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Abstract 

 

Syphilis remains a serious public health problem in mainland China that requires 

attention, modeling to describe and predict its prevalence patterns can help the 

government to develop more scientific interventions. Time series (TS) data of the 

syphilis incidence from January 2004 to November 2023 was obtained from the website 

of the Bureau for Disease Control and Prevention of China National Health 

Commission. The seasonal autoregressive integrated moving average (SARIMA) 

model, long short-term memory network (LSTM) model, hybrid SARIMA-LSTM 

model, and hybrid SARIMA-nonlinear auto-regressive models with exogenous inputs 

(SARIMA-NARX) model were used to simulate the data respectively, the model 

performance was evaluated by calculating the R², median absolute deviation (MAD), 

mean absolute percentage error (MAPE), root mean square error (RMSE), and mean 

absolute error (MAE) of the train and test sets of the models. The SARIMA-NARX 

model predicts better than the other three models, despite its R2 value is 3.73% lower 

than the SARIMA-LSTM model. Compared to the SARIMA, LSTM, and SARIMA-

LSTM models, the MAD value of the SARIMA-NARX model decreases by 352.69%, 

4.98%, and 3.73%, respectively. The MAPE value decreases by 73.7%, 23.46%, and 

13.06%, respectively. The RMSE value decreases by 68.02%, 26.68%, and 23.78%, 

respectively. The MAE value decreases by 70.90%, 23.00%, and 21.80%, respectively. 

The hybrid SARIMA-NARX and SARIMA-LSTM methods predict syphilis cases 

more accurately than the basic SARIMA and LSTM methods, so that can be used for 
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governments to rationally allocate health resources and develop long-term syphilis 

prevention and control programs. In addition, the predicted cases still maintain a fairly 

high level of incidence, so there is an urgent need to develop more comprehensive 

prevention strategies. 

Keywords: Syphilis, Modeling, SARIMA, LSTM, NARX 

 

1 Introduction 

 

Syphilis, an infectious disease caused by the bacterium Treponema pallidum, is a 

preventable and treatable condition predominantly transmitted through sexual contact, 

including oral, vaginal, and anal intercourse. Additionally, vertical transmission can 

occur from mother to fetus during pregnancy, and less commonly, the disease may be 

spread through blood transfusion. The clinical presentation of syphilis can be 

asymptomatic[1], rendering the identification of infected individuals challenging in the 

absence of serological screening. Consequently, routine testing is imperative for the 

detection of syphilis, particularly in populations at increased risk for sexually 

transmitted disease (STDs)[2, 3]. Syphilis can result in the development of genital 

ulcers, pain, and inflammation. Untreated, the disease can advance to affect various 

organs and systems. Advanced syphilis can lead to detrimental effects on the heart, 

major blood vessels, central nervous system, and skeletal structure, resulting in a 

myriad of complications such as heart valve abnormalities, meningitis, stroke, optic 

nerve damage, and bone degeneration.  

In recent decades, the number of syphilis cases has been increasing[4]. An estimated 

5.7-6 million new cases are detected annually worldwide among individuals aged 15-

49 years[5]. Between 2016 and 2023, the annual reported incidence rate of congenital 

syphilis ranged from 700,000 to 1.5 million cases per year[6], the case-fatality rate 

(CFR) among offspring of pregnant women with syphilis was 31%[7]. The reported 

incidence of syphilis in China escalated from 4.50 per 100,000 in 2003 to 34.04 per 

100,000 in 2021[8], the mortality rate from syphilis was recorded at 0.002 per 100,000 

individuals[9]. Syphilis has become the highest number of reported incidences of all 

STDs in mainland China[10]. As a serious public health problem, it has attracted great 

attention from the national health authorities. A prerequisite for policymakers to 

develop policies is to make scientific forecasts of disease trends. Many approaches are 

available for modeling and forecasting TS data. The most widely used TS model is the 

autoregressive integrated moving average (ARIMA) model[11, 12], a prerequisite for 

the applicability of ARIMA models is the requirement that the TS data should be stable, 

so ARIMA models tend to be poor fits for nonlinear data, the real TS data tend to be 

more complex, containing both nonlinear and linear components. For the nonlinear 

component of the model, Machine Learning (ML) is a more applicable approach. ML 

is a field that focuses on the learning aspect of Artificial Intelligence (AI) by developing 

algorithms that best represent a set of data[13]. Originally inspired by neurobiology, 

deep neural network models have become a powerful tool of ML and artificial 

intelligence. They can approximate functions and dynamics by learning from 

examples[14]. Artificial Neural Networks (ANN) are an important part of ML, which 
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is an autonomous computational project designed by imitating the structure of 

biological neurons. According to the different topologies of neural networks, artificial 

neural networks can be divided into feed-forward, feed-back, and recurrent neural 

networks (RNNs), among which the RNN models, such as the long short-term memory 

network (LSTM) models, the nonlinear auto-regressive models with exogenous inputs 

(NARX) have unique advantages in processing TS data, this is because the structure of 

the RNN models determines that the output at moment t is not only related to the input 

at moment t but related to the output at moment t-1. LSTM, leveraging its gating 

mechanism and memory unit, is capable of capturing prolonged dependencies within 

sequential data and conducting contextual modeling, thereby exhibiting remarkable 

efficacy in the modeling and prediction of sequential data[15]. The NARX neural 

network is a dynamic neural network that incorporates delay and feedback mechanisms, 

thereby enhancing its ability to memorize historical data. It is suitable for simulating 

and predicting nonlinear time-series data in multiple domains[16]. Compared to other 

data-driven models, the NARX model demonstrates strong problem-solving 

capabilities, fast convergence speed, and high prediction accuracy when handling 

seasonal time series forecasting[17]. Since ARIMA models have a good ability to fit 

the linear component of TS data, many researchers combine the ARIMA models and 

RNN models into hybrid ARIMA-RNN models to predict the convergence of the TS 

data, and the prediction results of the hybrid models are often better than those of single 

ARIMA or RNN models[18-23]. In this study, we simulated the TS data of syphilis 

incidence using a single ARIMA model, LSTM model, hybrid ARIMA-LSTM model, 

and hybrid ARIMA-NARX model, respectively, both models were used to make 

predictions with a period of 12. The fit and prediction indicators were calculated 

separately to evaluate the performance of these models. 

 

2 Methods 

2.1 Data collection 

The monthly number of newly reported cases of syphilis from January 2004 to 

November 2023 was obtained from the website of the Bureau for Disease Control and 

Prevention of China National Health Commission 

(http://www.nhc.gov.cn/jkj/new_index.shtml) by searching for the Chinese translation 

of the keyword "Overview of National Notifiable Infectious Diseases Epidemic" in the 

website's search box. The monthly reports were simultaneously published on the China 

National Knowledge Infrastructure (CNKI, https://www.cnki.net/). The case 

information of notifiable infectious diseases was timely reported from local hospitals 

and community health service centers throughout the country and was reviewed and 

confirmed by local Centers for Disease Control and Prevention (CDC) after 

confirmatory tests[24]. A total of N = 239 observations were included in the study. 

 

2.2 TS decomposition 

TS decomposition is a technique to break down a time series into its underlying 

components. which is expressed as Yt = Tt + St + It, where Tt, St, and It denote the trend, 

seasonal component, and a stochastic irregular component, respectively. We performed 
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the Mann-Kendall (M-K) test for the trend .As the sample data is monthly, we 

confirmed the Tt by using a smooth weighted 13-term moving average filter given by: 

𝑇𝑡 = ∑ 𝑘𝑗

𝑞

𝑗=−𝑞

𝑦𝑡+𝑗  

q = 6 for monthly data, q < t < N - q, kj = 1/4q for j = ± q, and kj = 1/2q otherwise. 

After the transformation of TS, the first and last q observations were lost, so we repeated 

the first and last smoothed values q times.  

Let nt be the total number of observations made in period t, the stable seasonal filter is 

given by 

𝑠�̃� =
1

𝑛𝑡
∑ 𝑥𝑡+𝑗𝑠

(
𝑁
𝑠

)−1

𝑗=1

 

�̅� =
1

𝑆
 ∑ 𝑠�̃�

𝑠

𝑡=1

 

𝑆�̂� = 𝑠�̃� − �̅� 

For s = 12, t = 1,...,s. Using 𝑠�̂� to constrain the seasonality component to fluctuate 

around zero. 

 

2.3 Modeling of SARIMA 

2.3.1 Mathematical equations of the SARIMA model 

The SARIMA model is always expressed as SARIMA (p, d, q) (P, D, Q)s, where p, d, 

and q represent non-seasonal components, and P, D, and Q represent seasonal 

components. p and P are lags of non-seasonal and seasonal autoregressive, respectively. 

d and D are degrees of non-seasonal and seasonal differencing, respectively. q and Q 

are lags of the non-seasonal and seasonal moving average, respectively, and s denote 

the periodicity. 

The polynomial of SARIMA (p, d, q) (P, D, Q)s model can be expressed as  

𝜑(𝐿) 𝛷(𝐿) ∆𝑑 ∆𝑠
𝐷 𝑦𝑡 = 𝜃(𝐿) 𝛩(𝐿) 𝜀𝑡 

𝐿𝑖𝑦𝑡 = 𝑦𝑡−𝑖 

∆𝑑= (1 − 𝐿)𝑑 

∆𝑠= (1 − 𝐿𝑠) 

𝜑(𝐿) = 1 −  𝜑1𝐿 −  … −  𝜑𝑝𝐿𝑝 

𝛷(𝐿) = 1 −  𝛷𝑠𝐿 −  … −  𝜙𝑃𝑠𝐿𝑃𝑠 

𝜃(𝐿) = 1 +  𝜃1𝐿 +  … +  𝜃𝑞𝐿𝑞 

𝛩(𝐿) = 1 +  𝛩𝑠𝐿 +  … +  𝛩𝑄𝑠𝐿𝑄𝑠 

Where 𝜀𝑡 denotes a sequence of uncorrelated random variables from a defined 

probability distribution with a mean zero.  
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2.3.2 Constructing the SARIMA model  

Initially, we conducted an Augmented Dickey-Fuller (ADF) test to determine the lags 

of seasonal and non-seasonal differencing required to achieve data stationarity. 

Subsequently, we established a range for the p, q, P, Q parameters, from 0 to 4. We 

computed the Akaike Information Criterion (AIC) and the Bayesian Information 

Criterion (BIC) for each permutation of the SARIMA model. The model exhibiting the 

lowest combined sum of AIC and BIC was selected as the optimal SARIMA model, the 

parameters of the model were estimated by the maximum likelihood approach. We 

conducted a Ljung-Box Q-test, along with the ACF and PACF plots on the residuals to 

check the autocorrelation. Besides, we performed normality diagnostics by plotting the 

histogram of standard residuals and the Quantile-Quantile (QQ) plot of residuals. The 

TS was devided into a training set (the first 227 observations ) for modeling and a test 

set(the last 12 observations) for predicting. Finally, the simulation performance of the 

training set and the test set were calculated separately. 

 

2.4 Constructing a single LSTM model 

2.4.1 Structure and equation of LSTM neural network 

 

The LSTM network is a kind of RNN consisting of a sequence input layer, an LSTM 

layer, and an output layer. The sequence input layer inputs TS data into the network, 

and the LSTM layer learns long-term dependencies between time steps of sequence 

data. Different from the traditional RNN, there is a cell state in the LSTM layer, which 

can effectively keep the long-term information learned from the previous time steps and 

solve the problem of gradient disappearance. At each time step, the layer adds 

information to or removes information from the cell state, all these updates are 

controlled by gates. There are three kinds of gates in the LSTM layer, input gate (i), 

forget gate (f), and output gate (o). Figure 1 illustrates the flow of data at time step t 

and shows how the gates forget, update, and output the cell and hidden states.  

 

 

Figure 1 The cell structure of the LSTM network 

Note: The arrow indicates the data flow, where x, s, c, f, i, g, and o denote the input, output, cell state, 

forget gate, input gate, cell candidate, and output gate in time step t, respectively. σ and tanh denote the 

sigmoid activation function and the hyperbolic tangent function, which maps the data to (0,1) and (-1,1), 
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respectively. ⊗  are vector operators which represent element-wise multiplication and element-wise 

addition, respectively. 

 

The following formulas describe the operation of the data in the LSTM layers at time 

step t. 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [𝑆𝑡−1,  𝑋𝑡 ] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [𝑆𝑡−1, 𝑋𝑡 ] + 𝑏𝑖) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔 ∙ [𝑆𝑡−1,  𝑋𝑡 ] + 𝑏𝑔) 

𝑜𝑡 = 𝜎( 𝑊𝑜 ∙ [𝑆𝑡−1, 𝑋𝑡 ] + 𝑏𝑜) 

𝐶𝑡 = 𝑓𝑡 ⊗ 𝐶𝑡−1 +  𝑖𝑡 ⊗ 𝑔𝑡 

𝑆𝑡 = 𝑂𝑡 ⊗ 𝑡𝑎𝑛ℎ(𝐶𝑡) 

Where W, b denote the matrices of input weight and bias, respectively.  

 

2.4.2 Training and simulation of the LSTM model 

It is necessary to standardize the data before modeling to eliminate the effects of 

abnormal values and improve the speed of model convergence. A z-score method was 

used to normalize the TS data, which was given by TS* = (TS − μ) / σ, where μ and σ 

denote the mean and standard deviation of the TS data. To prevent the gradients from 

exploding, we set the gradient threshold of the network to 1. The loss function is an 

important basis for adjusting parameters, it reflects the difference between the original 

and predicted values during the training, if the loss function decreases too slowly at the 

initial stage of training, it may mean that the number of hidden neurons or the value of 

the learning rate is set too small. We used the Adam solver to update the network 

parameters by taking small steps in the direction of the negative gradient of the loss 

function. The solvers update the parameters using a subset of the data at each step.  

The varying quantities of hidden neurons, iterations, and learning rates can all influence 

the simulation performance of the model. Therefore, a commonly used method for 

adjusting parameters involves fixing the learning rate and iteration count, and then 

conducting model training with different numbers of neurons[25]. Presently, there is no 

mature theoretical evidence for determining the optimal number of neurons. 

Consequently, the majority of studies rely on trial and error[26]. In our study, we set 

the initial learning rate to 0.005, which is the median value of recommended[27], the 

max iterations wae set to 500, and the number of hidden neurons in increments of 10, 

ranging from 10 to 200. To automatically drop the learning rate during training, using 

a piecewise learn rate schedule, multiply the initial learning rate by a drop factor of 0.2 

after half of the maximum iterations. To mitigate the risk of overfitting, we incorporated 

L2 regularization and implemented dropout layers within the model. We then calculated 

the goodness-of-fit for the test set under different numbers of neurons, using the 

principle of minimizing the RMSE to determine the best-fitting LSTM model. The first 
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226 data of the training set were set as input of the model, and the data shifted to one-

time step were set as output of the model. A 12-step forward prediction was then 

performed using the trained LSTM model. Finally, the simulation performance of the 

training set and the test set were calculated separately. 

 

2.4.3 Constructing a hybrid SARIMA-LSTM model 

The thought of constructing the hybrid model is to express the link between the output 

of SARIMA and original observations (i.e., the residuals of the SARIMA model) by an 

LSTM model, for the residuals of the SARIMA model containing the time informations 

and random fluctuations. Although the SARIMA model effectively captures the linear 

components of the TS data, its capability to capture non-linear features is comparatively 

limited when compared to the LSTM model. Consequently, the residuals of the 

SARIMA model may contain unutilized random fluctuation information from the 

original data. One of the key advantages of the LSTM model lies in its capacity to 

model stochastic data. Leveraging this capability, we employed the LSTM approach to 

re-model the residuals derived from the SARIMA model. Subsequently, we integrated 

the LSTM model's output with that of the SARIMA model to obtain the hybrid 

SARIMA-LSTM model's output. The modeling and prediction processes remained 

consistent with those of the single LSTM model. In our study, we set the initial learning 

rate to 0.005 , the max iterations wae set to 500, and the number of hidden neurons 

ranging from 10 to 200 in increments of 10. To automatically drop the learning rate 

during training, using a piecewise learn rate schedule, multiply the initial learning rate 

by a drop factor of 0.2 after half of the maximum iterations. To mitigate the risk of 

overfitting, we incorporated L2 regularization and implemented dropout layers within 

the model. We then calculated the goodness-of-fit for the test set under different 

numbers of neurons, using the principle of minimizing the RMSE to determine the best-

fitting SARIMA-LSTM model. Subsequently, a 12-step forward prediction was 

executed using the trained SARIMA-LSTM model, and the simulation performance of 

the training and test sets was evaluated separately.  

2.4.4 Constructing a hybrid SARIMA-NARX model 

The NARX network is a powerful neural network architecture specifically designed for 

modeling and predicting time series data by considering both the autoregressive 

relationship within the time series and the influence of exogenous inputs. 

The NARX network consists of two main components: the autoregressive (AR) part 

and the exogenous (X) part. The AR part captures the relationship between past values 

of the time series itself, while the X part captures the influence of the exogenous inputs 

on the time series. The X part can be implemented as a separate input layer or 

concatenated with the AR inputs. 

During training, the NARX network is fed with historical data, including both the time 

series values and the corresponding exogenous inputs. The network learns to predict 

the future values of the time series based on its past values and the exogenous inputs. 

The training process involves adjusting the network's weights and biases to minimize 

prediction errors.  

The defining equation for the NARX model is  
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y(𝑡) = 𝑓 (𝑦(𝑡 − 1), 𝑦(𝑡 − 2), … , 𝑦(𝑡 − 𝑛𝑦), 𝑢(𝑡 − 1), 𝑢(𝑡 − 2), … , 𝑢(𝑡 − 𝑛𝑢)) 

Where f represents a function that relies on the structure and connection weights of the 

NARX model, y refers to the sample TS data in a lagged period d, and u refers to the 

input series containing the time factor and the projections of the SARIMA model, y is 

the simulation values by the hybrid SARIMA-NARX model at time step t. Before 

modeling, we need to define the structure of the model. In this model, the simulated 

series of the SARIMA model was treated as the input, while the corresponding reported 

cases of syphilis were regarded as the output. Subsequently, we randomly divided the 

data into a training set, a validation set, and a test set in the ratio of 80%, 10%, and 10% 

respectively[28]. Since the delays of the input and the number of hidden neurons have 

an impact on the performance of the model, we constructed multiple open-loop (series-

parallel) architectures containing different number of hidden neurons (experimented 

from 2 to 40) for training the networks separately, using the Levenberg-Marquardt 

algorithm for updating weights during training. We evaluated the goodness-of fit of 

models under different numbers of neurons, and calculated the RMSE for both the 

training and test sets. The SARIMA-NARX model with the smallest RMSE value on 

the test set was chosen as the best-fitting model.Finally, the trained open-loop network 

was transformed into a closed-loop (parallel) architecture to make a 12-step-ahead 

forecast and the goodness-of-fit for the training and test sets were calculated separately.   

 

2.5 Goodness-of-fit checks of models 

The R2, MAD, RMSE, MAPE, and MAE of train set and test set were used as indicators 

for evaluating the simulation and prediction performance of the models mentioned 

above, which were given by 

𝑅2 = 1 −
∑  (𝑥𝑡 − 𝑦𝑡)2𝑁

𝑡

∑  (𝑥𝑡 − 𝑥�̅�)2𝑁
𝑡

 

𝑀𝐴𝐷 = median(|𝑥𝑡 − 𝑦𝑡|) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
 ∑  (𝑥𝑡 − 𝑦𝑡)2

𝑁

𝑡=1

 

𝑀𝐴𝑃𝐸 =
1

𝑁
 (∑  

|𝑥𝑡 − 𝑦𝑡|

𝑥𝑡

𝑁

𝑡=1

) 

𝑀𝐴𝐸 =  
1

𝑁
( ∑  |𝑥𝑡 − 𝑦𝑡|

𝑁

𝑡=1

) 

Where 𝑥𝑡 and 𝑦𝑡 denote the original series and fitting series, respectively. 

 

2.6 Software and significant level 
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MATLAB 2023a (MathWorks Corporation, USA) was used to perform the models 

involved in the study, and Microsoft Office 2021 (Microsoft Corporation, USA) for 

data collection and processing. A two-sided p<0.05 was considered statistically 

significant. 

2.7 Ethical review 

The study protocol and utilization of syphilis incidence data were obtained from the 

Bureau for Disease Control and Prevention of China National Health Commission and 

no ethical issues were identified. Therefore, an ethical statement was not necessary 

because the data are public access data. 

3 Results 

3.1 Trends and seasonality of the sample data 

The monthly average number of reported cases for the last three years was 45,735, 

which is 26.74% higher than the average for the whole period. The peak number of 

reported incidents was 61,068 in November 2023. The M-K test results indicate an 

overall increasing trend in the data (z=17.11, p<0.05). As shown in Figure 2.a, the 

number of syphilis infections trended upward from 2004 until Quarter 3 of the year 

2019, monthly reported cases increased at a higher rate from 2004 to 2012 than from 

2013 to 2019 and has leveled off since then, however, no significant downward trend 

has been observed since the year 2019 (z=0.31, p>0.05). The decomposition results of 

the data showed a periodicity of 12 in the TS data, with a peek number of incidences in 

July, and less prevalence in winter and spring than in summer and autumn (Figure 2.b). 
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Figure 2 Monthly reported cases of syphilis from January 2004 to November 2023 and the 

decomposition of the TS data 

Note: In figure 2.a, the blue curve depicts the monthly reported incidences of syphilis, while the red curve 

illustrates the long-term trend. Meanwhile, in figure 2.b, the blue curve represents the stable seasonal 

component exhibiting a periodicity of twelve months, and the yellow dash curve portrays the time series 

post seasonal component extraction. 

 

3.2 The best-fitting SARIMA model 

The ADF test results indicate that the TS data achieves stationarity subsequent to the 

implementation of both a first-order differencing and a first-order seasonal differencing 

(t=-7.22, p<0.01), therefore d and D of the SARIMA model should be set to 1. In the 

process of model selection, the SARIMA(4, 1, 0)(4, 1, 0)12 emerged as the superior 

model, as evidenced by the minimization of the combined AIC and BIC values 

(AIC=4072.3, BIC=4102.6) relative to competing models. Consequently, this SARIMA 

model is adjudged to be the optimal fit for the TS data under study. The best-fitting 

SARIMA model can be expressed as a polynomial of  

(1 + 0.51𝐿 + 0.20𝐿2 + 0.16𝐿3 + 0.11𝐿4)(1 + 0.78𝐿12 + 0.76𝐿24 + 0.66𝐿36 +

0.69𝐿48)(1 − 𝐿)(1 − 𝐿12)𝑦𝑡 = 𝜀𝑡. 

We performed the autoregression and normality diagnostics on the residual series, and 

the result of Ljung-Box Q-Test test showed that there was no autocorrelation in the 

residuals (χ2=17.81, p=0.59), and the residual ACF and PACF plots showed that most 

of the residuals were within the ±2 times standard deviation interval, which indicated 

that the fitting was successful. The histogram of the standardized residual distribution 

and the QQ plot of the residuals indicated that the standardized residuals showed an 

almost symmetrical distribution with zero as the boundary, and the frequency of the 

standardized residuals in the ±2 interval accounted for more than 80% of all, which can 

therefore be regarded as a normal distribution(Figure 3).  

A 12-time-step prediction was performed using the SARIMA(4, 1, 0)(4, 1, 0)12 model, 

The fitting and predicting efficacy of the model was calculated separately, which are 

shown in Table 1.  
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Figure 3 SARIMA model residuals normality and autocorrelation diagnostics 

Note: Figure 3.a shows the frequency distribution of standardized residuals using a histogram. Figure 3.b 

shows the QQ plots of residuals of the SARIMA model, the red dashed line represents the standard 

normal distribution. Figure 3.c and Figure 3.d are the ACF and PACF of residuals, respectively. The stem 

plots represent the values of ACF and PACF at different lags, and the blue lines indicate the ±2 times 

standard deviation interval.3.3 The best-performing LSTM model and SARIMA-LSTM 

model 

Upon establishing a constant number of maximun iterations and an initial learning rate, 

we systematically trained a series of LSTM neural network architectures differentiated 

by the quantity of hidden neurons embedded within them. These architectures were then 

employed to execute simulations on both the train and test datasets. Empirical evidence 

suggests that the architecture containing precisely 130 hidden neurons yielded superior 

predictive capabilities, as quantified by the RMSE on the test set, which registered a 

value of 6381(Figure 4.a). Leveraging the LSTM model that demonstrated optimal 

performance characteristics, we engaged in an iterative process of retraining and 

forecasting. The conclusive model's fitness was quantitatively assessed, with the results 

systematically tabulated in Table 1, and the corresponding simulation outputs alongside 

the residual diagnostics are illustrated in Figure 6.The residuals of the single SARIMA 

model are modeled quadratically using the LSTM approach, and then the output of the 

LSTM is summed with the fitted values of the SARIMA model to obtain the output of 

the hybrid SARIMA-LSTM model. Similar to the process of determining the structure 

of the LSTM model, we conducted training on LSTM models with varying numbers of 

hidden neurons, while maintaining fixed iterations and initial learning rates. 

Subsequently, all models were used to simulate the training and test sets. The results 

indicate that the model exhibits the best predictive performance when the number of 

hidden neurons is 170 (the RMSE value on the test set is 6114, as shown in Figure 4.b). 
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The optimal SARIMA-LSTM model obtained was subjected to multiple rounds of 

training and prediction. The final goodness of fit results for the model are presented in 

Table 1, while the simulation results and residuals are depicted in Figure 6. 

 

3.4 The best-performing SARIMA-NARX model 

After several trials, we found that the best prediction performance was achieved when 

thenumber of hidden neurons was 30, with the minimal RMSE value(5701) of the test 

set (Figure 4.c). So the structure of the SARIMA-NARX model was determined. Then 

an open-loop network was built. Before training, we divided the training set data into 

three parts, 80% for training, 10% for validation, and 10% for testing. At the 13th 

iteration of the model, the MSE value of the validation set reached its minimum and 

began to rise(Figure 5.a). The output of the model training process and the errors are 

shown in Figure 5. After the training was completed, we converted the network into a 

closed-loop to perform the prediction for the forward 12 steps, and the goodness-of-fit 

was calculated for the training set and test set respectively (Table 1).  

 

 

Figure 4 Fitting and predicting the performance of LSTM (Figure 4.a), SARIMA-LSTM(Figure 

4.b) and SARIMA-NARX (Figure 4.c) models with different structures 

Note: The dark blue and grey bars represent the RMSE values of the training and test sets, respectively. 
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Figure 5 The simulation process for the training set by the SARIMA-NARX model 

Note: Figure 5.a represents the variation of MSE for the training, validation, and test sets during the 

iteration process. Figure 5.b illustrates the error between the output values of each component data and 

the target values, while figure 5.c provides a detailed display of the error magnitude. The blue, yellow, 

and red dots indicate the target values of the training set, validation set, and test set after simulation using 

the SARIMA-NARX model, and the blue, yellow, and red crosses denote the outputs of the training set, 

validation set, and test set, and the yellow stem denotes the error of fitting. 

 

 

3.5 Comparison of the fitting and predicting power of SARIMA, LSTM, SARIMA-

LSTM, and SARIMA-NARX models 

In conclusion, all four models exhibit high goodness-of-fit in the training set, with R-

squared values exceeding 95%. Considering the comprehensive fit indices, the ranking 

of the goodness-of-fit from best to worst is SARIMA-LSTM model, LSTM model, 

SARIMA model, and SARIMA-NARX model. In terms of predictive performance, the 

SARIMA model performs the worst, almost unable to accurately predict the future 

epidemic trends. The SARIMA-NARX model outperforms the other models, despite its 

R2 value being slightly lower than the SARIMA-LSTM model. Its MAD value 

decreases by 352.69%, 4.98%, and 3.73% compared to SARIMA, LSTM, and 

SARIMA-LSTM models, respectively. Its MAPE value decreases by 73.7%, 23.46%, 

and 13.06% compared to SARIMA, LSTM, and SARIMA-LSTM models, respectively. 

The RMSE value decreases by 68.02%, 26.68%, and 23.78% compared to SARIMA, 
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LSTM, and SARIMA-LSTM models, respectively. The MAE decreases by 70.90%, 

23.00%, and 21.80% compared to SARIMA, LSTM, and SARIMA-LSTM models, 

respectively. Compared to the LSTM model, the SARIMA-LSTM model's MAD, 

MAPE, RMSE, and MAE values decrease by 11.97%, 7.47%, 3.81%, and 1.53%, 

respectively. From the fitting curves of the four models, it can be observed that the 

LSTM, SARIMA-LSTM, and SARIMA-NARX models can all accurately predict 

future disease trends. Among them, the predictions from the LSTM and SARIMA-

LSTM models are more similar. The predictive errors of the three models reach their 

maximum values in July and August 2023, and the predicted values are consistently 

lower than the actual data(Figure 6).  

 

Table 1 Evaluation of goodness-of-fit of SARIMA, LSTM, SARIMA-LSTM, and SARIMA-

NARX models 

Models Fitting power   Predicting power 

R
2
 MAD MAPE RMSE MAE  R

2
 MAD MAPE RMSE MAE 

SARIMA 96.54% 869.64  5.13% 2363.59  1504.26   18.99% 13643.14  28.72% 14130.01  13522.92  

LSTM 97.81% 977.18  4.84% 1856.21  1371.02   90.47% 4687.71  12.88% 6163.92  5110.33  

SARIMA-LSTM 98.43% 820.38  3.94% 1569.46  1146.40   89.29% 4126.54  11.92% 5929.18  5032.13  

SARIMA-NARX 95.82% 1239.12  6.11% 2508.07  1805.93   85.96% 3587.78  8.75% 4519.34  3935.07  

SARIMA VS. LSTM -1.31% -12.37% 5.57% 21.47% 8.86%  -376.41% 65.64% 55.15% 56.38% 62.21% 

SARIMA VS. SARIMA-LSTM -1.96% 5.67% 23.25% 33.60% 23.79%  -370.24% 69.75% 58.50% 58.04% 62.79% 

SARIMA VS. SARIMA-NARX 0.74% -42.49% -19.04% -6.11% -20.05%  -352.69% 73.70% 69.55% 68.02% 70.90% 

LSTM VS. SARIMA-LSTM -0.64% 16.05% 18.73% 15.45% 16.38%  1.29% 11.97% 7.47% 3.81% 1.53% 

LSTM VS. SARIMA-NARX 2.03% -26.81% -26.06% -35.12% -31.72%  4.98% 23.46% 32.11% 26.68% 23.00% 

SARIMA-LSTM VS. SARIMA-NARX 2.65% -51.04% -55.10% -59.80% -57.53%  3.73% 13.06% 26.63% 23.78% 21.80% 
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Figure 6 Fitting and forecasting performence of the SARIMA, LSTM, SARIMA-LSTM, and 

SARIMA-NARX models 

Note: Panel a, c, e, and g denote the fitting and predicting results using the SARIMA, LSTM, SARIMA-

LSTM, and SARIMA-NARX models, respectively, the red and yellow curves represent the simulation 

values for the train set and test set of the TS. Panel b, d, f, and h denote the residuals of the SARIMA, 

LSTM, SARIMA-LSTM, and SARIMA-NARX models, respectively, the blue and yellow stems 

represent the residuals for the train sets and test sets, respectively. 

 

3.6 Predictions of SARIMA-LSTM and SARIMA-NARX models 

We re-modeled the SARIMA, SARIMA-LSTM, and SARIMA-NARX models with all 

original data before predicting future time steps to ensure the accuracy of the 

predictions. The new SARIMA model was built first as a basis for the other two models, 

and after the sample size of the time series used for modeling was increased, the best 

fitting SARIMA model was established as SARIMA(3,1,1) (4,1,0)12 with AIC and BIC 

values of 4540.9 and 4569.3, respectively. The construction of the hybrid SARIMA-

LSTM and SARIMA-NARX models was then carried out based on the fitted values of 

the SARIMA model, and 20 times predictions of the monthly incidence of syphilis for 

the next 24 months (From December 2023 to November 2025) were made using the 

two models. In the forecasting application of the SARIMA-LSTM and SARIMA-

NARX models, the architecture was preserved with an identical neuron configuration 

as employed during the training phase. Furthermore, an ensemble approach was 

implemented, where each model executed twenty times of forecasts. The extrema, 
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specifically the maximal and minimal predictive values at each temporal increment, 

were systematically documented. This procedure was designed to facilitate the 

construction of predictive interval plots, enhancing the visualization and interpretation 

of forecast uncertainty. The results showed that the trends predicted by the SARIMA-

LSTM and SARIMA-NARX models were similar, the forecasted values of the 

SARIMA-NARX model are slightly higher overall than those of the SARIMA-LSTM. 

The peak number of monthly incidences appeared in the July and August of 2024 during 

the prediction period(Figure 7). 

 

 
Figure 7 Prediction results from December 2023 to November 2025 of SARIMA-LSTM, and 

SARIMA-NARX models 

Note: The light gray and blue areas respectively represent the forecast intervals of SARIMA-NARX and 

SARIMA-LSTM. The blue, red, and yellow curves represent the original data, the fitted values of the 

SARIMA-LSTM and SARIMA-NARX models, and the predicted values of the two models are 

represented by the red and yellow dashed lines. 

 

4 Discussion 

 

Syphilis is a highly insidious STD and has long-lasting damage to the human body. As 

the STD with the highest incidence in China and has been increasing for more than 10 

years, it is essential to fit and predict the incidence data of syphilis. This will help the 

government to formulate relevant public health policies in advance, and rationalize the 

allocation of public health resources to avoid widespread infection in the population. 

After seasonal and long-term trend decomposition of the sample data, we found that the 

syphilis prevalence in China has been growing rapidly from 2004 to 2012, since then 

onset growth has slowed until the end of 2019. The incidence is generally higher in the 

summer and fall of each year, and after the outbreak of COVID-19, the growth trend 

slowed down but the overall incidence level is still high. Undoubtedly, the stringent 
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public health and social interventions adopted in China's response to the COVID-19 

process have played a specific role in curbing the transmission of syphilis, but as China 

gave up the zero-COVID strategy for the normalization of prevention and control of the 

COVID-19, the epidemiology trend of syphilis need to be reassessed. In February 2020, 

the number of monthly reported cases of syphilis was 21,448, a decrease of 53.1% 

compared with January 2020, making it the month with the lowest number of reported 

cases in the past 10 years, probably since at this time, lockdowns and restrictions on 

gatherings and travel were imposed in the nationwide and most of the inhabitants and 

healthcare workers were amid their Lunar New Year vacations, which impacted the 

detection of the disease and the reporting of cases[29]. Then, China implemented the 

zero-COVID strategy, and population mobility was significantly reduced, resulting in a 

blockage of interpersonal transmission of the disease, which has resulted in a smooth 

fluctuation in the number of reported cases, rather than continuing to grow.  

 

The seasonality of syphilis epidemic behavior can be related to sexual behaviors in 

Chinese populations and the patients’ clinical attendance[30]. Some studies have found 

that in early spring, shortly after the end of the Chinese New Year, there is often a mass 

migration of Chinese populations, many of whom are returning from rural to urban jobs, 

and that this group behavior is often accompanied by an increase in sexual 

behavior[31,32]. Influenced by traditional Chinese beliefs, the willingness to diagnose 

and seek medical care around the Spring Festival is lower than at other times of the year, 

but in the summer months, graduated students and job seekers undergo mandatory 

medical check-ups before enrolling in school and the military as well as entering the 

workforce, which included serological testing for the virus[31], in addition, changes in 

hormone levels may lead to an increase in sexual behavior during specific seasons[32], 

leading to a peak in incidence in the summer and fall, which may explain the seasonal 

pattern of syphilis in China. 

 

As a traditional mathematical model, SARIMA model is widely used in the analysis of 

time series data[33-35], but one of the applicable conditions is that the research data 

must be smooth, so it is often necessary to transform the data to achieve the modeling 

conditions, this process will often lose part of the information contained in the original 

data, for the fitting and prediction of complex nonlinear data, SARIMA model may not 

be able to precisely. The emergence of neural network algorithms has improved this 

deficiency, as the neural network model involves a large number of neurons in 

computation, and the overall system output is calculated through the interactions 

between neurons. As a result, the network possesses good robustness, such that even if 

there are errors in a certain part of the network, it will only reduce the adaptability of 

the network rather than causing significant errors.  

Through iterations, the connections between neurons can be adjusted, allowing specific 

logical operations or nonlinear computations to be performed from complex or 

imprecise data. Although the LSTM and NARX models have unique advantages in time 

series data modeling, a single neural network model still has limitations in its usage. 

LSTM and NARX neural networks simply use known inputs to estimate the current 
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output, which may affect the accuracy of their predictions and inferences[10], 

especially when time variables are crucial, particularly in cases where time series 

exhibit seasonality. Therefore, we attempt to establish SARIMA-LSTM and SARIMA-

NARX combined models to explain the relationship between the fitted values of the 

SARIMA model and the sample data, emphasizing the time variable. As the SARIMA 

model has a good capturing ability for periodic fluctuations, while LSTM and NARX 

excel in capturing nonlinear oscillations. Our research results also demonstrate that the 

combined model has better predictive capabilities than a single model, indicating that 

the combined model can integrate the strengths of individual single models. 

In terms of predictive power, predictive models are considered perfect when the MAPE 

value is less than 5%. Models with MAPE values in the range of 5%-10% are 

considered high-precision models; models with MAPE values in the range of 10%-20% 

are considered good models[36]. Although the thoughts of building the hybrid 

SARIMA-LSTM and SARIMA-NARX models in this study are different, they are both 

a quantitative description of the relationship between the output of SARIMA and the 

actual onset data using the LSTM and NARX models, which can be regarded as the 

SARIMA model nested in the essentially neural network models and thus the results 

are comparable. However, in determining the best-fitting SARIMA-LSTM and 

SARIMA-NARX models, we found that the prediction performance of SARIMA-

NARX models is not as stable as that of SARIMA-LSTM models when different 

parameters are used for the model construction, and therefore, there is a higher demand 

for parameter selection, otherwise, the prediction error will be large. For the actual data 

in July and August 2023, both the SARIMA-LSTM and SARIMA-NARX models 

exhibit underestimation, which may be attributed to the fact that the data for these two 

months exceeds all the data within our study period and can be considered as outliers. 

The predictions of the SARIMA-LSTM and SARIMA-NARX showed that the results 

of the two models had similar trends, suggesting that syphilis epidemiological trends in 

China will remain characterized by a high and stable level of epidemiological trends in 

the future. From May 2023 to November 2023, the reported number of cases for each 

month was significantly higher than the number of cases during the corresponding 

period, indicating the need for early intervention measures to prevent potential risks. 

Since the social and economic impacts of COVID-19 have not yet been eliminated, this 

study can provide a cost-effective tool for China and worldwide, which can help to 

identify trends in disease prevalence, rationalize the allocation of public health 

resources, avoid the waste of medical resources, and protect people's health. 

 

5 Limitations 

Admittedly, this study has several limitations. First, although the sample data were 

acquired from the official health administration in China, they were reported and 

aggregated by regional healthcare institutions at all levels, and between December 2019 

and December 2022, the Chinese government has taken strict public health measures in 

response to the COVID-19 pandemic, which could lead to a decrease in the accessibility 

of people at high risk of syphilis infection to seek medical inspection, so the data may 

be subject to reporting bias. Second, although the LSTM model has high fitting 
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accuracy, the training progress and parameter optimization of the model require a lot of 

time because of the complex structure of the LSTM model. Third, the time series model 

can only be used for short-term prediction, and the accuracy will be reduced if a long-

term prediction is performed, so the data needs to be updated frequently to optimize the 

model. Finally, the determination of model parameters for LSTM and NARX models 

currently lacks a well-established theoretical framework and often relies on heuristic 

and empirical methods. While model selection is typically based on the evaluation of 

prediction performance using a test set, this approach may not adequately assess the 

model's generalization ability to unforeseen data. Therefore, caution is advised when 

extrapolating the predictions of future disease incidence from this study. 

 

6 Conclusions 

The hybrid SARIMA-NARX and SARIMA-LSTM methods predict syphilis cases 

more accurately than the basic SARIMA and LSTM methods, so that can be used for 

governments to rationally allocate health resources and develop long-term syphilis 

prevention and control programs. In addition, the predicted cases still maintain a fairly 

high level of incidence, so there is an urgent need to develop more comprehensive 

prevention and control, and intervention strategies. 
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