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Abstract

Let n be a positive integer. We obtain new Menon’s identities by using the actions of some subgroups of
(Z/nZ)× on the set Z/nZ. In particular, let p be an odd prime and let α be a positive integer. If Hk is a
subgroup of (Z/pαZ)× with index k = pβu such that 0 6 β < α and u | p − 1, then∑

x∈Hk

(x − 1, pα) =
ϕ(pα)

k

(
1 + k(α − β) + u

pβ − 1
p − 1

)
,

where ϕ(n) is the Euler totient function.
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1. Introduction

In [4], Menon proved a classical identity: for any positive integer n,∑
x∈(Z/nZ)×

(x − 1, n) = ϕ(n)τ(n),

where (Z/nZ)× is the group of units of Z/nZ, ϕ(n) is the Euler totient function and τ(n)
is the divisor function. In [8], Sury proved that, for every r > 2,∑

x1∈(Z/nZ)×
x2,...,xr∈Z/nZ

(x1 − 1, x2, . . . , xr, n) = ϕ(n)τr−1(n),

where τr−1(n) =
∑

d|n dr−1. There are many generalisations of Menon’s identity; see
[1–3, 5, 6, 9, 10].

The key tool in proving these results is the Cauchy–Frobenius–Burnside lemma
concerning group actions.
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Lemma 1.1 (Cauchy–Frobenius–Burnside lemma, [7]). Let G be a finite group acting
on a finite set X and, for each g ∈ G, let Xg = {x ∈ X | gx = x} be the set of elements in
X that are fixed by g. Denote the set of all orbits of X under the action of G by G/X.
Then ∑

g∈G

|Xg| = |G| · |G/X|.

The generalisations mentioned above are derived from the Cauchy–Frobenius–
Burnside lemma for the action of (Z/nZ)× on some fixed sets. We obtain some new
Menon’s identities by using the action of the subgroups of (Z/nZ)× on the set Z/nZ.

Theorem 1.2. Let p be an odd prime and let α be a positive integer. Suppose that Hk

is a subgroup of (Z/pαZ)× with index k. Then∑
x∈Hk

(x − 1, pα) =
ϕ(pα)

k

(
1 + k(α − β) + u

pβ − 1
p − 1

)
,

where k = pβu with 0 6 β < α and u|(p − 1).

Theorem 1.3. Let α and l be two integers such that α > 3 and 0 6 l 6 α − 2. Let H2l be
a subgroup of (Z/2αZ)× with index 2l. Then∑

x∈H2l

(x − 1, 2α) =
{

2α−1(α − l + 1) for H2l = 〈52l−1
〉,

2α−1(α − l) + 2α−l−1 for H2l = 〈−1〉 × 〈52l
〉 or 〈−52l−1

〉.

Let n > 1 be a positive integer such that n =
∏t

i=1 pαi
i , where p1 < p2 < · · · < pt

are primes and αi > 1 for i = 1, . . . , t. The Chinese remainder theorem gives the
isomorphism

(Z/nZ)× �
t∏

i=1

(Z/pαi
i Z)×.

Let Hki be a subgroup of (Z/pαi
i Z)× with index ki, that is, [(Z/pαi

i Z)× : Hki ] = ki.
Consider the subgroups of the form H =

∏t
i=1 Hki and write

f (Hki , pαi ) =
∑
x∈Hki

(x − 1, pαi
i ).

This leads to the following composite result.

Theorem 1.4. With the notation introduced above,∑
x∈H

(x − 1, n) =
t∏

i=1

f (Hki , pαi ).
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2. Some lemmas

Let p be a prime and let α be a positive integer. We start with some well-known
facts about the quotient ring Z/pαZ. Firstly, the ring Z/pαZ is a principal ideal ring
with the ideal chain

0 ⊆ pα−1(Z/pαZ) ⊆ · · · ⊆ p(Z/pαZ) ⊆ Z/pαZ.

Hence the number of ideals in Z/pαZ is exactly α + 1. Secondly,

Z/pαZ = {0} ∪ pα−1(Z/pαZ)× ∪ · · · ∪ p(Z/pαZ)× ∪ (Z/pαZ)×

is a partition of Z/pαZ. In particular, pi(Z/pαZ)× is the set of the generators of the
ideal pi(Z/pαZ) for i = 0, 1, . . . , α.

Lemma 2.1. Let p be a prime and let α be a positive integer. Then two elements x and
y of Z/pαZ are two generators of the same ideal of Z/pαZ if and only if there exists an
element µ ∈ (Z/pαZ)× such that y = µx.

Let p be an odd prime and let α be a positive integer. Then there is a primitive
root modulo pα, that is, the group (Z/pαZ)× is cyclic. Throughout, an element g of
(Z/pαZ)× denotes a primitive root modulo pα, that is,

(Z/pαZ)× = {g, g2, . . . , gϕ(pα)} = 〈g〉.

Hence for each k|ϕ(pα), there is only one cyclic subgroup Hk = 〈gk〉 of (Z/pαZ)×

generated by gk. Furthermore, [(Z/pαZ)× : Hk] = k. We call k the index of Hk in
(Z/pαZ)×.

It is well known that (Z/2αZ)× is not cyclic for α > 3.

Lemma 2.2. Let α and l be two integers such that α > 3 and 0 6 l 6 α − 2. Then the
subgroup H2l of (Z/2αZ)× with index 2l must be one of

〈52l−1
〉, 〈−1〉 × 〈52l

〉 or 〈−52l−1
〉.

Proof. For α > 3,

(Z/2αZ)× = 〈−1〉 × 〈5〉 � Z/2Z × Z/2α−2Z,

where 〈a〉 denotes the cyclic subgroup of (Z/2αZ)× generated by a. It is clear that 5
has order 2α−2 modulo 2α. Hence, for each l with 0 6 l 6 α − 2, if H2l is a subgroup of
(Z/2αZ)× with index 2l, then

H2l = {5a1 , 5a2 , . . . , 5as} ∪ {−5b1 ,−5b2 , . . . ,−5bt },

where 1 6 a1 < a2 < · · · < as = 2α−2 and 0 6 b1 < b2 < · · · < bt 6 2α−2 − 1. Put

T1 = {5a1 , 5a2 , . . . , 5as} and T2 = {−5b1 ,−5b2 , . . . ,−5bt }.

Then T1 ∩ T2 = ∅.
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Now we shall show that T1 is a subgroup of 〈5〉. If 1 6 i, j 6 s, then 5ai+a j ∈ H2l . If
5ai+a j < T1, then 5ai+a j ∈ T2. Hence there exists an element −5bh ∈ T2 such that

5ai+a j ≡ −5bh (mod 2α).

But this implies that 1 ≡ −1 (mod 4), which is a contradiction. Hence 5ai+a j ∈ T1: that
is, T1 is closed under multiplication. If 5ai ∈ T1, then

5ai × 52α−2−ai ≡ 1 (mod 2α).

Hence 52α−2−ai ∈ H2l and so 52α−2−ai ∈ T1. Consequently, T1 is a subgroup of 〈5〉.
If T2 = ∅, then H2l = T1 is cyclic. Hence H2l = 〈52l−1

〉.
If T2 , ∅, we shall show that T2 = −5b1 T1. It is easy to see that −5b1 T1 ⊆ T2. If

1 6 j 6 t, then
(−52α−2−b1 ) × (−5b j ) ∈ T1.

Hence there is an element 5a j ∈ T1 such that −5b j ≡ −5b1 × 5a j (mod 2α). It follows that
T2 ⊆ −5b1 T1. Hence T2 = −5b1 T1. Let T1 = 〈52l1

〉, where l1 > l. Then

H2l = 〈−5b1〉 × 〈52l1
〉.

Since (−5b1 )2 ∈ T1, we have |〈52l1
〉| = 2α−l−2 and 2l1−1|b1. Hence l1 = l and b1 = 2l−1k.

If k is even, then H2l = 〈−1〉 × 〈52l
〉. If k is odd, then H2l = 〈−52l−1

〉. This completes the
proof of Lemma 2.2. �

3. Proof of Theorem 1.2

Let (Z/pαZ)× = 〈g〉. Then Hk = 〈gk〉. Now we compute the number of orbits of the
group Hk acting on the set Z/pαZ. Let x, y ∈ Z/pαZ. Then x, y are in the same orbit if
and only if y = gkt x for some t with 1 6 t 6 ϕ(pα)/k. By Lemma 2.1, x and y are two
generators of the same ideal. Hence it is enough to compute the number of orbits of
Hk acting on the set pi(Z/pαZ)× for i = 0, 1, . . . , α. If i = α, then pα(Z/pαZ)× = {0},
which is an orbit. Let 0 6 i 6 α − 1. Then each element of pi(Z/pαZ)× is of the form
pigm, with 1 6 m 6 ϕ(pα). Suppose x = pigm and y = pign are in the same orbit. Then

pigm ≡ pign+kt (mod pα) (3.1)

for some t with 1 6 t 6 ϕ(pα)/k. Since g is a primitive root modulo pα−i, by (3.1),

m − n ≡ kt (mod pα−i−1(p − 1)). (3.2)

Let k = pβu with 0 6 β < α and u|(p − 1). From (3.2),

pmin(β,α−i−1)u|(m − n).

So the number of orbits of pi(Z/pαZ)× is equal to the number of residue classes modulo
pmin(β,α−i−1)u. Hence the number of orbits of pi(Z/pαZ)× is pmin(β,α−i−1)u and the total
number of orbits of the set Z/pαZ is

|Z/pαZ/Hk| = 1 +
α−β−1∑

i=0

pβu +
α−1∑

i=α−β

pα−i−1u = 1 + k(α − β) + u
pβ+1 − 1

p − 1
.
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For x ∈ Hk, let (Z/pαZ)x denote the subset of elements of Z/pαZ fixed by x, that is,

(Z/pαZ)x = {y ∈ Z/pαZ | xy ≡ y (mod pα)}.

Then |(Z/pαZ)x| = (x − 1, pα). By the Cauchy–Frobenius–Burnside lemma,∑
x∈Hk

|(Z/pαZ)x| = |Hk| · |Z/pαZ/Hk|.

Hence ∑
x∈Hk

(x − 1, pα) =
ϕ(pα)

k

(
1 + k(α − β) + u

pβ − 1
p − 1

)
.

This completes the proof of Theorem 1.2.

4. Proof of Theorem 1.3

First, we compute the number of orbits of the group H2l acting on the set Z/2αZ.
By

Z/2αZ = {0} ∪ 2α−1(Z/2αZ)× ∪ · · · ∪ 2(Z/2αZ)× ∪ (Z/2αZ)×

and Lemma 2.1, it is enough to compute the number of orbits of H2l acting on the set

2i(Z/2αZ)× = {±2i5a | 1 6 a 6 2α−2 − 1}

for i = 0, 1, . . . , α. If i = α or α − 1, then |2i(Z/2αZ)×| = 1, that is, 2i(Z/2αZ)× is an
orbit. By Lemma 2.2, there are three distinct subgroups of (Z/2αZ)× with index 2l. We
discuss each of these cases separately.

Case 1. Suppose that H2l = 〈52l−1
〉 and 0 6 i 6 α − 2. If x, y ∈ 2i(Z/2αZ)× are in the

same orbit, then x, y ∈ {2i5a | 1 6 a 6 2α−2 − 1} or x, y ∈ {−2i5a | 1 6 a 6 2α−2 − 1}.
Without loss of generality, x = 2i5m, y = 2i5n ∈ {2i5a | 1 6 a 6 2α−2 − 1}. Then there is
an integer t > 0 such that

2i5m ≡ 2i5n52l−1t (mod 2α).

This implies that
m − n ≡ 2l−1t (mod 2α−i−2).

Hence the number of orbits of {2i5a | 1 6 a 6 2α−2 − 1} is equal to the number of residue
classes modulo 2min(l−1,α−i−2) and the number of orbits of {±2i5a | 1 6 a 6 2α−2 − 1} is
2 × 2min(l−1,α−i−2). So the total number of orbits of Z/2αZ is

|Z/2αZ/H2l | = 1 + 1 + 2
α−l−1∑

i=0

2l−1 + 2
α−2∑

i=α−β

2α−l−2 = 2l(α − l + 1).

Case 2. Suppose that H2l = 〈−1〉 × 〈52l
〉 and 0 6 i 6 α − 2. If x and y ∈ 2i(Z/2αZ)×

are in the same orbit, then x = (−1)δ2i5m and y = (−1)η2i5n, where δ, η ∈ {0, 1}. Hence
there exist integers t > 0 and ξ ∈ {0, 1} such that

(−1)δ2i5m ≡ (−1)η2i5n · (−1)ξ52l·t (mod 2α).
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So (−1)δ5m ≡ (−1)η5n · (−1)ξ52l·t (mod 2α−i). Since α − i > 2, it follows that (−1)δ ≡
(−1)η · (−1)ξ (mod 22). Thus (−1)δ = (−1)η · (−1)ξ and 5m ≡ 5n · 52l·t (mod 2α−i). This
implies that

m − n ≡ 2lt (mod 2α−i−2).

So the number of orbits of 2i(Z/2αZ)× is equal to the number of residue classes modulo
2min(l,α−i−2). Hence the total number of orbits of Z/2αZ is

|Z/2αZ/H2l | = 1 + 1 +
α−l−2∑

i=0

2l +

α−2∑
i=α−β−1

2α−l−2 = 2l(α − l) + 1.

Case 3. Suppose that H2l = 〈−52l−1
〉 and 0 6 i 6 α − 2. For each element −2i5h with

1 6 h 6 2α−2 − 1, there exists an element 2i5m with 1 6 m 6 2α−2 − 1 such that

(−2i5h)(−52l−1
) ≡ 2i5m (mod 2α).

Thus each element of {−2i5a | 1 6 a 6 2α−2 − 1} belongs to a certain orbit of the set
{2i5a | 1 6 a 6 2α−2 − 1}. Hence it is enough to consider the group 〈−52l−1

〉 acting on
the set {2i5a | 1 6 a 6 2α−2 − 1}. Let x = 2i5m and y = 2i5n ∈ {2i5a | 1 6 a 6 2α−2 − 1}
be in the same orbit. Then there is an integer t > 0 such that

2i5m ≡ 2i5n · (−52l−1
)t (mod 2α).

It is clear that t = 2t1. Hence

m − n ≡ 2lt1 (mod 2α−i−2).

So the number of orbits of {2i5a | 1 6 a 6 2α−2 − 1} is equal to the number of residue
classes modulo 2min(l,α−i−2). Hence the total number of orbits of Z/2αZ is

|Z/2αZ/H2l | = 1 + 1 +
α−l−2∑

i=0

2l +

α−2∑
i=α−β−1

2α−l−2 = 2l(α − l) + 1.

By the Cauchy–Frobenius–Burnside lemma,∑
x∈H2l

(x − 1, 2α) =
{

2α−1(α − l + 1) for H2l = 〈52l−1
〉,

2α−1(α − l) + 2α−l−1 for H2l = 〈−1〉 × 〈52l
〉 or 〈−52l−1

〉.

This completes the proof of Theorem 1.3.
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