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On the largest Hausdorff

compactification of a Hausdorff

convergence space

Vinod-Kumar

For a Hausdorff convergence space, necessary and sufficient

conditions for its Richardson compactification to be the largest

Hausdorff compactification are found and by modifying the

convergence structure of the Richardson compactification, it is

shown that the largest Hausdorff compactification, whenever it

exists, is given by that modified Richardson compactification.

Introduction

In [3] and [4] it is proved that a Hausdorff convergence space has the

largest Hausdorff compactification if and only if it has only finitely many

nonconvergent ultrafilters. We observe that the proof of the necessity

part is not sound and hence one can not say whether or not the same is

valid in general. However, we establish its validity in case the largest

Hausdorff compactification is given by the Richardson compactification.

For the general case, we modify the convergence structure of the Richardson

compactification and prove that the largest Hausdorff compactification,

whenever it exists, is given by that modified Richardson compactification.

De f i n i t i ons

For definitions not given here, the reader is asked to refer to [7]

and [6]. Let X be a set. Let FX denote the set of all filters on X
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and PX the set of a l l subsets of X . For x d X , x = {A <=_ X \ x $ A}

is the principal ul t raf i l ter containing {x} . A convergence structure on

X is a function q^ from FX to PX satisfying the following

conditions:

(1) for x € X , x € qx(x) ;

(2) i f cp, <l> € FX and cp c <j> , then ^(cp) c ^(if/) ;

(3) i f x € qx(<f>) , then x € ^(cp n x) .

The pair [x, qY) is called a convergence space; [X, qv) is called

Hausdorff if and only if c7v(cp) is at most a singleton for every ip € FJ ;
A

A c_ X is called open in (X, q^) if and only if x £ A and x € <7y(<P)

•imply that 4 € cp . By a space we shall mean a Hausdorff convergence space

and by a compactification a Hausdorff compactification. We will treat an

embedding as an inclusion map. Call a space essentially compact if and

only if it has only finitely many nonconvergent ultrafliters. A space is

called locally compact ([3]) if and only if it is open in each of its

compactifications. Let H-Conv denote the category of spaces and

continuous maps. Let EH-Conv and CH-Conv denote the subcategories of

H-Conv consisting of essentially compact spaces and compact spaces

respectively. Let A and 8 be subcategories of H-Conv such that

8 c A . 8 is called embedding epireflective in A if and only if 8 is

epireflective in A and each reflection map is an embedding.

Let [X, qx) be a space. For A c X , define A and A* by

A = {cp i. FX I A 6 cp and cp is a nonconvergent ultrafilter} and

A* = A u A . Thus, in particular, X* = X u X . For cp € FX let cp' be

the filter {K c X* \ K n X € cp} on X* , cp° the filter generated by

{A U {cp} I A € cp} on X* , and cp* the filter generated by {A* \ A € cp}

on X* . For * € FX* , let *„ be the filter {A \ A* € <£>} on X and

$ the set {K n X | K € *} .

Let / : [X, qx) •+ [X, qy) be a function. For cp € FX , let /cp be

the filter {s c Y \ f^B € <p} on Y . Define a function f* : X* -*• Y* as

follows; for x € X ,
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Hausdorff compactification 191

f*x = fx

and f o r <p € X ,

/cp i f /cp * Y ,

z/ i f ! / f a y ( / cp ) •

LEMMA 1. (i) If * € FX* and X € * , £7zen $Q ( H , *Q = #„ ,

"• 0
(ii) If * € FX* i s an ultrafilter and cp € X , then cp c § i /

and onZj/ •£/ either 4> = cp' or $ = cp .

(Hi) For cp € X ,

y n (/cp)' i/ y € ay(/cp) .

Proof. Obvious.

LEMMA 2. 4 space (x, cjv) is essentially compact if and only if for

every ultrafilter # 6 FX* , either § = cp /or some cp € X or $ = cp'

for some cp € FX .

Proof. Let (X, q ) € EH-Conv . Let $ € FX* be an ultrafilter.
x

Then X € * or H * . If H * , X being finite, there exists cp € X

such that {cp} <: $ . This implies that * = cp . If X € # , then, by

Lemma 1, $ n € FX and $ = $' . Conversely, to prove that X is finite,

it suffices to prove that if a € FX is an ultrafilter, then there exists

cp € X such that a1 = cp , where a' = {K c X* | K n X Z a] . But this is

obvious because of the given condition and the fact that a' € FX* is an

ultrafilter and X \. a' .

We shall use the following result of [4].

PROPOSITION 3. If a space has the largest compactification, then it

is locally compact.

The above result is proved in [4]. The following is a shorter proof.
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Proof. Let \LX, <?ry b e the largest compactification of a space

(x, q ) . It suffices to prove that X is open in \LX, q\v\ . Let
•A y LX J

[SX, qsx) be the one point compactification of [x, q ) as given in [2].

Then there exists a continuous map g : \LX, qL-J\ •* [SX, qs ) such that g

is the identity function on X . This implies that X = LX - g'^iSX-X) is

open in \LX,

Let [x, q^) be a space. Define a convergence structure q^.^ on X*

as follows. Let * € FX* . For x € X , x € ?^*(*) i f and only i f

X f * and a; € q [# J , and for <p € X , cp f <? ^ if and only i f

LEMMA 4. ( i ; Z*, c? ^ i s a space with [x, q ) as its dense and

open subspace.

(ii) \x*, qvA is compact if and only if [x, qv) is essentially
\ A ) x

compact.

Proof, (i) is obvious.

(ii) If [X, q ) € EH-Conv , then \X*, q°A € CH-Conv by Lemma 2.
X i ' J

Suppose that \X*, q®A e CH-Conv . Let * € FX* be an u l t r a f i l t e r . Then

$ i s convergent and therefore either $ = $' or (p c 4> for some
/v a

<p € X . In the latter case, by Lemma 1, $ = (p or * = (p. Hence

(Z, qx) f EH-Cow .

Let / € EH-Conv[{x, qx) , [Y, qj) . Then /* : \x*, q°

i s continuous. The inclusion map iy : [X, q ) -* -̂ *» ^y* ^

embedding. If (y, q ) € CH-Conv , then there exists a unique continuous

https://doi.org/10.1017/S0004972700023182 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023182


Hausdorff compactification 193

map g = i~ ° /* : \X*, qvA -*• ( l , q ) such that g o i = f . Thus we
I 1 ) \ A ) 2 A

have proved

PROPOSITION 5. CU-Conv is embedding epirefleotive in EH-Conv .

COROLLARY 6 ( [3] ) . There exists the largest aompaatifiaation for

every essentially compact space.

COROLLARY 7. Every essentially compact space is locally compact.

Let [x, <?„) be a space. In [5] a convergence structure q*^ on X*

i s defined as follows. Let $ € FX* . For x d X , x £ <?£*($) i f and

only i f x € <7y(**) > &n& f o r <P e x > <P € <?5*(*) i f and o n l v if" <P* E * •

Then (x*, q^n) becomes the Richardson compactification of [x, q«) .

The following proposition t e l l s when q^ = q*^ for a space

{X, qj\ . F i rs t we prove a lemma.

LEMMA 8. Let X be a set and D c FX be a finite set of

ultrafilters. Given cp € D and A € <p , there exists B c A such that

for ty € D , B€t); if and only if 4> = cp .

Proof. Given cp € V , there exists K € <p such that for ip € D ,

K € i|i i f and only i f i|> = cp . For given A € cp , take B = K n A .

PROPOSITION 9. The following are equivalent:

(i) [X, <?„) is essentially compact;

(ii) for cp € X , cp* = cp and X is open in [x*, q*^) ;

(Hi) qx* = q*xii .

Proof, d) implies (ii). Let cp € X and A € cp . By Lemma 8, there

exists B c 4 such that B* = B u {cp} . Hence tp* = cp . j ; i s open in

[X*, <7*J by Corollary 7-

(ii) implies (Hi). Clearly q „ > g* . Let x £ qi*($) • X being

open in [X*, q**) , X € cp , and so x € <?^*(*) • If cp € <?*,(*) , then
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obviously tp € <y .,,,(<£) .

(Hi) implies (i). Since q*^ i s compact and q t = q* ,

[X, <?„) € EH-Conv by Lemma it.

Let [x, <7y) be a space. We define another convergence structure

qxt on X* as follows. Let * € FX* . For x Z X , x € <?„*(*) i f and

only i f s E qy(**) and for ip E f , <p € <?.„„(*) i f and only i f there

exis ts an u l t r a f i l t e r ¥ € fX* such that (p*cT and <p n ¥ c * .

Observe that (A"*, ^y*) ^s a comPac"tification of [X, q^\ . As t^^ is a

modification of q^^ , we shal l refer to [x*, q-yii] a s the modified

Richardson compactification of {X, q^.) .

LEMMA 10. If qt-j. and q^ are two convergence structures on X*

such that [x, qv) is a subspace of both \X*, qvA and \X*, qvA andA ( A. ) ( A j

for <p € X , <p € <?;f<(<p') and <p € <?y^(<p') j tten a continuous map

g : \x*, qvA * \X*, qvA such that g is the identity function on X ,
\ x J l x )

is the identity function on X* .

Proof. Obvious.

LEMMA 11. If \LX, o is the largest compactification of a space

[X, qJ , then card LX = card X* .

Proof . Let i v : [X, qY) •+ \LX, qTY\ be the inclusion map. Define
A A ^ L/A)

a function h : X* -*• LX as follows. For x € X , hx = x and for

<p € X , Tup = t , where t € q (iyp) . Let t € LX - X . There exists an

ultrafilter a € FLX such that X € a and £ € q «(a) . Let <p = aQ ,

where a. = {A c X \ A 6 a} . Since i^p = a , <p € X . By definition of

Tz , h(f> = t implying that h is onto. \LX, qTV\ being the largest
I i/AJ

https://doi.org/10.1017/S0004972700023182 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023182


Hausdorff compactif ication 195

compactification of [x, <?„) , there exists a continuous map

g : \LX, q J -»• [x*, q'^) s u c h t h a t g o i^ is the identity function.

Now h is one-to-one because g o h is the identity function.

We shall identify i^tp and cp' , and t € q (iyp) and cp , for

cp € £ .

THEOREM 12. The largest oompaotification of a space, whenever it

exists, is given by the modified Richardson compactification.

Proof. If \LX, qTV\ is the largest compactification of a space

[x, qy) , then, by Lemma 11, card LX = card X* . Thus \LX, qTy\ can be

rewritten as \X*, qvA • There exists a continuous map
I * )

g : \X*, qvil\ "* [x*, qY*\ such that g is the identity function on X .
( X. j X

By Lemma 10, g is the identity function on X* ; hence q^.A 2 q„,, .

[x, qx) being locally compact by Proposition 3, x € q^^i^) implies that

x € qx)t($) . Now to show that q A > q^ , i t suffices to prove that if

cp € qxt(§) for an ul t raf i l ter * € FX* , then cp € c?^(*) , which is

obvious, since \x*, qyA is compact and g is the identity function on

X* .

The following theorem is a categorical version of Theorem 12.

THEOREM 12' . If A is a full subcategory of H-Conv such that

CH-Conv is embedding epireflective in A , then the epireflection is given

by the modified Richardson compactification.

Now we give relat ions between q A and q^^ , and q*^ and qylt .

PROPOSITION 13. Let [X, qx) be a space.

(i) qxit = q t iff [X, q ) is essentially compact.

https://doi.org/10.1017/S0004972700023182 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700023182


196 Vinod-Kumar

0 ^
(ii) qxlt = q*,,. iff cp = cp* for every cp € X .

Proof. (£,> i s obvious in view of Lemma h and Theorem 12.

("it/I . Let ^ ^ = q*^ . Let cp f .£ . Since <p € <7t*(<P*) , there

exis t s an u l t r a f i l t e r $ € FX* such that cp* c * and <p n # c cp* . Hence

ip = cp* . The converse i s obvious.

THEOREM 14. The Richardson compactification of a space is the

largest compactification iff the space is essentially compact.

Proof. Let [X, <?„) € EH-Conv . By Proposition 9, qxil = q*A .

Hence Ix*, qt^] i s the largest compactification of [x, qY) . In case
X A

[X*, q*) i s the larges t compactification of [x, qx) , q ^ = q* by-

Theorem 12. Now <p = <p* and X i s open in [x*, qt*) • Hence

(̂ T, qx) € EH-Conv .

COROLLARY 15. EH-Conv is the largest full subcategory of H-Conv

such that the Richardson compactification defines an epireflection from

EH-Conv to CH-Conv .

COROLLARY 16. The Richardson compactification [x*, <?**) of a space

[X, qx) is the largest compactification iff

(i) [X, <?„) is locally compact, and

(ii) <p n cp' = tp* for every cp € X .

The proof of the above result given in [4] is not sound.
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