RIGID CONTINUA WITH MANY EMBEDDINGS

JUN TERASAWA

ABSTRACT. A separable metric space X is called *rigid* if the identity 1_X is the only autohomeomorphism, and *homogeneous* if, for any points x, y of X, there is an (onto) homeomorphism $h: X \to X$ such that h(x) = y.

In this note, we show that this onto-ness of the homeomorphism h could not be removed in the definition of homogeneity, by constructing a continuum X which is rigid and has many embeddings, that is, for any two points x, y, there is an embedding (= into homeomorphism) $h: X \to X$ such that h(x) = y.

All spaces in this paper are separable metric spaces.

A space X is called *rigid* if the identity 1_X is the only autohomeomorphism, and *homogeneous* if, for any points x, y of X, there is an (onto) homeomorphism $h: X \longrightarrow X$ such that h(x) = y.

In our previous note [3], we showed that this onto-ness of the homeomorphism h could not be removed in the definition of homogeneity, by constructing a subspace X of the real line \mathbb{R} which is rigid and *has many embeddings*, that is, for any two points x, y there is an embedding (= into homeomorphism) $h: X \to X$ such that h(x) = y.

After [3] the question remained whether the situation is the same if the space *X* is required to be compact. In the present note we answer this question and construct a rigid continuum with many embeddings.

The Construction. For continua X, Y a map $f: X \to Y$ is called *atomic* if any subcontinuum K of X with |f(K)| > 1 satisfies $f^{-1}(f(K)) = K$. It is well known that atomic maps are monotone. The following lemma is derived from [2, Theorem 15].

LEMMA. For any continua X, Y and a point x_0 of X, there is a compactification Z of $X \setminus \{x_0\}$ such that Z is a continuum, the remainder $Z \setminus (X \setminus \{x_0\})$ is homeomorphic to Y, and there is a natural atomic map $Z \to X$.

In applying this Lemma in the sequel, we will say "insert Y at the point x_0 in X to obtain Z'.

Now, let us call a space X continuum-connected if any of its two points are contained in a continuum $\subseteq X$. Obviously, path-connected spaces and continua are continuum-connected and continuum-connected spaces are connected. The relation "contained in the same continuum" is clearly an equivalence relation between two points. By this equivalence relation a space is decomposed into the disjoint union of *continuum-components*. If a continuum X is indecomposable and $p \in X$, then composants of X which do not contain

Received by the editors May 2, 1991; revised April 15, 1992.

AMS subject classification: Primary: 54F20; secondary: 54G15.

[©] Canadian Mathematical Society 1992.

the point p are continuum-components of $X \setminus \{p\}$. For the composant C containing p, we cannot generally say that $C \setminus \{p\}$ is continuum-connected.

We show:

THEOREM 1. Suppose that a continuum S is given so that

- (1) every complement of a point of S is continuum-connected, and
- (2) there is a countable dense subset D such that every point $\notin D$ of S is contained in a copy of S disjoint from D.

Then there is a rigid continuum Z such that every point of Z is contained in a copy $K \subseteq Z$ of S.

PROOF. Fix a point p in S. Let Y_n be a continuum obtained from the topological sum of the n mutually disjoint copies of S by identifying all points p. Let p_n stand for this identified point of Y_n . $Y_n \setminus \{p_n\}$ consists of n many continuum-components. The condition of the Theorem assures the existence of a countable dense subset $\{y_n \mid n \in \mathbb{N}\}$ of Y_1 so that every point of $Y_1 \setminus \{y_n \mid n \in \mathbb{N}\}$ is contained in a copy $K \subseteq Y_1 \setminus \{y_n \mid n \in \mathbb{N}\}$ of S.

First let $Z_1 = Y_1 = S$.

Apply Lemma to (Y_2, Z_1, y_1) and insert Y_2 at y_1 in Z_1 to obtain Z_2 . We suppose that $Z_1 \setminus \{y_1\}$ is embedded in Z_2 in a natural way, again apply Lemma and insert Y_3 at y_2 in Z_2 to obtain Z_3 . Generally, supposing that $Z_{n-1} \setminus \{y_{n-1}\}$ is embedded in Z_n , we insert Y_{n+1} at y_n in Z_n and obtain Z_{n+1} . Let π_{n-1}^n be the atomic map $Z_n \to Z_{n-1}$.

We claim that $Z = \operatorname{invlim}\{Z_n, \pi_n^m\}$ is the desired continuum. It is easy to see that Z is a continuum, that each projection $\pi_n \colon Z \to Z_n$ is atomic, and that every point of Z is contained in a copy $K \subseteq Z$ of S. We consider Y_n as a natural subspace of Z.

Since $|\pi_n^{-1}(p_n)| = 1$, we have that

$$Z\setminus\{p_n\}=\pi_n^{-1}(Z_n\setminus\{p_n\})=\pi_n^{-1}\big((Z_{n-1}\setminus\{y_{n-1}\})\cup(Y_n\setminus\{p_n\})\big).$$

Note that $Z_{n-1} \setminus \{y_{n-1}\}$ is continuum-connected by our condition (1) and that $Y_n \setminus \{p_n\}$ consists of n many continuum-components. Then the atomic-ness of π_n implies that $Z \setminus \{p_n\}$ consists of (n+1) many continuum-components.

If $\pi_1(z) \not\in \{y_n \mid n \in \mathbb{N}\}$, then $Z \setminus \{z\} = \pi^{-1}(Z_1 \setminus \{\pi_1(z)\})$ is clearly continuum-connected. If $\pi_n(z) \in Y_n \setminus \{p_n\}$, then

$$Z\setminus\{z\}=\pi_n^{-1}\big(Z_n\setminus\{\pi_n(z)\}\big)=\pi_n^{-1}\Big((Z_{n-1}\setminus\{y_{n-1}\})\cup\big(Y_n\setminus\{\pi_n(z)\}\big)\Big).$$

Here $Y_n \setminus \{\pi_n(z)\}$ is continuum-connected, and hence $Z \setminus \{z\}$ consists of two continuum-components.

To show that Z is rigid, take any autohomeomorphism $h: Z \rightarrow Z$.

First, it follows from the above consideration that $h(p_n) = p_n$ for each $n \ge 2$. So all we need to show is that $\{p_n \mid n\}$ is dense in Z, because that immediately implies that $h = 1_Z$. Take any basic open set $\pi_n^{-1}(U)$ of Z, where U is an open set of Z_n . Since $Z_1 \setminus \{y_k \mid k \le n\}$ is dense in Z_n and $\{y_k \mid k > n\}$ is dense in Z_1 , there is a k > n so that $y_k \in U$. Then we have that $\pi_n^{-1}(U) = \pi_k^{-1}(\pi_n^k)^{-1}(U) \supseteq \pi_k^{-1}(y_k) \ni p_{k+1}$.

Therefore Z is rigid and is the desired continuum.

As a corollary to Theorem 1, we have:

559

THEOREM 2. There is a rigid infinite-dimensional continuum Z with many embeddings. (cf. the Remark below)

PROOF. $S = \mathbb{Q}$ satisfies the condition of Theorem 1. Take any two points x, y of Z. Consider Z as a subspace of \mathbb{Q} . There is a subspace A of Z such that $y \in A \approx \mathbb{Q}$. Since \mathbb{Q} is homogeneous, there is a homeomorphism $h: \mathbb{Q} \to A$ such that h(x) = y. Then h|Z is an embedding which sends x to y.

REMARK. The referee points out that the Menger Universal Curve M satisfies the hypotheses of Theorem 1. Hence the proof of Theorem 2 with S = M gives a rigid curve (i.e. 1-dimensional continuum) Z with many embeddings.

REFERENCES

- 1. K. Kuratowski, Topology, 2, Academic Press, 1968.
- 2. T. Mackowiak, The condensation of singularities in arc-like continua, Houston J. Math. 11(1985), 535-558.
- 3. J. Terasawa, A rigid space with many embeddings, Indagationes Math. 49(1987), 469–472.

Department of Mathematics The National Defense Academy Yokosuka 239, Japan