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1. Introduction. It has been observed (2) that the number of ^-regular 
classes of Sny i.e. the number of classes of order prime to py is equal to the 
number of partitions (X) of n in which no summand is repeated p or more 
times. For this relation to hold it is essential that p be prime. It seems natural 
to call the Young diagram [X] associated with (X) p-regular if no p of its rows 
are of equal length, otherwise p-singular. 

The problem considered here is that of refining the above result to prove 
(§5) that the number of regular diagrams in a given block is equal (1 ; 2; 4; 5; 6) 
to the number of modular irreducible representations (indécomposables of the 
regular representation of Sn) in that block. It is interesting to see that all our 
machinery is required. For example, the notion of an r-Boolean Algebra 
associated with a given diagram (8), which seemed somewhat of a curiosity 
at first, plays a central role. In particular, complementation in such an rBA 
can be interpreted in terms of the core and so has significance for the block as 
a whole (§§2, 3). Similarly, the construction of a diagram with a given core 
from a knowledge of its ^-quotient (star diagram) (3, 7) has to be made 
explicit (§4). This shows up the underlying number-theoretic basis of the 
theory in a new and significant light. 

Actually, we are laying the foundation here for the establishment of an 
explicit correspondence between the indécomposables of the regular represen­
tation and the modular irreducible representations of Sn. The existence of this 
correspondence for any finite group was demonstrated by R. Brauer and 
C. J. Nesbitt in 1937, using very general arguments. 

2. The complement of a Young diagram in its r-Boolean Algebra. Consider 
a Young diagram [X] to (from) which can be added (removed) d(d*) nodes of 
class r. Such a diagram belongs to an r-Boolean Algebra (8) of dimension 
d + d* in which the complement of [X] is obtained by removing the d* r-nodes 
and adding r-nodes in the d free r-positions of [X]. Let us denote this uniquely 
defined complement by [X]. As was shown in (8) 

2.1 d-d* = ô, 

so that the core [X0] of [X] is obtainable by adding ô r-nodes to [X0] where ô 
is the r-defect of [X0]. Also, the weight of [X] is the same as that of [X]. Two 
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diagrams of the same block may belong to different rBA's and d and d* may 
be different, but ô is the same in each case. We prove the following theorem 
(cf. (8,4.4)): 

2.2 The p-quotients of [X] and its complement [X] in the appropriate rBA are 
the same except for the interchange of the r and (r — 1)-constituents. 

Proof. We distinguish three cases. 
(i) If the ith row of [X] ends in a removable r-node and thej th column in an 

r-position (8) then htj = 0(mod p). Clearly, removing the r-node at the end 
of the ith row and adding an r-node at the foot of the j th column does not 
change the (i,7*)-hook length so that htj — hij = 0 (mod p). It does however 
change the residue class of the hook from r to r — 1. Similarly, if the ith row 
ends in an r-position and the j th column in a removable r-node the length of 
the (i, j) hook remains the same but its class is changed from r — 1 to r. 

(ii) If the ith row of [X] ends in a removable r-node and the j th column in an 
(r + l)-node below which no r-node can be added as in Figure 1, 

(ij) • r — 1 \ r 

r \ r + 1 
F I G . 1 

then removing the r-node yields hij-i = hitj = 0 (mod£). Similarly, if the 
th column ends in a removable r-node and no r-node can be added at the end 
of the ith row as in Figure 2, 

a j) r - 1 

r+ 1 

F I G . 2 

then removing this r-node yields ht-ij = hitj = 0 (mod p). Conversely, we 
may think of adding an r-node in the appropriate r-positions in Figures 1 and 2 
to yield similar conclusions. 

(iii) In this third case we have to consider (i, j)-hooks such that no r-node 
can be added or removed from the end of the ith row or the jth column. The 
situation is as indicated in Figure 3. 
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(ij) • • • 
(i + l , i - 1) . . . 

| r J r+ 1 | 

FIG. 3 

Taken in conjunction with case (ii) it is clear that if the r-constituent of 
[\]p receives a contribution from h^ = 0 (mod p) in case (iii), then also the 
(r — l)-constituent of [X]p will receive a contribution from hi+ÎJ-i = 0 (modp) 
and vice versa. All three cases are concordant, in that an h = 0 (mod p) remains 
fixed in case (i), or moves one place in its row or column in case (ii), or diagon­
ally in case (iii), so that the r and r — 1 constituents of [\]p and [%]p are 
interchanged, the others remaining unaltered. 

2.3 Example. If [X] = [7, 5, 43, 22, l2] for p = 3, r = 1, then d = 2, d* = 2 
so that 

[X]s= [33], [ 1 ] , - , 

where the constituents of [X]3 are associated with the residue classes 0, 1, 2 
respectively. We have [X] = [8, 6, 43, 2, l2] and 

Ms = [1], [38], - • 

Each of the changes described in cases (i), (ii), (iii) is illustrated. 

3. Regular Young diagrams. Consider the 0-element [X°] of an rBA for 
which d* — 0 and let us think of adding an r-node in each of the possible 
d = ô r-positions (8), by 2.1. It is possible that the addition of an r-node will 
lead to a singular diagram; if so, we shall call the corresponding r-position a 
singular position. 

Corresponding to a given singular position P there exists a regular position 
Pf at which an r-node can be added as indicated in Figure 4, the resulting 
diagram being regular. 

r r+ 1 | 
\r - 1 P' 

\p — 1 rows 

r r+ 1 | 
\ r - 1 P 

r 

r - 1 

FIG. 4 
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Of course Pr may itself be a singular position as in the Example 3.1 (whose 
corresponding regular position is P" = (3, 3)). But the sequence of singular 
positions must eventually yield a regular position, since adding an r-node in 
the first row of [X] cannot yield a singular diagram. 

Clearly, adding all 8 r-nodes to [X°] yields its complement [X*], and if [X°] is 
regular then so also is [\l], since all singular positions and their corresponding 
regular positions are filled. A similar argument shows that [\l] is singular if 
[X°] is singular, and conversely. 

When we consider an arbitrary element of an rBA for which 0 <d* <d-\~d* = / 
the situation is somewhat different, since if a regular position is occupied by an 
r-node, then in the complement the corresponding singular position will be 
occupied and the diagram will be singular. To overcome this difficulty we 
define a modified complement This definition favours regular diagrams, but a 
similar one would favour singular diagrams. 

DEFINITION. If in a regular diagram [X], a singular r-position is vacant 
while its corresponding regular position is occupied by an r-node, then the 
modified complement of [X] in the appropriate rBA is that diagram obtained 
from [X] by raising all r-nodes which occupy singular positions to the corre­
sponding regular positions. Clearly, the modified complement of a modfiied 
complement is the original diagram. 

3.1 Example. If [X] = [7, 4, 3, 2, l2] , then in the complement for p = 3, 
r = 0, [X] = [6, 5, 23, l2] the two singular positions (5, 2) and (7, 1) are 
occupied and the regular position (3, 3) is vacant. Thus the modified comple­
ment is obtained by raising these 0-nodes to the corresponding regular posi­
tions to yield [6, 5, 3, 22, 1]. 

We may think of complementation in the ordinary sense as a special case 
of modified complementation, and so state the following theorem: 

3.2 The property that a diagram be regular is invariant under modified 
complementation in the appropriate rBA. 

We conclude that (cf. (7, 5.6)): 

3.3 The number of p-regular diagrams of a given weight w is independent of 
the core. 

Proof. Complementation or modified complementation amounts to adding 
8 r-nodes to the core. But we know that the result is again a core, and every 
core can be obtained in this way (8). 

4. The explicit construction of a Young diagram with given p-core and 
^-quotient. Our construction is explicit and merely reverses an argument 
given elsewhere (3). 

Let us call the set of first column hook lengths obtained from [X0] a core 
set, denoting them 
4.1 Tk : ci, C2, . . . , Ck, Ci > Ci+i. 
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If these c's are divided into residue classes, then it is known (8; 9) that the zero 
class is empty and that all residues smaller than the largest in a given class 
necessarily appear. 

It is in general necessary to extend Yk in the following manner: 

4.2 Th : bi = ci+s, b2 = c2+s, . . . bk = ck+s, bk+1 = s —1, . . . bh-X = 1, bh = 0, 

where k + s = h ; we shall call Th a basic set. Again we may divide the elements 
of Th into residue classes, the zero class now appearing for h > k. 

We shall denote the ^-quotient [\]p by the set of disjoint diagrams 

4.3 [oX], [A], . . . , [,_!X], 

where one or more constituents may be vacuous. The partition corresponding 
to a given constituent may be written out in detail thus : 

4.4 [rX] = [rXl, rX2, . . . , rX*r], 

where r designates the residue class of the constituent. 
In the required construction of a diagram [X] we must extend the core set 

Tk so that the quantities 

4.5 r\t.p (t = 1,2, . . . ,kr) 

can be added in order to the kT largest members in the appropriate residue 
class of Th. It only remains to determine this residue class for all r, and we do 
this by setting 

4.6 r = bi- h {modp). 

If we denote by gr the number of elements in a core set which are congruent 
to r (mod p), then the number of elements in the basic set Th which are con­
gruent to r (mod p) is given by 

4-7 Z(r,s)=gr-s + [s + p-l-r], 
where the bracket function [x] denotes the largest integer equal to or less than 
x. For a given [X]p we have a set of integers kT'(r' — 0, 1, . . . , p — 1), and 
the choice of 5 for a given core is determined by the following conditions: 

4.8 g(r,s)\>k>-' r'^-h(modp), 

J = k r ' , r9 = — &(mod£), 

where r' = r — h (mod p) by 4.6. That these conditions determine s uniquely 
(7) will be illustrated by the following 

4.9 Example. To construct [X] given [X0] = [2, l2], [X]3 = [2, 1], [l2], [2] 
where the constituents of [X]3 are associated with the residue classes 0, 1, 2 
respectively. Table I gives the values of the function g{r, s) and is arranged 
according to the residue classes r' = r — h (mod p), for p = 3. 
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Table I 

5 h 
g(r', s) 

5 h 

r> = o r' = 2 r' = 1 

0 3 
1 4 
2 5 
3 6 
4 7 
5 8 
6 9 
7 10 
8 11 

0 1 2 
0 2 2 
0 2 3 
1 2 3 
1 3 3 
1 3 4 
2 3 4 
2 4 4 
2 4 5 

The integers printed in bold type are those which correspond to the equality 
in 4.8. We can use the table to determine s. Clearly the &'s of [X]3 are k0 = 2, 
&2 = 1, ki = 2, so that 5 > 6. That 5 > 6 follows from the equality part of 
4.8. Thus the basic set is 

1 0 , 8 , 7 , 5 , 4 , 3 , 2 , 1,0. 

Corresponding to r' = 0 we must add 6 to 3 and 3 to 0; corresponding to 
r' = 1 we must add 3 to 10 and 3 to 7; corresponding to r' = 2 we must add 
6 to 8. Rearranging, we have the set of first column hook lengths: 

14, 13, 1 0 , 9 , 5 , 4 , 3 , 2 , 1, 

which belongs to [62, 42, l5]. 

5. The enumeration of ^-regular diagrams. As we have remarked, a core 
set can have no element = 0 (mod p), and moreover every class of elements 
must contain every integer less than the largest in the class. If a diagram is 
singular then there will be at least p successive integers in the set of first column 
hook lengths. Conversely this condition is also sufficient for singularity. 

5.1 Any diagram obtained by adding p-hooks to a p-core, while not increasing 
the number of rows, is necessarily regular. 

Proof. By adding multiples of p to a core set we can never introduce the 
zero residue class and so have p consecutive first column hook lengths. 

The enumeration problem of regular diagrams will be solved by showing 
how we can enumerate singular diagrams of a given weight w, provided the core 
is suitably chosen. Having established the enumeration in one case then, by 
3.3, it applies in all cases. The choice of the core affects the situation in a some­
what subtle manner as we can see by examining first the case p = 2. Here 
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there is only one type of core and by taking the number of rows to be g we 
have the corresponding core set to be 

r , :2g- l , 2 g - 3 , . . . , 3 , 1. 

If we extend Tg to Tg+S where 5 is even it will always be possible to obtain a 
set of at least two consecutive terms provided w < g + 1, and the diagrams have 
non-vacuous [rX], where r = — g (mod 2). If w > g + 1 then the diagram 
represented bv 

U] = M, 
r == —g (mod 2), will have no two consecutive terms and so will be regular. 

Moreover, if 5 is odd all the terms in the extended set are even except some 
of those at the end so it will be necessary to add (from the top down) at least 
g + 2 multiples of 2 to obtain a set of first column hook lengths, i.e. w > g + 1. 

By denying singularity we obtain regularity so we have proved the following 
theorem : 

5.3 For p = 2, and w < g + 1 the necessary and sufficient condition that a 
diagram be regular is that in its 2-quotient the constituent [r\] be vacuous for 
— r^h^g (mod 2). 

For p > 2 the situation is complicated by the fact that there are p — 1 
classes of terms in a core set and some of these may be vacuous. Thus to 
produce a set of p consecutive first column hook lengths in the manner en­
visaged above the weight w will be limited by the shortest residue class in the 
core set; we call the length g of this shortest class the grade of the core. If any 
class is vacuous, g = 0, and w = 1 is the only possible case yielding such an 
enumeration of singular diagrams. 

The following theorem includes 5.3 as a special case. 

5.4 If a p-core set Tk contains p — \ residue classes, each class containing 
at least g members, then the necessary and sufficient condition that a diagram 
[Xi, X2, . . . , X*] of weight w < g + 1 be regular is that [T\] be vacuous for 
— r = h = k (modp). 

Proof. As before we fix attention on the singular diagrams. From our 
definition of the grade g, we know that there are at most g sets of p — 1 
consecutive residues in IV The worst case we need consider is where [rX] = [w] 
so that s = p. Adding wp to zero we obtain Th which contains the consecu­
tive set 

wp, wp — 1, . . . , (w — \)p + 1, 

so that [X] is singular. The other extreme case is where [rX] = [lw] and we add 
p to each of w terms which are all congruent to zero (mod p). In this case we 
have the consecutive terms 

wp,wp - 1, . . . , 3 , 2, 1, 

and [X] is certainly singular. All other partitions of w clearly yield at least p 
consecutive terms in Tk. 
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If the w nodes are distributed over more than one constituent of [\]p then, 
provided [rAj is not vacuous, the above argument is still applicable and [X] 
must be singular. 

On the other hand if [rX] is vacuous, h = k (modp), and since additions 
must be made at the top of a residue class of I \ , w > g + 1 as in 5.3, proving 
that all diagrams under consideration must be regular. 

Denoting the number of partition of w, by pw, we combine 3.3 and 5.4 and 
conclude (1; 2; 4; 5; 6) that: 

5.5 The number of p-regular diagrams of weight w having a given core [A0] 
is equal to 

2 PwiPt*. • • • Pu>,-i I 12 Wi = W, 0 < Wi < W ) 
Wi...Wp-i \ 1 / 

and so equal to the number of modular irreducible representations of Sn in the 
corresponding block. 

We prove in conclusion the following interesting result: 

5.6 For w < g + 1 the diagrams in a given block are all zero elements (d* = 0) 
of their respective rBA's, where —r = k (modp). 

Proof. If d* 9e 0 there is a removable node of class r\ this implies the pre­
sence of a term of Th congruent to zero (mod p), followed by a gap in the set. 
Since this does not happen for w < g + 1, with —r = k (mod p), we conclude 
that d* = 0 for every such diagram. 

Consider a core C\ of grade g having k rows. Clearly, the next succeeding 
node in the first column would be of class r where —r^=k (mod p). If 8 such 
r-nodes are added to C\ we obtain a core Ci. Successive complementation in 
this manner yields a series of cores. For p = 3, 

(a) [2], [3, 1], [3, P ] , [4, 2, l2] , [4, 22, l2] , 
(b) zero, [1], [l2], [2, l2] , [22, l2] , [3, 22, l2] , 

are two such series. We state the following lemmas without proofs. 

5.7 Two distinct series cannot have a core in common. 

5.8 The grade cannot decrease under complementation. 

It follows from 5.6 that if w < g + 1 for diagrams having C\ as core, then 
subsequent complementation with —r = k (mod p) is ordinary and the dia­
grams so obtained have C2, C3, etc. as cores. Moreover, regular diagrams go 
into regular diagrams and singular into singular by 2.2,5.4 and 5.8. Clearly, the 
critical class of the ^-quotient which is vacuous for regular diagrams by 5.4 
is permuted according to the cycle 

(0,p- l,p-2, . . . 2 , 1 ) , 

under successive complementation in the series. 
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5.9 Example. To illustrate these ideas we give in Table II the sets Th 

for 3-singular diagrams with core [22, l2] for which Tk = 5, 4, 2, 1 and g = 2, 
of weight w = 3, and the associated sets of first column hook lengths. The arrange­
ment of these should be monotonie to construct [X], but they are left as they 
come after the appropriate multiples of p are added to the terms of Th. 

Table II 

W. r» First column hook 
lengths [X] 

"~1 - , [3 ] 8 , 7 , 5 , 4 , 2 , 1 , 0 8, 7, 5, 4, 2, 1, 9 [33, 22, l2] 

1 - , [2,1] 1 1 , 1 0 , 8 , 7 , 5 , 4 , 3 , 
2 ,1 ,0 

11 ,10 ,8 ,7 ,5 ,4 ,9 , 
2 , 1 , 3 

[26, 1»] 

~~J - , [I3] 14, 13, 11, 10, 8, 7, 6, 
5, 4, 3 2, 1, 0 

14 ,13 ,11 ,10 ,8 ,7 ,9 , 
5, 4, 6, 2, 1, 3 

[22, l11] 

[1], - , [2 ] 8, 7, 5, 4, 2, 1, 0 8, 10, 5, 4, 2, 1, 0 [4,3,2M«] 

[1], - , [I2] 11, 10, 8, 7, 5, 4, 3, 
2 ,1 ,0 

11, 13, 8, 7, 5, 4, 6, 
2 , 1 , 3 

[4, 3, Is] 

[2], - , [1] 8, 7, 5, 4, 2, 1, 0 8, 13, 5, 4, 2, 1, 3 [7, 3, Is] 

[I2], - , [1 ] 8, 7, 5, 4, 2, 1, 0 8, 10, 5, 7, 2, 1, 3 [4 ,3 2 , 2 ,P ] 

~1 [1], [2] 8, 7, 5, 4, 2, 1, 0 1 1 , 7 , 5 , 4 , 2 , 1 , 6 [5, 2«t P ] 

~f [1], [I2] 11, 10, 8, 7, 5, 4, 3, 
2 ,1 ,0 

14, 10, 8, 7, 5, 4, 6 
2 , 1 , 3 

[5, 2, 1»] 

~1 [2], [1] 8 , 7 , 5 , 4 , 2 , 1 , 0 14, 7, 5, 4, 2, 1, 3 [8, 2, 1«] 

» [I2], [1] 8, 7, 5, 4, 2, 1, 0 11, 7, 8, 4, 2, 1, 3 [5, 32, 1«] 

[1], [1], [1] 8, 7, 5, 4, 2, 1, 0 1 1 , 1 0 , 5 , 4 , 2 , 1 , 3 [52, V] 
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