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RIGID CONTINUA WITH MANY EMBEDDINGS 

JUN TERASAWA 

ABSTRACT. A separable metric space X is called rigid if the identity 1* is the only 
autohomeomorphism, and homogeneous if, for any points x, y of X, there is an (onto) 
homeomorphism/i: X —• X such that h(x) = v. 

In this note, we show that this onto-ness of the homeomorphism h could not be 
removed in the definition of homogeneity, by constructing a continuum X which is rigid 
and has many embeddings, that is, for any two points x, v, there is an embedding (= into 
homeomorphism) h\X-^X such that h(x) = y. 

All spaces in this paper are separable metric spaces. 
A space X is called rigid if the identity lx is the only autohomeomorphism, and ho­

mogeneous if, for any points JC, y of X, there is an (onto) homeomorphism /i: X —> X such 
that h(x) = y. 

In our previous note [3], we showed that this onto-ness of the homeomorphism h could 
not be removed in the definition of homogeneity, by constructing a subspace X of the real 
line R which is rigid and has many embeddings, that is, for any two points x, y there is 
an embedding (= into homeomorphism) h:X—*X such that h(x) = y. 

After [3] the question remained whether the situation is the same if the space X is 
required to be compact. In the present note we answer this question and construct a rigid 
continuum with many embeddings. 

The Construction. For continua X, Y a map/: X —• Y is called atomic if any sub-
continuum K of X with \f(K)\ > 1 satisfies / _ 1 (/(£)) = K. It is well known that atomic 
maps are monotone. The following lemma is derived from [2, Theorem 15]. 

LEMMA. For any continua X, Y and a point x$ ofX, there is a compactification Z of 
X \ {xo} such that Z is a continuum, the remainder Z\(X\ {xo}) is homeomorphic to Y, 
and there is a natural atomic map Z —> X. 

In applying this Lemma in the sequel, we will say "insert Y at the point XQ in X to 
obtain Z". 

Now, let us call a space X continuum-connected if any of its two points are contained 
in a continuum Ç X. Obviously, path-connected spaces and continua are continuum-
connected and continuum-connected spaces are connected. The relation "contained in the 
same continuum" is clearly an equivalence relation between two points. By this equiva­
lence relation a space is decomposed into the disjoint union of continuum-components. If 
a continuumX is indecomposable and/? G X, then composants of X which do not contain 
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the point p are continuum-components of X\ {/?}. For the composant C containing /?, we 
cannot generally say that C \ {/?} is continuum-connected. 

We show: 

THEOREM 1. Suppose that a continuum S is given so that 
(1) every complement of a point of S is continuum-connected, and 
(2) there is a countable dense subset D such that every point $DofS is contained 

in a copy of S disjoint from D. 
Then there is a rigid continuum Z such that every point ofZ is contained in a copy 

KÇZ ofS. 

PROOF. Fix a point p in S. Let Yn be a continuum obtained from the topological 
sum of the n mutually disjoint copies of S by identifying all points p. Let pn stand for 
this identified point of Yn. Yn\ {pn} consists of n many continuum-components. The 
condition of the Theorem assures the existence of a countable dense subset {yn | n G N } 
of Y\ so that every point of Y\ \ {yn \ n G N } is contained in a copy K Ç Y\ \ {yn \ n G N } 
of S. 

First let Z\ = Y\= S. 
Apply Lemma to (Y2,Z\,y\) and insert Y2 at y\ in Z\ to obtain Z2. We suppose that 

Z\ \ {yi} is embedded in Z2 in a natural way, again apply Lemma and insert Y3 at j2 in Z2 
to obtain Z3. Generally, supposing that Zn-\ \ \yn-\\ is embedded in Zn, we insert Yn+\ 
at yn in Zn and obtain Zn+\. Let 7rJJ_1 be the atomic map Zn —> Z„_ 1. 

We claim that Z = invlim{Z„, 7r^} is the desired continuum. It is easy to see that Z 
is a continuum, that each projection 7rn: Z —> Zn is atomic, and that every point of Z is 
contained in a copy K Ç Z of S. We consider Yn as a natural subspace of Z. 

Since I T T " 1 ^ ) ! = 1, we have that 

^ \ {Pn} = *nl(Zn \ {Pn}) = *~l ( (Z n- , \ {yn.X}) U (Yn \ {pn})). 

Note that Zn-\ \ {yn-\} is continuum-connected by our condition (1) and that Yn \ {pn} 
consists of n many continuum-components. Then the atomic-ness of ixn implies that Z \ 
{pn} consists of (n + 1) many continuum-components. 

If 7Ti(z) ^ {yn I n G N}, then Z \ {z} = K~X{Z\ \ {TC\(Z)}) is clearly continuum-
connected. If irn(z) G Yn \ {pn}, then 

Z\{Z} = *nl{Zn \ {*n(z)}) = 7T"1 ((Zn_, \ {yn-l})U(Yn \ {lTn(z)})). 

Here Fn \ {7rn(z}} is continuum-connected, and hence Z \ {z} consists of two continuum-
components. 

To show that Z is rigid, take any autohomeomorphismh:Z—+Z. 
First, it follows from the above consideration that h(pn) = pn for each n > 2. So 

all we need to show is that {pn | n} is dense in Z, because that immediately implies 
that h = lz. Take any basic open set TT~1(U) of Z, where U is an open set of Zn. Since 
Z\\{yk\k < n) is dense in Zn and {yk | /: > /i} is dense in Zi, there is a & > n so that 
y* G I/. Then we have that *-\U) = ^\i^r\U) D ^ 1 (y , ) 3 /?,+1. 

Therefore Z is rigid and is the desired continuum. 
As a corollary to Theorem 1, we have: 
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THEOREM 2. There is a rigid infinite-dimensional continuum Z with many embed­
ding s. (cf. the Remark below) 

PROOF. S = Q satisfies the condition of Theorem 1. Take any two points x, y of Z. 
Consider Z as a subspace of Q. There is a subspace A of Z such that y G A » Q. Since 
Q is homogeneous, there is a homeomorphism h: Q —+ A such that /Z(JC) = y. Then /i|Z is 
an embedding which sends x to y. 

REMARK. The referee points out that the Menger Universal Curve M satisfies the 
hypotheses of Theorem 1. Hence the proof of Theorem 2 with S = M gives a rigid curve 
(i.e. 1-dimensional continuum) Z with many embeddings. 
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