## THE $L(r, t)$ SUMMABILITY TRANSFORM

ROBERT E. POWELL

1. Introduction. In a recent article Cheney and Sharma (1) studied the linear operator $P_{n}$ defined by

$$
P_{n}(f, x)=\sum_{k=n}^{\infty} b_{n, k} f\left(\frac{k-n}{k}\right)
$$

where

$$
b_{n, k}= \begin{cases}0 & \text { if } k<n \\ (1-r)^{n+1} \exp \left(\frac{t r}{1-r}\right) L_{k-n}^{(n)}(t) r^{k-n} & \text { if } k \geqslant n\end{cases}
$$

here $L_{j}{ }^{(n)}(t)$ denotes the Laguerre polynomial of degree $j$. Cheney and Sharma proved that if $f$ is continuous on [0,1], then $P_{n}(f, x)$ converges uniformly to $f(x)$ on $[0, a$ ] where $0<a<1$.

In this paper we consider the matrix $L(r, t)=\left(b_{n, k}\right)$ as a summability matrix and determine some of its properties. The special case $L(r, 0)$ is the well-known Taylor matrix $T(r)$ (2). Thus, $L(r, t)$ is a generalization of $T(r)$.

In $\S 2$ we examine the regularity of $L(r, t)$. In $\S \S 3$ and 4 we examine the summability of the geometric series and a series of Legendre polynomials (respectively) by means of the $L(r, t)$ transform. In $\S 5$ we determine sufficient conditions on $r_{1}$ and $r_{2}$ which ensure that each sequence that is summable $T\left(r_{1}\right)$ is summable $L\left(r_{2}, t\right)$ to the same value.
2. Regularity. A matrix $C=\left(c_{n, k}\right)$ is regular if and only if the well-known Silverman-Toeplitz conditions:

$$
\begin{align*}
& \lim _{n \rightarrow \infty} c_{n, k}=0, \quad k=0,1, \ldots,  \tag{2.1}\\
& \lim _{n \rightarrow \infty} \sum_{k=0}^{\infty} c_{n, k}=1, \tag{2.2}
\end{align*}
$$

and

$$
\begin{equation*}
\sup _{n}\left\{\sum_{k=0}^{\infty}\left|c_{n, k}\right|\right\}<\infty \tag{2.3}
\end{equation*}
$$

are satisfied.

[^0]Theorem 2.1. (i) If $L(z, t)$ is regular for some real or complex $t$, then $|z| \leqslant 1$.
(ii) If $L(z, t)$ is regular for some $t \leqslant 0$, then $\operatorname{Im}(z)=0$ and $0 \leqslant \operatorname{Re}(z)<1$.
(iii) For a given value of $z, L(z, t)$ is regular for each $t$ if and only if $\operatorname{Im}(z)=0$ and $0 \leqslant \operatorname{Re}(z)<1$.
(iv) If $t \leqslant 0, L(z, t)$ is regular if and only if $\operatorname{Im}(z)=0$ and $0 \leqslant \operatorname{Re}(z)<1$.

Proof. (i) By (7, (5.1.9) ),

$$
\sum_{k=0}^{\infty} L_{k}^{(n)}(t) z^{k}
$$

is a power series in $z$ with radius of convergence equal to one. Hence,

$$
\sum_{k=0}^{\infty} b_{n, k} \quad \text { and } \quad \sum_{k=0}^{\infty}\left|b_{n, k}\right|
$$

can converge for $|z| \leqslant 1$ only. Thus, we must have $|z| \leqslant 1$.
(ii) By (i) we have $|z| \leqslant 1$. For $t \leqslant 0, L_{k-n}^{(n)}(t) \geqslant 0$ for $k \geqslant n=0,1, \ldots$. Hence,

$$
\sum_{k=0}^{\infty}\left|b_{n, k}\right|=|1-z|^{n+1}\left|\exp \left(\frac{t z}{1-z}\right)\right| \sum_{k=n}^{\infty} L_{k-n}^{(n)}(t)|z|^{k-n}
$$

Suppose $|z|<1$. Then, by (7, (5.1.9)),

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|b_{n, k}\right| & =|1-z|^{n+1}\left|\exp \left(\frac{t z}{1-z}\right)\right|(1-|z|)^{-n-1} \exp \left(\frac{-t|z|}{1-|z|}\right) \\
& =\left(\frac{|1-z|}{1-|z|}\right)^{n+1}\left|\exp \left(\frac{t z}{1-z}\right)\right| \exp \left(\frac{-t|z|}{1-|z|}\right)
\end{aligned}
$$

which is uniformly bounded for $n \geqslant 0$ if and only if

$$
\frac{|1-z|}{1-|z|} \leqslant 1 .
$$

However, $|1-z| \geqslant 1-|z|$; thus we must have $\operatorname{Im}(z)=0$ and $0 \leqslant \operatorname{Re}(z)<1$. Now, suppose $|z|=1$. Then

$$
\sum_{k=0}^{\infty}\left|b_{n, k}\right|=|1-z|^{n+1}\left|\exp \left(\frac{t z}{1-z}\right)\right| \sum_{k=n}^{\infty} L_{k-n}^{(n)}(t)
$$

But, by Abel's theorem,

$$
\sum_{k=n}^{\infty} L_{k-n}^{(n)}(t)
$$

diverges for $t \leqslant 0$ since $L_{k-n}^{(n)}(t) \geqslant 0$ and

$$
\lim _{x \uparrow 1} \sum_{k=n}^{\infty} L_{k-n}^{(n)}(t) x^{k}=\lim _{x \uparrow_{1}}(1-x)^{-n-1} e^{-x t /(1-x)}=+\infty .
$$

So, we cannot have $|z|=1$.
(iii) Let $z$ be given. If $L(z, t)$ is regular for each $t$, it is regular for some $t \leqslant 0$. Hence, by (ii), $\operatorname{Im}(z)=0$ and $0 \leqslant \operatorname{Re}(z)<1$.

Now, let $\operatorname{Im}(z)=0$ and $0 \leqslant \operatorname{Re}(z)<1$. Condition (2.1) holds for $L(z, t)$ without restriction on $z$. Condition (2.2) is satisfied if $|z|<1$; cf. (7, (5.1.9)). Furthermore,

$$
\begin{aligned}
\sum_{k=0}^{\infty}\left|b_{n, k}\right| & =|1-z|^{n+1}\left|\exp \left(\frac{t z}{1-z}\right)\right| \sum_{k=n}^{\infty}\left|L_{k-n}^{(n)}(t)\right||z|^{k-n} \\
& \leqslant|1-z|^{n+1}\left|\exp \left(\frac{t z}{1-z}\right)\right| \sum_{k=n}^{\infty} \sum_{j=0}^{k-n}\binom{k}{k-n-j} \frac{|t|^{j}}{j!}|z|^{k-n} \\
& =|1-z|^{n+1}\left|\exp \left(\frac{t z}{1-z}\right)\right| \sum_{j=0}^{\infty} \frac{|t z|^{j}}{j!}\left(\frac{1}{1-|z|}\right) n+j+1 \\
& =\left(\frac{|1-z|}{1-|z|}\right)^{n+1}\left|\exp \left(\frac{t z}{1-z}\right)\right| \exp \left(\frac{|t z|}{1-|z|}\right)
\end{aligned}
$$

which is uniformly bounded for $n \geqslant 0$. Thus, Condition (2.3) holds. So $L(z, t)$ is regular for each $t$.
(iv) Let $t \leqslant 0$. If $\operatorname{Im}(z)=0$ and $0 \leqslant \operatorname{Re}(z)<1$, then, by (iii), $L(z, t)$ is regular. If $L(z, t)$ is regular, then, by (ii), $\operatorname{Im}(z)=0$ and $0 \leqslant \operatorname{Re}(z)<1$.

## 3. Summability of the geometric series.

Theorem 3.1. Let $|r|<1$. For each $t$, the $L(r, t)$ transform continues the geometric series analytically into the region

$$
\left\{z:\left|\frac{(1-r) z}{1-r z}\right|<1\right\} \cap\{z:|r z|<: 1\} .
$$

Proof. Let $|r|<1$ and define

$$
\sigma_{n}(z)=\sum_{k=n}^{\infty} b_{n, k} s_{k}(z)
$$

where $s_{k}(z)$ is the $k$ th partial sum of the geometric series. It is clear that

$$
\sigma_{n}(z)=\frac{1}{1-z}-\frac{1}{1-z} \sum_{k=n}^{\infty} b_{n, k} z^{k+1}
$$

since, as in Theorem 2.1 (iii), if $|r|<1$, we have Condition (2.2) satisfied. So

$$
\begin{aligned}
\sum_{k=n}^{\infty} b_{n, k} z^{k+1} & =\sum_{k=n}^{\infty}(1-r)^{n+1} \exp \left(\frac{t r}{1-r}\right) L_{k-n}^{(n)}(t) r^{k-n} z^{k+1} \\
& =[(1-r) z]^{n+1} \exp \left(\frac{t r}{1-r}\right) \sum_{k=n}^{\infty} L_{k-n}^{(n)}(t)(r z)^{k-n} \\
& =\left[\frac{(1-r) z}{1-r z}\right]^{n+1} \exp \left(\frac{t r}{1-r}\right) \exp \left(-\frac{t r z}{1-r z}\right)
\end{aligned}
$$

if $|r z|<1$. Hence

$$
\lim _{n \rightarrow \infty} \sum_{k=n}^{\infty} b_{n, k} z^{k+1}=0
$$

if

$$
\left|\frac{(1-r) z}{1-r z}\right|<1 \quad \text { and } \quad|r z|<1
$$

These regions are identical with those of the $T(r)$ transform for like values of $r$ (2).

The region in which the $L(r, t)$ transform provides the analytic continuation of an arbitrary Taylor series may be determined by the Okada theorem (6).
4. Summability of a series of Legendre polynomials. Let $P_{n}(z)$ and $Q_{n}(w)$ denote the Legendre polynomials of the first and second kind (respectively) of degree $n$. Then it is known (8) that

$$
\frac{1}{w-z}=\sum_{n=0}^{\infty}(2 n+1) P_{n}(z) Q_{n}(w),
$$

for fixed $w$, in the interior of the ellipse $E$ with foci $\pm 1$ and passing through $w$. Let

$$
\begin{equation*}
s_{k}=\sum_{n=0}^{k}(2 n+1) P_{n}(z) Q_{n}(w) \tag{4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{n}=P_{n+1}(z) Q_{n}(w)-P_{n}(z) Q_{n+1}(w) . \tag{4.2}
\end{equation*}
$$

Then, by the Christoffel formula,

$$
\frac{1}{w-z}=s_{n}+(n+1) \frac{1}{w-z} d_{n} .
$$

Choose the branch of $\left(\beta^{2}-1\right)^{\frac{1}{2}}$ such that $\beta+\left(\beta^{2}-1\right)^{\frac{1}{2}}$ lies in the exterior of the unit circle and let

$$
\mu=\mu(\phi)=z+\left(z^{2}-1\right)^{\frac{1}{2}} \cos \phi
$$

and

$$
\nu=\nu(\alpha)=w+\left(w^{2}-1\right)^{\frac{1}{2}} \cosh \alpha .
$$

Then, the Laplace integral representations of $P_{n}(z)$ and $Q_{n}(w)$ are

$$
\begin{equation*}
P_{n}(z)=\frac{1}{\pi} \int_{0}^{\pi} \mu^{n} d \phi \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
Q_{n}(w)=\int_{0}^{\infty} \nu^{-n-1} d \alpha \tag{4.4}
\end{equation*}
$$

From (4.2), (4.3), and (4.4) we obtain

$$
\begin{equation*}
d_{n}=\frac{1}{\pi} \int_{0}^{\infty} \int_{0}^{\pi}\left(\frac{\mu}{\nu}\right)^{n}\left[\frac{\mu}{\nu}-\frac{1}{\nu^{2}}\right] d \phi d \alpha . \tag{4.5}
\end{equation*}
$$

Lemma 4.1. If $|r \theta|<1$, then

$$
\begin{aligned}
\sum_{k=n}^{\infty}(k+1) b_{n, k} \theta^{k}=\left[n+1-\frac{t r \theta}{1-r \theta}\right] \frac{(1-r)}{(1-r \theta)^{2}} & \exp \left(\frac{t r}{1-r}\right) \\
& \times \exp \left(\frac{t r \theta}{r \theta-1}\right)\left[\frac{(1-r) \theta}{1-r \theta}\right]^{n}
\end{aligned}
$$

Proof. We have

$$
\begin{aligned}
\sum_{k=n}^{\infty} b_{n, k} \theta^{k+1} & =\sum_{k=n}^{\infty}(1-r)^{n+1} \exp \left(\frac{t r}{1-r}\right) L_{k-n}^{(n)}(t) r^{k-n} \theta^{k+1} \\
& =\left[\frac{(1-r) \theta}{1-r \theta}\right]^{n+1} \exp \left(\frac{t r}{1-r}\right) \exp \left(-\frac{t r \theta}{1-r \theta}\right)
\end{aligned}
$$

for $|r \theta|<1$. The desired result is obtained by differentiation.
Theorem 4.2. The sequence $\left\{s_{k}\right\}$ of partial sums (4.1) is $L(r, t)$-summable to $(w-z)^{-1}$ for each $t$ and $0 \leqslant r<1$ whenever

$$
\left|\frac{\mu(\phi)}{\nu(\alpha)}\right| \leqslant \lambda<\frac{1}{r}
$$

for all $0 \leqslant \alpha<\infty, 0 \leqslant \phi \leqslant \pi$, and

$$
\sup _{\phi, \alpha}\left|\frac{\mu-r \mu}{\nu-r \mu}\right|<1 .
$$

Proof. Let

$$
\tau_{n}=\sum_{k=n}^{\infty} b_{n, k} s_{k}=\frac{1}{w-z}-\frac{1}{w-z} \sum_{k=n}^{\infty}(k+1) b_{n, k} d_{k} .
$$

Then

$$
\lim _{n \rightarrow \infty} \tau_{n}=\frac{1}{w-z}
$$

if and only if

$$
\lim _{n \rightarrow \infty} \sum_{k=n}^{\infty}(k+1) b_{n, k} d_{k}=0 .
$$

From (4.5) and since $|\mu / \nu| \leqslant \lambda<1 / r$ for all $0 \leqslant \alpha<\infty, 0 \leqslant \phi \leqslant \pi$, we have

$$
\begin{aligned}
\sum_{k=n}^{\infty}(k+1) b_{n, k} d_{k} & =\sum_{k=n}^{\infty}(k+1) b_{n, k} \frac{1}{\pi} \int_{0}^{\infty} \int_{0}^{\pi}\left(\frac{\mu}{\nu}\right)^{k}\left[\frac{\mu}{\nu}-\frac{1}{\nu^{2}}\right] d \phi d \alpha \\
& =\frac{1}{\pi} \int_{0}^{\infty} \int_{0}^{\pi}\left[\sum_{k=n}^{\infty}(k+1) b_{n, k}\left(\frac{\mu}{\nu}\right)^{k}\right]\left[\frac{\mu}{\nu}-\frac{1}{\nu^{2}}\right] d \phi d \alpha .
\end{aligned}
$$

From Lemma 4.1 we obtain

$$
\left.\begin{array}{l}
\left|\sum_{k=n}^{\infty}(k+1) b_{n, k} d_{k}\right| \\
\leqslant \frac{1}{\pi}\left|\exp \left(\frac{t r}{1-r}\right)\right|(n+1
\end{array}+\frac{|t|}{1-r \lambda}\right) \exp \left(\frac{|t|}{1-r \lambda}\right) .
$$

Hence

$$
\lim _{n \rightarrow \infty} \sum_{k=n}^{\infty}(k+1) b_{n, k} d_{k}=0
$$

whenever

$$
\left|\frac{\mu(\phi)}{\nu(\alpha)}\right| \leqslant \lambda<\frac{1}{r}
$$

for all $0 \leqslant \alpha<\infty, 0 \leqslant \phi \leqslant \pi$, and

$$
\sup _{\phi, \alpha}\left|\frac{\mu-r \mu}{\nu-r \mu}\right|<1 .
$$

The last inequality yields three cases: (i) $r=\frac{1}{2}$, (ii) $r<\frac{1}{2}$, and (iii) $r>\frac{1}{2}$. Cases (i) and (ii) are identical with those studied by Cowling and King (3); and the regions of summability of the sequence (4.1) by means of the transformation $L(r, t)$ are given in Theorem 2.1 for $r=\frac{1}{2}$ and Theorem 2.3 for $r<\frac{1}{2}$.

In case (iii) we have

$$
\left|\frac{\mu-r \mu}{\nu-r \mu}\right|<1
$$

if and only if

$$
|\mu|^{2}-\frac{2 r}{2 r-1} \operatorname{Re}(\mu \bar{\nu})>\frac{1}{1-2 r}|\nu|^{2},
$$

which is equivalent to $\mu$ being in the exterior of the circle

$$
K_{\nu}{ }^{r}=\left\{\mu:\left|\mu-\frac{r}{2 r-1} \nu\right|=\left(\frac{1-r}{2 r-1}|\nu|\right)^{2}\right\}
$$

for fixed $\nu$. Let $\operatorname{ext}\left(K_{\nu}{ }^{r}\right)$ denote the exterior of $K_{\nu}{ }^{r}$. It follows readily that
 unit circle and $K_{\nu}{ }^{r}$, and let $H_{\nu}{ }^{r}$ and $L_{\nu}{ }^{r}$ be the open half-planes having $h_{\nu}{ }^{r}$ and $l_{\nu}{ }^{r}$ as boundaries (respectively) and containing the unit circle. Let $J_{\nu}{ }^{r}$ be the finite area exterior to $K_{\nu}{ }^{r}$ and bounded by $K_{\nu}{ }^{r}$ and the lines $h_{\nu}{ }^{r}$ and $l_{\nu}{ }^{r}$. Let $C_{\nu}{ }^{r}=H_{\nu}{ }^{r} \cup L_{\nu}{ }^{r} \cup J_{\nu}{ }^{r}$. Now, $\{z:|z| \leqslant 1\} \subseteq \cap_{\nu} C_{\nu}{ }^{r}$ and, if $\mu \in \cap_{\nu} C_{\nu}{ }^{r}$, then

$$
\left|\frac{\mu-r \mu}{\nu-r \mu}\right|<1 .
$$

Since $\mu(\phi)$ describes the line segment with end points $z-\left(z^{2}-1\right)^{\frac{1}{2}}$ and $z+\left(z^{2}-1\right)^{\frac{1}{2}}$ for $0 \leqslant \phi \leqslant \pi$, and since

$$
z-\left(z^{2}-1\right)^{\frac{1}{2}} \in \cap_{\nu} C_{\nu}^{r},
$$

we need only require

$$
z+\left(z^{2}-1\right)^{\frac{1}{2}} \in \cap_{\nu} C_{\nu}{ }^{\tau}
$$

(by construction of $C_{\nu}{ }^{r}$ ). This is equivalent to requiring $z \in B_{w}{ }^{r}$ where $B_{w}{ }^{r}$ is the image of $\cap_{\nu} C_{\nu}{ }^{r}$ under the mapping $w=\frac{1}{2}(s+1 / s)$.

The requirement that

$$
\left|\frac{\mu(\phi)}{\nu(\alpha)}\right| \leqslant \lambda<\frac{1}{r}
$$

holds for all $0 \leqslant \phi \leqslant \pi, 0 \leqslant \alpha<\infty$, provided

$$
\left|z+\left(z^{2}-1\right)^{\frac{1}{2}}\right| \leqslant \lambda\left|w+\left(w^{2}-1\right)^{\frac{1}{2}}\right|,
$$

i.e., $z+\left(z^{2}-1\right)^{\frac{1}{2}}$ must lie strictly inside the circle with centre at the origin and radius $r^{-1}\left|w+\left(w^{2}-1\right)^{\frac{1}{2}}\right|$. This is equivalent to requiring that $z$ lie strictly inside the ellipse $E_{w}{ }^{r}$ with foci $\pm 1$, passing through

$$
\frac{1}{r}\left[w-\frac{1-r^{2}}{2\left(w+\left(w^{2}-1\right)^{3}\right)}\right] .
$$

Notice that $E_{w}{ }^{r}$ and $B_{w}{ }^{r}$ contain the ellipse $E$ with foci $\pm 1$, passing through $w$.
We have proved
Theorem 4.3. The sequence of partial sums of the series

$$
\sum_{n=0}^{\infty}(2 n+1) P_{n}(z) Q_{n}(w)
$$

is $L(r, t)$-summable to $(w-z)^{-1}$ for fixed $w$ and $\frac{1}{2}<r<1$ whenever $z$ lies in any closed subdomain contained in the region $B_{w}{ }^{r} \cap E_{w}{ }^{r}$ for each $t$.

The domains in which the $L(r, t)$ transform provide the analytic continuation of a general series of Legendre polynomials

$$
\begin{equation*}
f(z)=\sum_{n=0}^{\infty} a_{n} P_{n}(z), \quad a_{n}=\frac{2 n+1}{2 \pi i} \int_{\gamma} f(w) Q_{n}(w) d w, \tag{4.6}
\end{equation*}
$$

for the cases $r=\frac{1}{2}$ and $r<\frac{1}{2}$ are the same as those determined by Cowling and King (3) in Theorems 2.2 and 2.4, respectively. In a recent paper (4), Jakimovski proved a general result which gives the domain in which the series (4.6) is $A$-summable to $f(z)$, provided the matrix $A$ and the domain in which the sequence (4.1) is $A$-summable to ( $w-z)^{-1}$ have certain properties. However, Jakimovski's result does not apply to the $L(r, t)$ matrix for $\frac{1}{2}<r<1$ since the domain $D$ in which $L(r, t)$ is efficient is not a generating domain (Condition (iv) of Definition 1.1 is not satisfied).

Because of the computational difficulties involved, the author has not yet determined this domain.
5. The relation $T\left(r_{1}\right) \subset L\left(r_{2}, t\right)$. In the following we assume that $\left\{x_{n}\right\}$ is $T\left(r_{1}\right)$-summable to $x$. Let $\left\{\sigma_{n}\right\}$ be the $T\left(r_{1}\right)$ transform of $\left\{x_{n}\right\}$, i.e.,

$$
\sigma_{n}=\sum_{k=n}^{\infty} c_{n, k} x_{k}
$$

where $\left(c_{n, k}\right)$ is the $T\left(r_{1}\right)$ matrix. It is known (2) that if $r_{1} \neq 1$, then the $T\left(r_{1}\right)$ matrix has as its inverse the $T\left(-r_{1} /\left(1-r_{1}\right)\right)$ matrix. Let $\left(d_{n, k}\right)$ be this matrix. Let $\left(b_{n, k}\right)$ be the $L\left(r_{2}, t\right)$ matrix.

Lemma 5.1. If $r_{1} \neq 1, r_{2} \neq 1$, and $r_{1} \neq r_{2}$ and

$$
l_{n, j}= \begin{cases}0 & \text { if } n>j \\ \sum_{k=n}^{j} b_{n, k} d_{k, j} & \text { if } n \leqslant j\end{cases}
$$

then $\left(l_{n, j}\right)$ is the $L\left(\left(r_{2}-r_{1}\right) /\left(1-r_{1}\right), t r_{2} /\left(r_{2}-r_{1}\right)\right)$ matrix.
Proof. If either $r_{1}=0$ or $r_{2}=0$, the result follows immediately. Suppose $r_{1} \neq 0$ and $r_{2} \neq 0$. Then

$$
\begin{aligned}
& \sum_{k=n}^{j} b_{n, k} d_{k, j} \\
& =\left(1-r_{2}\right)^{n+1} \exp \left(\frac{t r_{2}}{1-r_{2}}\right)\left(\frac{1}{1-r_{1}}\right)^{j+1}\left(\frac{1}{r_{2}}\right)^{n}\left(-r_{1}\right)^{j} \sum_{k=n}^{j} L_{k-n}^{n}(t)\left(-\frac{r_{2}}{r_{1}}\right)^{k}\binom{j}{k} \\
& =\left(1-r_{2}\right)^{n+1} \exp \left(\frac{t r_{2}}{1-r_{2}}\right)\left(\frac{1}{1-r_{1}}\right)^{j+1}\left(\frac{1}{r_{2}}\right)^{n}\left(-r_{1}\right)^{j} \\
& \times\left[\left(-\frac{r_{2}}{r_{1}}\right)^{n}\left(\frac{r_{1}-r_{2}}{r_{1}}\right)^{j-n} L_{j-n}^{(n)}\left(\frac{t r_{2}}{r_{2}-r_{1}}\right)\right] \\
& =\left(\frac{1-r_{2}}{1-r_{1}}\right)^{n+1} \exp \left(\frac{t r_{2}}{1-r_{2}}\right)\left(\frac{r_{2}-r_{1}}{1-r_{1}}\right)^{j-n} L_{j-n}^{(n)}\left(\frac{t r_{2}}{r_{2}-r_{1}}\right) .
\end{aligned}
$$

Lemma 5.2. If $\left|r_{1}\right|+\left|r_{2}\right|<\left|1-r_{1}\right|$, then

$$
\sum_{k=n}^{\infty}\left|b_{n, k}\right| \sum_{j=k}^{\infty}\left|d_{k, j}\right|\left|\sigma_{j}\right|
$$

converges.
Proof. Since $\left\{\sigma_{j}\right\}$ converges, there exists $M>0$ such that $\left|\sigma_{j}\right| \leqslant M$ for all $j=1,2, \ldots$. So

$$
\begin{aligned}
& \sum_{k=n}^{\infty}\left|b_{n, k}\right| \sum_{j=k}^{\infty}\left|d_{k, j}\right|\left|\sigma_{j}\right| \leqslant M \sum_{k=n}^{\infty}\left|b_{n, k}\right| \sum_{j=k}^{\infty}\left|d_{k, j}\right| \\
&=M\left|1-r_{2}\right|^{n+1}\left|\exp \left(\frac{t r_{2}}{1-r_{2}}\right)\right| \sum_{k=n}^{\infty}\left|L_{k-n}^{(n)}(t)\right|\left|r_{2}\right|^{k-n}\left[\frac{1}{\left|1-r_{1}\right|-\left|r_{1}\right|}\right]^{k+1} \\
&\left.\leqslant M \left\lvert\, \frac{\left|1-r_{2}\right|}{\left|1-r_{1}\right|-\left|r_{1}\right|-\left|r_{2}\right|}\right.\right]^{n+1} \mid \left.\exp \left(\frac{t r_{2}}{1-r_{2}}\right) \right\rvert\, \\
& \quad \times \exp \left(-\frac{\left|t r_{2}\right|}{\left|1-r_{1}\right|-\left|r_{1}\right|-\left|r_{2}\right|}\right) .
\end{aligned}
$$

Theorem 5.3. If
(i) $\left|r_{1}\right|<1, r_{2} \neq 1$,
(ii) $\left|r_{1}\right|<\left|r_{2}\right|$,
(iii) $\left|r_{1}\right|+\left|r_{2}\right|<\left|1-r_{1}\right|$,
and
(iv) $\left|1-r_{2}\right|+\left|r_{1}-r_{2}\right|=\left|1-r_{1}\right|$, then $\left\{x_{n}\right\}$ is $L\left(r_{2}, t\right)$-summable to $x$.

Proof. We have

$$
\sigma_{n}=\sum_{k=n}^{\infty} c_{n, k} x_{k} .
$$

Let

$$
s_{n}=\sum_{k=n}^{\infty} d_{n, k} \sigma_{k} .
$$

By Conditions (i), (ii), and (iii) and a result of Laush (5), we have $s_{n}=x_{n}$. Let

$$
\tau_{n}=\sum_{k=n}^{\infty} b_{n, k} x_{k} .
$$

So

$$
\tau_{n}=\sum_{j=n}^{\infty}\left(\sum_{k=n}^{j} b_{n, k} d_{k, j}\right) \sigma_{j}
$$

by Lemma 5.2 and Condition (iii). By Lemma 5.1 and Conditions (i) and (ii),

$$
\tau_{n}=\sum_{j=n}^{\infty} l_{n, j} \sigma_{j}
$$

where $\left(l_{n, j}\right)$ is the $L\left(\left(r_{2}-r_{1}\right) /\left(1-r_{1}\right), \operatorname{tr}_{2} /\left(r_{2}-r_{1}\right)\right)$ matrix. By Theorem 2.1, this matrix is regular if and only if

$$
0 \leqslant \frac{r_{2}-r_{1}}{1-r_{1}}<1
$$

which follows by Condition (iv). Therefore

$$
\lim _{n \rightarrow \infty} \tau_{n}=x .
$$

If $t=0$ in Theorem 5.3, we have the case $T\left(r_{1}\right) \subset T\left(r_{2}\right)$ studied by Laush (5).

Corollary 5.4. Let $r_{1}$ and $r_{2}$ be real. If $0 \leqslant r_{1}<r_{2}<1$ and $r_{1}+r_{2}<1-r_{1}$, then $\left\{x_{n}\right\}$ is $L\left(r_{2}, t\right)$-summable to $x$.

## References

1. E. W. Cheney and A. Sharma, Bernstein power series, Can. J. Math., 16 (1964), 241-252.
2. V. F. Cowling, Summability and analytic continuation, Proc. Amer. Math. Soc., 1 (1950), 536-542.
3. V. F. Cowling and J. P. King, On the Taylor and Lototsky summability of series of Legendre polynomials, J. Analyse Math., 10 (1962-63), 139-152.
4. Amnon Jakimovski, Analytic continuation and summability of Legendre polynomials, Quart. J. Math. Oxford, Ser. 2, 15 (1964), 289-302.
5. G. Laush, Relations among the Weierstrass methods of summability, Doctoral Dissertation, Cornell University, Ithaca, N.Y. (1949).
6. G. G. Lorentz, Bernstein polynomials (Toronto, 1953), pp. 117-120.
7. Gabor Szegö, Orthogonal polynomials (Providence, 1959), pp. 96-97.
8. E. T. Whittaker and G. N. Watson, A course of modern analysis (Cambridge, 1952), p. 321.

## Lehigh University


[^0]:    Received September 23, 1965; revised version received January 25, 1966. This research has been supported in part by a National Science Foundation Summer Fellowship.

    This paper is a portion of the author's doctoral dissertation written at Lehigh University in 1965-66 under the direction of Professor J. P. King.

    The author is indebted to the reteree for some helpful suggestions which, in particular, include an improvement of Theorem 2.1.

