γ (t))≥ σ

and 0ε = {γ ∈ C([0, 1], Hε) | γ (0)= 0, γ (1)= e}.

PROPOSITION 2.1. Assume that (H1)–(H3) hold with 0< α ≤ 2, β > 0. Then for all
ε > 0, problem (1.2) has at least a nonnegative solution in Hε.

PROOF. It is sufficient to show that the (P S)cε sequence {un} possesses a convergent
subsequence. Obviously, for any fixed ε > 0, {un} is uniformly bounded in Hε. So we
may assume that un ⇀ uε in Hε, un→ uε in Lq

loc(RN ) for 2≤ q < 2N/(N − 2) and
un→ uε almost everywhere in RN . By the Brezis–Lieb lemma [3],

o(1)+ 〈I ′ε(un), un〉 =

∫
RN
(ε2
|∇un|

2
+ V (x)u2

n) dx −
∫
RN

Q(x)(un)
p+1
+ dx

= 〈I ′ε(uε), uε〉 + ‖un − uε‖
2
ε −

∫
�+

Q+(x)(un − uε)
p+1
+ dx

+

∫
RN

Q−(x)(un − uε)
p+1
+ dx .

It follows from 〈I ′ε(uε), uε〉 = 0 that

‖un − uε‖
2
ε +

∫
RN

Q−(x)(un − uε)
p+1
+ dx =

∫
�+

Q+(x)(un − uε)
p+1
+ dx + o(1).

As �+ is bounded,
∫
�+

Q+(x)(un − uε)
p+1
+ dx→ 0 as n→∞. This implies that

un→ uε in Hε. 2

In the rest of this section, following the idea of [2], we show that uε obtained in
Proposition 2.1 belongs to H1(RN ). Since �+ is bounded, there exists R0 > 0 such
that �+ ⊂ BR0 . In the sequel, we always assume that 0< α < 2.

LEMMA 2.2. For R > R0 and �n,ε ⊂RN
\ BR ,∫

�n+1,ε

(ε2
|∇uε|

2
+ V (x)u2

ε) dx ≤
1
2

∫
�n,ε

(ε2
|∇uε|

2
+ V (x)u2

ε) dx,

where �n,ε =RN
\ BRn,ε , Rn,ε = εn2/(2−α).
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PROOF. Let χn,ε(r) be a cut-off function, χn,ε(r)= 0 for r ≤ Rn,ε, χn,ε(r)= 1 for
r ≥ Rn+1,ε, and |∇χn,ε(x)| ≤ C/(Rn+1,ε − Rn,ε). By the definition of Rn,ε,

|Rn+1,ε − Rn,ε| = ε[(n + 1)2/(2−α) − n2/(2−α)
] ≥ Cε(n + 1)α/(2−α)

= Cε(2−α)/2 Rα/2n+1,ε ≥ CεRα/2n+1,ε.

This implies that

ε2
|Rn+1,ε − Rn,ε|

−2
≤ C R−αn+1,ε ≤ C inf{V (x) : Rn,ε ≤ |x | ≤ Rn+1,ε},

and

ε2
|∇χn,ε(x)|

2
≤ V (x).

Expanding 〈I ′ε(uε), χn,εuε〉 = 0 and noting that �+ ⊂ BR0 , for all R > R0,∫
�n,ε

χn,ε(ε
2
|∇uε|

2
+ V (x)u2

ε) dx

=

∫
�n,ε

χn,εQ(x)|uε|
p+1 dx − ε2

∫
�n,ε

∇uε · ∇χn,εuε

≤
ε2

2

∫
�n,ε

(|∇uε|
2
+ |∇χn,ε|

2u2
ε) dx

≤
1
2

∫
�n,ε

(ε2
|∇uε|

2
+ V (x)u2

ε) dx,

which yields the result. 2

LEMMA 2.3. For all ρ > 4R0,∫
{|x |>ρ}

(ε2
|∇uε|

2
+ V (x)u2

ε) dx

≤ C‖uε‖
2
ε exp

{
−

1
2

∣∣∣∣log
1
2

∣∣∣∣ε−1(ρ(2−α)/2 − R(2−α)/20 )

}
,

where C > 0 is a constant.

PROOF. Given ρ > 4R0, let ñ − n be positive integers such that

Rn,ε ≤ R0 ≤ Rn+1,ε, Rñ−1,ε ≤ ρ ≤ Rñ,ε. (2.1)

Choosing R0 large enough, and hence n large, Rn+1,ε < 2Rn,ε. Therefore, ρ > 4R0 ≥

4Rn,ε > Rn+2,ε, ñ − 1≥ n + 2 and ñ − n − 2≥ 1. From Lemma 2.2, we deduce that
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120 J. Long and J. Yang [6]∫
{|x |>ρ}

(ε2
|∇uε|

2
+ V (x)u2

ε) dx

≤

∫
{|x |>Rñ−1,ε}

(ε2
|∇uε|

2
+ V (x)u2

ε) dx

≤

(
1
2

)ñ−n−2 ∫
{|x |>Rn+1,ε}

(ε2
|∇uε|

2
+ V (x)u2

ε) dx

≤

(
1
2

)ñ−n−2 ∫
{|x |>R0}

(ε2
|∇uε|

2
+ V (x)u2

ε) dx

≤

(
1
2

)ñ−n−2

‖uε‖
2
ε .

By (2.1), ñ − n ≥ (1/2)ε−1(ρ(2−α)/2 − R(2−α)/20 ), and the assertion follows. 2

PROOF OF THEOREM 1.1. The proof will be complete once we show that
uε ∈ H1(RN ).

Let y ∈RN be such that |y|> 2. Then∫
B1(y)

u2
ε dx =

∫
B1(y)

V (x)u2
ε

1
V (x)

dx ≤ C4|y|
α

∫
B1(y)

V (x)u2
ε dx .

For R = |y|/2, since B1(y)⊂RN
\ BR ,∫

B1(y)
V (x)u2

ε dx ≤
∫
RN \BR(0)

V (x)u2
ε dx .

By Lemma 2.3, for |y|> 4R0, we obtain∫
B1(y)

u2
ε dx ≤ C4|y|

α

∫
RN \BR

V (x)u2
ε dx ≤ C5‖uε‖

2
ε|y|

α exp{−C6|y|
1−(α/2)

}.

Let {yi } ⊂ B5 \ B2, i = 1, 2, . . . , m, m ∈N, be such that B5 \ B2 ⊂
⋃m

i=1 B1(yi ).
Let yi,k := 2k yi . We may assume that there exists k0 such that 2k0 > 4R0. By
Lemma 2.3 and noticing that RN

\ B2 ⊂
⋃
∞

k=0 2k(B5 \ B2),∫
RN \B2

u2
ε dx ≤

∞∑
k=0

∫
2k(B5\B2)

u2
ε dx ≤

m∑
i=1

∞∑
k=0

∫
B2k (yi,k)

u2
ε dx

=

m∑
i=1

k0−1∑
k=0

∫
B2k (yi,k)

u2
ε dx +

m∑
i=1

∞∑
k=k0

∫
B2k (yi,k)

u2
ε dx

≤

m∑
i=1

k0−1∑
k=0

∫
B2k (yi,k)

u2
ε dx + C5‖uε‖

2
ε

m∑
i=1

∞∑
k=k0

|yi,k |
α

× exp{−C6|yi,k |
1−(α/2)

},
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which yields
∫
RN \B2

u2
ε dx <+∞, since 0< α < 2. Thus uε ∈ L2(RN ) and hence

uε ∈ H1(RN ). Finally, standard arguments show that uε ∈ C2(RN ) and uε ≥ 0. 2

3. Concentration phenomenon

In this section, we discuss the limit behavior of the solution uε of (1.2) obtained in
Theorem 1.1.

LEMMA 3.1. Let xε be a global maximum of uε, that is, uε(xε)=maxx∈RN uε(x).
Then xε ∈�+.

PROOF. Since xε is a global maximum of uε, then 1uε(xε)≤ 0. The maximum
principle implies that uε(xε) > 0 and −1uε(xε)+ V (xε)uε(xε) > 0. Supposing, on
the other hand, that xε ∈RN

\�+, we obtain

−1uε(xε)+ V (xε)uε(xε)= Q(xε)u
p+1
ε (xε)≤ 0,

a contradiction. 2

We define for ξ ∈�+ the functional Fξ on H1(RN ) by

Fξ (u)=
1
2

∫
RN
(|∇u|2 + V (ξ)u2) dx −

1
p + 1

Q(ξ)
∫
RN
|u|p+1 dx . (3.1)

Let
f (ξ)= inf

Nξ

Fξ (u), (3.2)

where

Nξ =

{
u ∈ H1(RN ) \ {0}

∣∣∣∣ ∫
RN
(|∇u|2 + V (ξ)u2) dx = Q(ξ)

∫
RN
|u|p+1 dx

}
.

Then u ∈Nξ if and only if ũ(y) := Q1/(p−1)(ξ)V−1/(p−1)(ξ)u(V−1/2(ξ)y) ∈N ,
where

N =
{

u ∈ H1(RN ) \ {0}

∣∣∣∣ ∫
RN
(|∇u|2 + u2) dx =

∫
RN
|u|p+1 dx

}
.

Therefore,

f (ξ) = inf
Nξ

Fξ (u)=

(
1
2
−

1
p + 1

)
Q(ξ) inf

u∈Nξ

∫
RN
|u|p+1 dx

=

(
1
2
−

1
p + 1

)
Q−2/(p−1)(ξ)V (p+1)/(p−1)−N/2(ξ) inf

v∈N

∫
RN
|v|p+1 dx .

Recall that B(x)= V (p+1)/(p−1)−N/2(x)(Q+)−2/(p−1)(x).
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LEMMA 3.2. There exists C0 > 0 such that for all ξ ∈�+ and all ε sufficiently small,

ε−N cε = ε
−N Iε(uε)≤ C0B(ξ)+ o(1)

as ε→ 0. In particular, there exists C > 0 such that cε ≤ CεN , ‖uε‖2ε ≤ CεN .

PROOF. Let U ∈ H1(RN ) be the unique positive radial solution of

−1U +U =U p in RN .

Since infv∈N
∫
RN |v|

p+1 dx is achieved by U , we obtain

f (ξ)=

(
1
2
−

1
p + 1

)
Q−2/(p−1)(ξ)V (p+1)/(p−1)−N/2(ξ)

∫
RN
|U |p+1 dx = C0A(ξ).

It is known that f (ξ) is a mountain-pass level of Fξ , so for all ν > 0 there exists
w ∈ H1(RN ) such that

f (ξ)≤max
t>0

Fξ (tw)≤ f (ξ)+ ν.

Let φ ∈ C2(RN ) be a cut-off function such that 0≤ φ ≤ 1 and φ ≡ 1 in a
neighborhood of ξ , and define wε ∈ H1(RN ) by wε(x)= φ(x)w(x − ξ/ε). It follows
from H1(RN )⊂ Hε that wε ∈ Hε, and

ε−N
‖wε‖

2
ε = ε

2
∫
RN
|∇φ(εy + ξ)|2w2(y) dy + 2ε

×

∫
RN
∇w(y)∇φ(εy + ξ)w(y)φ(εy + ξ) dy

+

∫
RN
φ2(εy + ξ)|∇w(y)|2 dy

+

∫
RN

V (εy + ξ)φ2(εy + ξ)w2(y) dy

and

ε−N
∫
RN

Q(x)|wε|
p+1 dx =

∫
RN

Q(εy + ξ)|φ(εy + ξ)w(y)|p+1 dy.

Thus we obtain

ε−N Iε(twε)= Fξ (tw)+ o(1)

as ε→ 0. As a result,

ε−N Iε(uε) ≤ inf
v∈Hε\{0}

max
t>0

ε−N Iε(tv)≤max
t>0

ε−N Iε(twε)

≤ max
t>0

Fξ (tw)+ o(1)≤ f (ξ)+ ν + o(1)

= C0B(ξ)+ ν + o(1).
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Since ν > 0 is arbitrary,

ε−N cε = ε
−N Iε(uε)≤ C0B(ξ)+ o(1).

In particular, cε ≤ εN C0 infξ∈�+ B(ξ)≤ CεN and ‖uε‖2ε ≤ CεN . 2

LEMMA 3.3. There exists a constant C > 0 such that ‖uε‖L∞ ≥ C for all ε > 0
sufficiently small.

PROOF. Apparently,

‖uε‖
2
ε =

∫
RN
(ε2
|∇uε|

2
+ V (x)u2

ε) dx =
∫
RN

Q(x)u p+1
ε dx . (3.3)

Moreover,∫
RN

Q(x)u p+1
ε dx ≤

∫
�+

Q+(x)u p+1
ε dx ≤

∫
BR0

Q+(x)u p+1
ε dx . (3.4)

By (H1), (H2),

Q+ ≤ C ≤
C

a
(1+ |x |α)V (x)≤

C

a
(1+ Rα0 )V (x),

for |x | ≤ R0. Therefore,∫
BR0

Q+(x)u2
ε dx ≤

C

a
(1+ Rα0 )

∫
BR0

V (x)u2
ε dx ≤

C

a
(1+ Rα0 )‖uε‖

2
ε . (3.5)

By (3.3), (3.4) and (3.5), we obtain

‖uε‖
2
ε =

∫
RN

Q(x)u p+1
ε dx ≤

∫
BR0

Q+(x)u p+1
ε dx

≤ ‖uε‖
p−1
L∞

∫
BR0

Q+(x)u2
ε dx

≤
C

a
(1+ Rα0 )‖uε‖

2
ε‖uε‖

p−1
L∞ .

This implies that ‖uε‖
p−1
L∞ ≥ a/(C(1+ Rα0 )) > 0 and ‖uε‖L∞ ≥ C . 2

PROOF OF THEOREM 1.2. We know from Lemma 3.1 that xε ∈�+, so we may
assume that xε→ x∗ ∈�+ as ε→ 0. Let vε(x) := uε(εx + xε). Then vε satisfies

−1vε(x)+ V (εx + xε)vε(x)= Q(εx + xε)v
p
ε , x ∈RN . (3.6)
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By Lemma 3.2 and assumption (H1),

C ≥ ε−N
‖uε‖

2
ε = ε

−N
∫
RN
(ε2
|∇uε|

2
+ V (x)u2

ε) dx

≥ ε−N
∫
RN

(
ε2
|∇uε|

2
+

a

1+ |x |α
u2
ε

)
dx

=

∫
RN

(
|∇vε(y)|

2
+

a

1+ |εy + xε|α
v2
ε (y)

)
dy

≥ C
∫
RN

(
|∇vε(y)|

2
+

a

1+ |y|α
v2
ε (y)

)
dy,

since |εy + xε| ≤ C(1+ |y|). Therefore,∫
RN

(
|∇vε(y)|

2
+

a

1+ |y|α
v2
ε (y)

)
dy ≤ C,

where C > 0 is independent of ε. By this fact, we may verify that {vε}ε is uniformly
bounded in H1

loc(RN ) and C2,α
loc (RN ) with respect to ε, and we may assume that, up to

a subsequence, vε→U∗ in C2,α
loc (RN ). Passing to the limit in Equation (3.6), we find

that U∗ ≥ 0 is a classical solution of the problem

−1U∗(x)+ V (x∗)U∗(x)= Q(x∗)(U∗)p(x) in RN . (3.7)

By Lemma 3.3, maxx∈RN vε(x)= vε(0)= uε(xε)= ‖uε‖L∞ ≥ C > 0. It follows
that maxx∈RN U∗(x)=U∗(0)≥ C > 0. If x∗ ∈ ∂�+, then Q(x∗)= 0, −1U∗(x)
+ V (x∗)U∗(x)= 0, by the maximum principle we have U∗(x)≡ 0, it is impossible.
Thus, x∗ ∈�+. For any sequence Rn→+∞,∫

B Rn

(|∇vε|
2
+ V (εx + xε)v

2
ε ) dx ≤ ε−N

‖uε‖
2
ε ≤ C.

Since vε→U∗ in C2,α(B Rn ) for fixed n, the dominated convergence theorem implies
that ∫

B Rn

(|∇U∗|2 + V (x∗)(U∗)2) dx ≤ C.

Letting Rn→+∞, we deduce that U∗ ∈ H1(RN ). By the maximum principle,
U∗ > 0 in RN , and a result in [5] implies that U∗ is a radial function.

We claim that
Fx∗(U

∗)≤ lim inf
ε→0

ε−N Iε(uε). (3.8)

Indeed, if

hε(x) :=
1
2
|∇vε|

2
+

1
2

V (εx + xε)v
2
ε (x)−

1
p + 1

Q(εx + xε)v
p+1
ε ,
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then Iε(uε)= εN
∫
RN hε(x) dx . Since vε→U∗ in C2,α

loc (RN ), for all R > 0,

lim
ε→0

∫
BR

hε(x) dx =
1
2

∫
BR

|∇U∗|2 dx +
1
2

V (x∗)
∫

BR

(U∗)2 dx

−
1

p + 1
Q(x∗)

∫
BR

(U∗)p+1 dx .

Since U∗ ∈ H1(RN ), for any ν > 0, we can choose R > 0 large enough such that

lim
ε→0

∫
BR

hε(x) dx ≥
∫
RN

[
1
2
|∇U∗|2 +

1
2

V (x∗)(U∗)2 −
1

p + 1
Q(x∗)(U∗)p+1

]
dx − ν

= Fx∗(U
∗)− ν. (3.9)

Let ηR be a cut-off function such that ηR = 0 in BR−1, ηR = 1 in RN
\ BR ,

0≤ ηR ≤ 1, |∇ηR| ≤ C . Testing (3.6) with ηRvε, we obtain∫
RN \BR

(|∇vε|
2
+ V (x)v2

ε ) dx −
∫
RN \BR

Q(εx + xε)v
p+1
ε dx + Eε = 0,

where

Eε :=
∫

BR\BR−1

[∇vε · ∇(ηRvε)+ V (εx + xε)ηRv
2
ε − Q(εx + xε)ηRv

p+1
ε ] dx .

Hence,

0≤
∫
RN \BR

(|∇vε|
2
+ V (x)v2

ε ) dx =
∫
RN \BR

Q(εx + xε)v
p+1
ε dx − Eε

and ∫
RN \BR

Q(εx + xε)v
p+1
ε dx ≥ Eε.

Thus ∫
RN \BR

hε(x) dx =
1
2

∫
RN \BR

(|∇vε|
2
+ V (εx + xε)v

2
ε (x)) dx

−
1

p + 1

∫
RN \BR

Q(εx + xε)v
p+1
ε dx

=

(
1
2
−

1
p + 1

) ∫
RN \BR

Q(εx + xε)v
p+1
ε dx −

1
2

Eε

≥ −
1

p + 1
Eε.
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For R large enough, limε→0 |Eε| ≤ ν. Indeed, since vε→U∗ in C2,α
loc (RN ),

lim
ε→0

∫
BR\BR−1

(∇vε · ∇(ηRvε)+ V (εx + xε)ηRv
2
ε ) dx

≤ C
∫

BR\BR−1

(|∇U∗|2 +∇U∗U∗ + V (x∗)(U∗)2) dx,

lim
ε→0

∫
BR\BR−1

Q(εx + xε)ηRv
p+1
ε dx ≤

∫
BR\BR−1

Q(x∗)(U∗)p+1 dx .

For R large enough, U∗ ∈ H1(RN ) implies that

C
∫

BR\BR−1

(|∇U∗|2 +∇U∗U∗ + V (x∗)(U∗)2) dx ≤ ν/2,∫
BR\BR−1

Q(x∗)(U∗)p+1 dx ≤ ν/2.

Thus limε→0 |Eε| ≤ ν. This yields

lim inf
ε→0

∫
RN \BR

hε(x) dx ≥−
ν

2
. (3.10)

From (3.9) and (3.10) we obtain

lim inf
ε→0

∫
RN

hε(x) dx ≥ Fx∗(U
∗)−

3
2
ν

for any ν > 0. Inequality (3.8) then follows.
Now we show that x∗ is a global minimum of the function f (ξ)= C0A(ξ).

Suppose that it is not a global minimum. There would exist ξ∗ ∈�+ such that
f (x∗) > f (ξ∗). By (3.8) and Lemma 3.2, for all ξ ∈�+,

Fx∗(U
∗)≤ lim inf

ε→0
ε−N Iε(uε)≤ C0A(ξ).

Since U∗ is a solution of (3.7), we infer that

Fx∗(U
∗)≥ inf

Nx∗
Fx∗(u)= f (x∗) > f (ξ∗)= C0A(ξ∗),

which yields a contradiction.
It remains to show that uε has at most one maximum point if ε is sufficiently small.

Suppose, by way of contradiction, that uε has another maximum point zε ∈�+ which
is different from xε. We may assume that zε→ z∗ ∈�+. Noticing that ε−1(zε − xε)
is also a maximum point of vε, there are two cases which may occur:

(i) ε−1(zε − xε) is bounded;
(ii) ε−1(zε − xε) is unbounded.
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In case (i), we assume, up to a subsequence, that ε−1(zε − xε)→ P ∈RN as
ε→ 0. Since vε(ε−1(zε − xε))=max vε converges to max U∗ =U∗(0), we conclude
that P = 0. Therefore, for ε sufficiently small, ε−1(zε − xε) ∈ Br , which is impossible
since by [6, pp. 836–837], 0 is the only critical point of vε in Br .

In case (ii), let v̂ε(x) := uε(εx + zε). To prove vε→U∗ in C2,α
loc (RN ), we may

show that v̂ε→ Û∗ in C2,α
loc (RN ), and Û∗ ∈ H1(RN ) is the unique positive radial

solution of

−1Û∗(x)+ V (z∗)Û∗(x)= Q(z∗)(Û∗)p(x) in RN .

Since |ε−1(zε − xε)| →∞, then for ε sufficiently small and for any R > 0 fixed,
B R ∩ B

ε
= ∅, where B

ε
:= B R(ε

−1(zε − xε)). We may deduce as in the proof of (3.9)
and (3.10) that for any ν > 0, there exists R > 0 large enough such that

lim
ε→0

∫
B
ε

hε(x) dx ≥ Fz∗(Û
∗)− ν (3.11)

and

lim inf
ε→0

∫
RN \(BR∪Bε)

hε(x) dx ≥−ν. (3.12)

It follows from (3.9), (3.11) and (3.12) that

lim inf
ε→0

∫
RN

hε(x) dx ≥ Fx∗(U
∗)+ Fz∗(Û

∗)− 3ν.

Lemma 3.2 yields that

Fx∗(U
∗)+ Fz∗(Û

∗)≤ lim inf
ε→0

∫
RN

hε(x) dx = lim inf
ε→0

ε−N Iε(uε)≤ f (x∗).

Since both x∗ and z∗ are global minima of f , then f (x∗)= f (z∗). By the definition
of f , we also have f (x∗)≤ Fx∗(U∗), f (z∗)≤ Fz∗(Û∗). This implies that

Fx∗(U
∗)+ Fz∗(Û

∗)≤ 1
2 ( f (x∗)+ f (z∗))≤ 1

2 (Fx∗(U
∗)+ Fz∗(Û

∗)),

a contradiction. 2
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