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Paradoxical predictions of liquid curtains with
surface tension
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This paper examines two-dimensional liquid curtains ejected at an angle to the horizontal
and affected by gravity and surface tension. The flow is, to leading order, shearless and
viscosity, negligible. The Froude number is large, so that the radius of the curtain’s
curvature exceeds its thickness. The Weber number is close to unity, so that the forces
of inertia and surface tension are almost perfectly balanced. An asymptotic equation
is derived under these assumptions, and its steady solutions are explored. It is shown
that, for a given pair of ejection velocity/angle, infinitely many solutions exist, each
representing a steady curtain with a stationary capillary wave superposed on it. These
solutions describe a rich variety of behaviours: in addition to arching downwards, curtains
can zigzag downwards, self-intersect and even rise until the initial supply of the liquid’s
kinetic energy is used up. The last type of solutions corresponds to a separatrix between
upward- and downward-bending curtains – in both cases, self-intersecting (such solutions
are meaningful only until the first intersection, after which the liquid just splashes down).
Finally, suggestions are made as to how the existence of upward-bending curtains can be
tested experimentally.

Key words: capillary flows, jets

1. Introduction

A vertical liquid curtain can be created by cutting a long slot of constant width in the
bottom of a tank; once the tank is filled, a flat liquid sheet will be squeezed through the
slot. If the tank is tipped, the liquid will be squeezed obliquely, and the curtain’s trajectory
will be curved due to gravity. Liquid curtains have important industrial applications (e.g.
manufacturing of paper), but they are also part of classical fluid mechanics and, as such,
have been studied for more than sixty years.

The present paper looks into a highly counter-intuitive phenomenon, so far examined
only theoretically: that of oblique curtains bending upwards, i.e. against gravity.
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The first such example was produced by Keller & Weitz (1957) using a set of equations
for a slender oblique curtain without shear and viscosity, but affected by gravity and
surface tension. It was shown that all curtains with the ejection velocity below a certain
threshold would bend upwards regardless of the ejection angle. The threshold corresponds
to the Weber number We being equal to unity (We is the ratio of forces of inertia and
surface tension). Keller & Weitz interpreted their paradoxical result using an analogy with
a body affected by gravity and an extra force proportional to the acceleration.

Unfortunately, this thought-provoking work has been virtually forgotten: since 1957, it
has been cited only 8 times. As a result, upward-bending curtains have been rediscovered
– albeit in a more general formulation including shear and viscosity by Benilov (2019)
(hereinafter, B19). This paper confirmed the criterion We < 1 subject to a suitably
modified definition of We for sheared flows. Solutions describing upward-bending jets
have been found by Wallwork (2001), but these are strongly unstable due to the
Plateau–Rayleigh instability and, thus, cannot be observed experimentally.

The results obtained in B19 (and, by association, those of Keller & Weitz) have been
criticised by Weinstein et al. (2019), who put forward the following claims:

(i) For upward-bending curtains, the hyperbolic second-order set derived in B19 is such
that one of the two characteristics corresponds to waves propagating upstream – i.e.
towards the outlet, were the boundary conditions are set. Thus, ‘in accordance with
hyperbolic theory’ one of the two boundary conditions at the outlet must be omitted
– namely, the one prescribing the ejection angle α0.

(ii) The omitted boundary condition should be replaced with α0 = −90◦ corresponding
to a vertical curtain.

It turns out that (i) is a valid point, whereas (ii) is not.
That is, mathematically, there is no reason why a boundary condition cannot be

formulated at a point other than the beginning of a characteristic (as long as there is
only one such point per characteristic). Physically, however, such a condition would be
in conflict with the causality principle, as it would effectively constrain events occurring
in the past.

As for point (ii), Weinstein et al. justified it by claiming that the condition α0 = −90◦ ‘is
precisely that necessary to eliminate the singularity in the curtain’. However, B19 found
regular solutions for all values of α0, and earlier in their paper Weinstein et al. did not
dispute their existence. One might add that it is inconsistent to use point (i) to discard
one of the boundary conditions and then replace it with a similar one, leaving their total
number exactly the same.

Even more importantly, the replacement of the actual ejection angle with −90◦ implies
a sharp bend in the curtain near the outlet, and it cannot be caused by the force of gravity. If
it were, the asymptotic models of both Weinstein et al. and B19 would have detected it (as
they both include gravity) – hence, there would be no need to introduce the turn through
the boundary condition. Nor can it be caused by other hydrodynamic effects, as they are all
isotropic and, thus, cannot make the curtain ‘choose’ the vertical trajectory regardless of
the ejection angle (not to mention that the only significant ones of these effects – viscosity
and surface tension – are also included in the B19 model).

Still, one question remains: if the solutions found in B19 for upward-bending curtains
are indeed physically meaningless, what really happens if liquid is ejected obliquely with
We < 1?

The present paper offers a possible answer to this question through an analysis of the
simplest setting: that of ideal fluid and almost shearless curtains. The Weber number is
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assumed to be close to unity, in which case the phase velocity of the upstream capillary
waves is small, so that their dispersion comes into play. Since the velocity of dispersive
waves is not bounded above, events occurring anywhere in the curtain are immediately
sensed near the outlet, thus resolving the conflict with the causality principle.

Mathematically, the asymptotic limit We ≈ 1 invalidates all of the existing models of
oblique liquid curtains (including Keller & Weitz 1957; Finnicum, Weinstein & Ruschak
1993; Benilov 2019): the leading-order terms almost cancel each other, so the previously
discarded next-order terms have to be taken into account (as was done by Ramos (2003)
for vertical curtains). Once the correct equation for this limit is derived, one can see
that it is not hyperbolic: it involves a first-order time derivative and a third-order spatial
derivative (similarly to the Korteweg–de Vries equation for gravity–capillary waves in
shallow water). As a result, the whole notion of characteristics becomes irrelevant.

The equation derived will be used to examine steady curtains, and it will be shown
that some of them do bend upwards and rise until all of the liquid’s kinetic energy is
used up (and the asymptotic governing equation becomes inapplicable); other curtains
rise until they are truncated by a self-intersection. There are also solutions describing
downward-bending curtains, both infinite and self-intersecting.

Interestingly, the model seems to ‘know’ that it becomes almost hyperbolic when the
deviation of We from unity is order one: subcritical (We < 1) solutions in this case are
highly sensitive to small variations of the parameters involved, with both upward- and
downward-bending curtains often self-intersecting very near the outlet. One can assume
that they are structurally unstable – hence, physically meaningless – and the flow in this
case is unlikely to settle down into a steady curtain. But near-critical curtains, including
subcritical ones, could be observable. Admittedly, this does not conclusively follow from
their existence as steady solutions of the governing equations (which is shown in this
paper), as one should also prove their stability (which has yet to be done).

The present paper has the following structure: in § 2, we formulate the problem and, in
§ 3, derive an asymptotic equation for curtains with a large Froude number and near-unity
Weber number. Steady solutions of this equation are examined in § 4 and their physical
aspects (e.g. how to create an upward-bending curtain in an experiment), in § 5.

2. Formulation of the problem

2.1. Governing equations
Consider an incompressible ideal fluid of density ρ ejected from an infinitely long
horizontal slot (outlet) of fixed width. Let the flow be homogeneous in the along-the-outlet
direction – i.e. depend on a single horizontal coordinate x and the vertical coordinate z (see
figure 1).

Unless the liquid is ejected vertically, the curtain’s trajectory is curved due to gravity,
making the Cartesian coordinates awkward to use. It is more convenient to employ
curvilinear coordinates associated with the curtain’s centreline (Entov & Yarin 1984;
Wallwork 2001; Wallwork et al. 2002; Shikhmurzaev & Sisoev 2017; Decent et al. 2018;
Benilov 2019).

Consider curvilinear coordinates (l, τ ) related to their Cartesian counterparts by

x = x(l, τ, t), z = z(l, τ, t), (2.1a,b)

where t is the time. Let the set (l, τ ) be orthogonal with a unit Jacobian,

∂x
∂l

∂x
∂τ

+ ∂z
∂l

∂z
∂τ

= 0,
∂x
∂l

∂z
∂τ

− ∂x
∂τ

∂z
∂l

= 1. (2.2a,b)
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2H
x

z

τ = const.

l =
 c

on
st
.

Figure 1. The setting: a two-dimensional liquid curtain ejected from an outlet of width 2H. Here, (x, z) are
the Cartesian coordinates and (l, τ ) are the curvilinear coordinates associated with the curtain’s centreline
(corresponding to τ = 0). The important quantities not shown in the figure include: the local angle α(l, t)
between the centreline and the horizontal, its near-outlet value α0 (determined by the outlet’s orientation –
hence, time independent) and the near-outlet curvature α′

0(t) = (∂α/∂l)l=0.

Since the solution of (2.2a,b) is not constrained by boundary conditions, the relationship
between (x, z) and (l, τ ) is not unique, leaving one an opportunity to choose the set (l, τ )

that makes the forthcoming calculations simpler.
In what follows, the so-called Lamé coefficients

hl =
√(

∂x
∂l

)2

+
(

∂z
∂l

)2

, hτ =
√(

∂x
∂τ

)2

+
(

∂z
∂τ

)2

(2.3a,b)

will be needed. It follows from (2.2a,b) that hlhτ = 1, i.e. the transformation
(x, z) → (l, τ ) preserves the elemental area.

Let the flow be characterised by the velocity components (ul, uτ ) and the pressure p.
Representing the gravitational force by −ρg∇z (g is the acceleration due to gravity), one
can write the Euler equations in the form

hl
∂ul

∂t
+

[
ul − 1

hl

(
∂x
∂l

∂x
∂t

+ ∂z
∂l

∂z
∂t

)](
∂ul

∂l
+ uτ

hτ

∂hl

∂τ

)

+ hl

hτ

[
uτ − 1

hτ

(
∂x
∂τ

∂x
∂t

+ ∂z
∂τ

∂z
∂t

)]
∂ul

∂τ

+ uτ

hτ

[
∂x
∂l

∂2x
∂t ∂τ

+ ∂z
∂l

∂2z
∂t ∂τ

− 1
h2
τ

(
∂x
∂τ

∂x
∂t

+ ∂z
∂τ

∂z
∂t

)(
∂x
∂l

∂2x
∂τ 2 + ∂z

∂l
∂2z
∂τ 2

)
− uτ

∂hτ

∂l

]

+ 1
ρ

∂p
∂l

= −g
∂z
∂l

, (2.4)

hτ

∂uτ

∂t
+ hτ

hl

[
ul − 1

hl

(
∂x
∂l

∂x
∂t

+ ∂z
∂l

∂z
∂t

)]
∂uτ

∂l

+
[

uτ − 1
hτ

(
∂x
∂τ

∂x
∂t

+ ∂z
∂τ

∂z
∂t

)](
∂uτ

∂τ
+ ul

hl

∂hτ

∂l

)
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+ ul

hl

[
∂x
∂τ

∂2x
∂t ∂l

+ ∂z
∂τ

∂2z
∂t ∂l

− 1
h2

l

(
∂x
∂l

∂x
∂t

+ ∂z
∂l

∂z
∂t

)(
∂x
∂τ

∂2x
∂l2

+ ∂z
∂τ

∂2z
∂l2

)
− ul

∂hl

∂τ

]

+ 1
ρ

∂p
∂τ

= −g
∂z
∂τ

, (2.5)

∂ (ulhτ )

∂l
+ ∂ (uτ hl)

∂τ
= 0. (2.6)

For a stationary coordinate system (such that ∂x/∂l = ∂x/∂t = 0), (2.4)–(2.6) can be found
in most textbooks (e.g. Kochin, Kibel & Roze 1964), with the general case considered in
B19.

Let the liquid be bounded by two free surfaces described by equations τ = τ−(l, t) and
τ = τ+(l, t), where the functions τ±(l, τ ) satisfy the free-boundary kinematic condition.
If written in terms of time-dependent curvilinear coordinates, it takes the form

∂τ±
∂t

+ 1
hl

[
ul − 1

hl

(
∂x
∂l

∂x
∂t

+ ∂z
∂l

∂z
∂t

)]
∂τ±
∂l

− 1
hτ

[
uτ − 1

hτ

(
∂x
∂τ

∂x
∂t

+ ∂z
∂τ

∂z
∂t

)]
= 0 if τ = τ±. (2.7)

The dynamic boundary condition, in turn, assumes that the pressure at a free boundary is
determined by its curvature and surface tension σ ,

p = ∓σ

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂

∂l

⎡
⎢⎢⎢⎢⎣

h2
τ

hl

∂τ±
∂l√

1 +
(

hτ

hl

∂τ±
∂l

)2

⎤
⎥⎥⎥⎥⎦ − ∂

∂τ

⎡
⎢⎢⎢⎢⎣

hl√
1 +

(
hτ

hl

∂τ±
∂l

)2

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

if τ = τ± (2.8)

(for more details on conditions (2.7)–(2.8), see B19).
Let the outlet’s width be 2H. In this paper, the simplest particular case is examined,

where the streamwise component of the velocity at the outlet is not sheared (i.e. is
independent of τ ), while the cross-stream component is identically zero,

ul = u0, uτ = 0 if l = 0, τ ∈ (−H, H) , (2.9)

where u0 may depend on t. The outlet conditions for the curtain’s boundaries are,
obviously,

τ± = ±H if l = 0. (2.10)

Given an initial condition and a specific solution of the coordinate equations (2.2a,b), the
boundary-value problem (2.3a,b)–(2.10) (presumably uniquely) determines p, ul, uτ and
τ±.

It is convenient to identify the curtain’s centreline with the curve τ = 0. To do so, we
require that

τ± = ±W, (2.11)

where W(l, t) is the curtain’s half-width.
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2.2. The scaling
There are two non-dimensional parameters in the problem at hand. The Froude number

Fr = u2
0

gH
, (2.12)

reflects the balance of inertia and gravity, and the Weber number

We = ρHu2
0

σ
(2.13)

that of inertia and surface tension. This paper is concerned the limit We ≈ 1, which implies
that the velocity should be scaled by

U =
(

σ

ρH

)1/2

. (2.14)

In B19, the curtain’s spatial scale L was derived from the assumption that the centrifugal
force (due to the curtain’s curvature), surface tension, and gravity are in balance – which
implies that L = H Fr, so that the slender-curtain approximation is valid if Fr � 1.

If, however, We → 1, the leading-order surface tension and centrifugal force tend to
cancel each other. As a result, gravity remains unopposed and makes the curtain bend
much more steeply (see figure 2 in B19).

To determine L for the case We ≈ 1, one should balance gravity with higher-order
corrections to centrifugal force and surface tension – which have to be calculated first,
of course – which is, however, impossible without a conjecture as to what L actually is.
This task is exacerbated even more by the fact that the next-to-leading-order corrections
do contribute to the eventual asymptotic equation, forcing one to delve into yet another
order.

Thus, L was effectively determined through a trial-and-error approach, and it has turned
out that a consistent asymptotic theory can be derived if

L = H
ε

, (2.15)

where ε is the cube root of the Bond number,

ε =
(

ρgH2

σ

)1/3

, (2.16)

or, equivalently, ε = (We/Fr)1/3 ≈ Fr−1/3.
In the present paper, ε is assumed small – hence, L � H. The larger scale, L,

will be used to non-dimensionalise the Cartesian coordinates (x, z) and the streamwise
variable l, whereas the cross-stream variable τ and the curtain’s half-width W will be
non-dimensionalised by H.

The following non-dimensional variables will be used:

lnd = l
L

, τnd = τ

H
, tnd = t

T
, xnd = x

L
, znd = z

L
,

(ul)nd = ul

U
, (uτ )nd = uτ

ε2U
, pnd = p

P
, Wnd = W

H
.

⎫⎪⎪⎬
⎪⎪⎭ (2.17)
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The pressure scale P is such that the centrifugal force is, to leading order, balanced by the
capillary-pressure gradient, which implies

P = ρgH
ε2 . (2.18)

The time scale T is determined by the balance of the Coriolis force and gravity – i.e. the
time derivatives of x and z in (2.5) and its right-hand side, respectively – which amounts
to

T = H
ε3U

. (2.19)

Rewriting (2.2a,b)–(2.8) in terms of variables (2.17)–(2.19), taking into account
(2.14)–(2.16) and omitting the subscript nd, one obtains

∂x
∂l

∂x
∂τ

+ ∂z
∂l

∂z
∂τ

= 0,
1
ε

(
∂x
∂l

∂z
∂τ

− ∂x
∂τ

∂z
∂l

)
= 1, (2.20a,b)

hl =
√(

∂x
∂l

)2

+
(

∂z
∂l

)2

, hτ = 1
ε

√(
∂x
∂τ

)2

+
(

∂z
∂τ

)2

, (2.21a,b)

εhl
∂ul

∂t
+

[
ul − ε2

hl

(
∂x
∂l

∂x
∂t

+ ∂z
∂l

∂z
∂t

)](
1
ε

∂ul

∂l
+ uτ

hτ

∂hl

∂τ

)

+ hl

hτ

[
uτ − 1

εhτ

(
∂x
∂τ

∂x
∂t

+ ∂z
∂τ

∂z
∂t

)]
∂ul

∂τ

+ ε2uτ

hτ

[
∂x
∂l

∂2x
∂t ∂τ

+ ∂z
∂l

∂2z
∂t ∂τ

− 1
ε2h2

τ

(
∂x
∂τ

∂x
∂t

+ ∂z
∂τ

∂z
∂t

)(
∂x
∂l

∂2x
∂τ 2 + ∂z

∂l
∂2z
∂τ 2

)

−εuτ

∂hτ

∂l

]
+ ∂p

∂l
= −ε

∂z
∂l

, (2.22)

ε4hτ

∂uτ

∂t
+ ε2hτ

hl

[
ul − ε2

hl

(
∂x
∂l

∂x
∂t

+ ∂z
∂l

∂z
∂t

)]
∂uτ

∂l

+ ε3
[

uτ − 1
εhτ

(
∂x
∂τ

∂x
∂t

+ ∂z
∂τ

∂z
∂t

)](
∂uτ

∂τ
+ ul

εhl

∂hτ

∂l

)

+ ul

hl

[
ε

(
∂x
∂τ

∂2x
∂t ∂l

+ ∂z
∂τ

∂2z
∂t ∂l

)
− ε

h2
l

(
∂x
∂l

∂x
∂t

+ ∂z
∂l

∂z
∂t

)(
∂x
∂τ

∂2x
∂l2

+ ∂z
∂τ

∂2z
∂l2

)

−ul

ε

∂hl

∂τ

]
+ ∂p

∂τ
= −ε

∂z
∂τ

, (2.23)

1
ε

∂ (ulhτ )

∂l
+ ∂ (uτ hl)

∂τ
= 0, (2.24)

ε
∂W
∂t

+ 1
εhl

[
ul − ε2

hl

(
∂x
∂l

∂x
∂t

+ ∂z
∂l

∂z
∂t

)]
∂W
∂l

∓ 1
hτ

[
uτ − 1

εhτ

(
∂x
∂τ

∂x
∂t

+ ∂z
∂τ

∂z
∂t

)]
= 0 if τ = ±W, (2.25)
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p = −ε
∂

∂l

⎡
⎢⎢⎢⎢⎣

h2
τ

hl

∂W
∂l√

1 +
(

εhτ

hl

∂W
∂l

)2

⎤
⎥⎥⎥⎥⎦ ± 1

ε

∂

∂τ

⎡
⎢⎢⎢⎢⎣

hl√
1 +

(
εhτ

hl

∂W
∂l

)2

⎤
⎥⎥⎥⎥⎦ if τ = ±W. (2.26)

When non-dimensionalising the boundary conditions (2.9) and (2.10), it is convenient to
introduce the non-dimensional ‘excess injection velocity’ v0 such that

u0 = U(1 + ε2v0). (2.27)

Then, (2.9) becomes

ul = 1 + ε2v0, uτ = 0 if l = 0, τ ∈ (−1, 1) . (2.28)

Finally, the non-dimensional version of the boundary condition (2.10) and (2.11), is

W = 1 if l = 0. (2.29)

2.3. How should the curvilinear coordinates be chosen?
As stated before, the curvilinear coordinates (l, τ ) are associated with the curtain’s
centreline – but this association has not been reflected in the general equations (2.20a,b)
relating (l, τ ) to the Cartesian coordinates.

To single out the desired solution of (2.20a,b), introduce the centreline’s Cartesian
coordinates x = x̄(l, t) and z = z̄(l, t), and the local angle α(l, t) between the centreline
and the horizontal. Let l be the centreline’s arclength, which implies

∂ x̄
∂l

= cos α,
∂ z̄
∂l

= sin α, (2.30a,b)

x̄ = 0, z̄ = 0 if l = 0. (2.31)

For a given α(l, t), (2.30a,b) and (2.31) uniquely determine x̄(l, t) and z̄(l, t).
Now, seek a solution (2.20a,b) in the form of a series in powers of (ετ ), with the

zero-order terms in the expansions of x and z being x̄(l) and z̄(l), respectively. After
straightforward algebra (for more detail, see B19), one obtains

x = x̄ − ετ sin α − (ετ )2

2
∂α

∂l
sin α − (ετ )3

[
1
6

∂2α

∂l2
cos α + 1

2

(
∂α

∂l

)2

sin α

]
+ O(ε4),

(2.32)

z = z̄ + ετ cos α + (ετ )2

2
∂α

∂l
cos α − (ετ )3

[
1
6

∂2α

∂l2
sin α − 1

2

(
∂α

∂l

)2

cos α

]
+ O(ε4).

(2.33)

Substitution of these expressions into (2.21a,b) yields the following expressions for the
Lamé coefficients:

hl = 1 − ετ
∂α

∂l
− (ετ )2

2

(
∂α

∂l

)2

− (ετ )3

[
1
6

∂3α

∂l3
+ 1

2

(
∂α

∂l

)3
]

+ O(ε4), (2.34)

hτ = 1 + ετ
∂α

∂l
+ 3(ετ )2

2

(
∂α

∂l

)2

+ (ετ )3

[
1
6

∂3α

∂l3
+ 5

2

(
∂α

∂l

)3
]

+ O(ε4). (2.35)
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Paradoxical predictions of liquid curtains

3. Asymptotic analysis

The sheer size of the governing equations makes their analysis cumbersome. To mitigate
this problem, the asymptotic results and their physical meaning will be summarised first,
in § 3.1, with the technicalities described in §§ 3.2–3.4.

3.1. Summary
All characteristics of the flow can be related to the curtain’s coordinates x̄(l, t) and z̄(l, t),
and the local angle α(l, t) between its centreline and the horizontal. The former satisfy
(2.30a,b) and (2.31), and the latter is governed by the following asymptotic equation:

∂α

∂t
+ ∂α

∂l

[
v0 − 1

2
z̄ + 1

12

(
∂α

∂l

)2

− 1
6
α′2

0

]
+ 1

6
∂3α

∂l3
= −1

2
cos α, (3.1)

where v0 is the excess injection velocity (see (2.28)) and

α′
0 =

(
∂α

∂l

)
l=0

(3.2)

is the curtain’s curvature near the outlet. This characteristic plays an important role in the
curtain’s global dynamics.

Equation (3.1) requires two boundary conditions at the outlet, with one of these
prescribing the ejection angle,

α = α0 if l = 0, (3.3)

where α0 may vary with t. An additional boundary condition follows from the analysis of a
near-outlet boundary layer: the solution there matches the global solution only if the latter
satisfies

∂2α

∂l2
= 0 if l = 0. (3.4)

The set comprising (3.1)–(3.4) and (2.30a,b)–(2.31) is the desired asymptotic model for
liquid curtains with a large Froude number and a near-unity Weber number.

The following comments should be helpful to understand the physical meaning of the
asymptotic model.

(i) Equation (3.1) is, essentially, the cross-stream momentum equation integrated across
the curtain, and so each of its terms can be interpreted physically.
(a) The time derivative represents the Coriolis force – which is a cross product of

the fluid velocity by the angular velocity of the coordinate frame. The former is,
to leading order, unity and ∂α/∂t is the latter.

(b) The term v0 − 1
2 z̄ is an approximate expression for the excess velocity affected

(through the energy conservation) by the local height. Physically, it is the phase
velocity of upstream-propagating capillary waves.

(c) The right-hand side of (3.1) represents the force of gravity.
(d) The remaining terms represent the centrifugal force and capillary-pressure

gradient (since they both depend on the curtain’s curvature, it is impossible to
match each of the corresponding terms to a single effect).

(ii) The presence of v0 and α′
0 among the coefficients of equation (3.1) makes the curtain

dynamics non-local, as the effect of what happens near the outlet is immediately
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E.S. Benilov

sensed downstream. The non-locality is a result of the difference between the (slow)
time scale of the curtain evolution and the (fast) time scale of fluid particles passing
through the region where (3.1) applies.

(iii) The derived model governs sinuous oscillations of curtains, whereas varicose
oscillations (which are also present in the exact model – see Benilov, Barros &
O’Brien 2016) have been scaled out. The latter are still generated in a boundary
layer near the outlet (as shown in Appendix A), but their small amplitude and short
wavelength make their impact on the global dynamics negligible.

(iv) It can be demonstrated that
We = (1 + ε2v0)

2, (3.5)
i.e. the deviation of We from unity is controlled by the excess injection velocity v0.
Curtains with negative (positive) v0 will be referred to as subcritical (supercritical).

3.2. Derivation of (3.1)
The solution of set (2.22)–(2.29), (2.32)–(2.35) will be sought in the form

ul = 1 + εu(1)
l + ε2u(2)

l . . . , uτ = u(0)
l + εu(1)

l . . . , p = p(0) + εp(1) . . . ,

W = 1 + εW(1) + ε2W(2) . . . .

}
(3.6)

The fact that the leading-order ul and W are constant suggests that the described dynamics
mainly occurs near the outlet, so that the change in the potential energy is too small to
alter the fluid velocity and, consequently, the curtain’s width. The same fact also implies
that the curtain’s evolution mainly consists in the centreline changing its shape.

Unlike the physical variables, those associated with the coordinate system do not have
to be expanded. Higher-order corrections for x̄, z̄ and α need to be introduced only if one
intends to derive asymptotic equations for them, and I do not.

To leading order, (2.22)–(2.29) and (2.32)–(2.35) yield

∂u(1)
l

∂l
+ ∂p(0)

∂l
= 0, (3.7)

∂α

∂l
+ ∂p(0)

∂τ
= 0, (3.8)

∂

∂l

(
u(1)

l + τ
∂α

∂l

)
+ ∂u(0)

τ

∂τ
= 0, (3.9)

∂W(1)

∂l
∓

(
u(0)
τ + ∂ x̄

∂t
sin α − ∂ z̄

∂t
cos α

)
= 0 if τ = ±1, (3.10)

p(0) = ∓∂α

∂l
if τ = ±1. (3.11)

u(1)
l = 0, if l = 0, τ ∈ (−1, 1) , (3.12)

u(0)
τ = 0 if l = 0, τ ∈ (−1, 1) , (3.13)

W(1) = 0 if l = 0. (3.14)

Treating α as if it were given, one can deduce from (3.8) and (3.11) that

p(0) = −τ
∂α

∂l
. (3.15)

917 A21-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

28
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.289


Paradoxical predictions of liquid curtains

Substituting p(0) into (3.7) and taking into account (3.12), one obtains

u(1)
l = τ

(
∂α

∂l
− α′

0

)
, (3.16)

where α′
0 is defined by (3.2). Next, it follows from (3.9)–(3.10) and (3.14) that

u(0)
τ = (1 − τ 2)

∂2α

∂l2
− ∂ x̄

∂t
sin α + ∂ z̄

∂t
cos α, (3.17)

W(1) = 0. (3.18)

Treating the next-to-leading order in a similar fashion, one obtains

p(1) = (1 − 2τ 2)

(
∂α

∂l

)2

+ (τ 2 − 1)α′
0
∂α

∂l
, (3.19)

u(2)
l = u0 − z + ∂ x̄

∂t
cos α + ∂ z̄

∂t
sin α

−
(

1 − 3τ 2

2

)(
∂α

∂l

)2

+ (2 − τ 2)α′
0
∂α

∂l
−

(
1 + τ 2

2

)
α′2

0 , (3.20)

u(1)
τ =

(
3τ − 11

3
τ 3

)
∂α

∂l
∂2α

∂l2
− 2

(
τ − τ 3

3

)
α′

0
∂2α

∂l2
+ τ sin α, (3.21)

W(2) = z̄ − 1
3

(
∂α

∂l

)2

− 4
3
α′

0
∂α

∂l
+ 5

3
α′2

0 . (3.22)

In the next order, one only needs the cross-stream equation (2.23) and the
capillary-pressure condition (2.26), which have the form

∂u(0)
τ

∂l
+ ∂α

∂t
−

(
∂x
∂t

cos α + ∂z
∂t

sin α

)
∂α

∂l
+ (2u(2)

l + u(1)2
l )

∂α

∂l

+ 4τu(1)
l

(
∂α

∂l

)2

+ τ 2

2

[
8
(

∂α

∂l

)3

+ ∂3α

∂l3

]
+ ∂p(2)

∂τ
= − cos α, (3.23)

p(2) ± ∂p(1)

∂τ
W(1) = ∓

[
3
2

(
∂α

∂l

)3

+ 1
2

∂3α

∂l3

]
if τ = ±1. (3.24)

Observe that (3.23) and (3.24) involve only one unknown, p(2) – which can be actually
eliminated. Integrating (3.23) from τ = −1 to τ = 1 and taking into account (3.24), one
obtains∫ −1

−1

∂u(0)
τ

∂l
dτ + 2

∂α

∂t
− 2

(
∂x
∂t

cos α + ∂z
∂t

sin α

)
∂α

∂l

+ ∂α

∂l

∫ −1

−1

(
2u(2)

l + u(1)2
l

)
dτ + 4

(
∂α

∂l

)2 ∫ −1

−1
τu(1)

l dτ + 1
2

[
8
(

∂α

∂l

)3

+ ∂3α

∂l3

]

− 3
(

∂α

∂l

)3

− ∂3α

∂l3
−

[(
∂p(1)

∂τ

)
τ=−1

+
(

∂p(1)

∂τ

)
τ=1

]
W(1) = −2 cos α. (3.25)
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E.S. Benilov

Substituting in this equality expressions (3.15)–(3.24) for the lower-order unknowns and
evaluating the integrals involved, one obtains (3.1) as required.

3.3. Derivation of condition (3.4)
An attentive reader may have noticed that the boundary condition (3.13) has not been used
in the above calculation of the leading-order cross-stream velocity u(0)

τ . As a result, u(0)
τ

does not assume the prescribed value at the outlet: as follows from (3.17) and (2.30a,b),

u(0)
τ →

(
1 − τ 2

)
α′′

0 as l → 0, (3.26)

where

α′′
0 =

(
∂2α

∂l2

)
l=0

. (3.27)

Thus, condition (3.13) holds only if ∂2α/∂l2 happens to vanish at l = 0. This discrepancy
arises due to the fact that none of the leading-order equations (3.7)–(3.14) includes ∂u(0)

τ /∂l
– hence, the solution cannot satisfy a requirement imposed at a fixed l.

This discrepancy suggests that a boundary layer exists, with a solution satisfying the
boundary conditions at the outlet and matching the outer solution (described by expansions
(3.6)) far from the outlet.

To derive the equations describing the boundary layer, one needs to rescale the
streamwise coordinate: instead of lnd = l/L, introduce

(lb)nd = l
H

. (3.28)

It can be safely assumed that, near the outlet, the curtain does not experience sharp turns –
hence, in the boundary layer, α can be treated as a given function determined by the outer
region. Expanding α in powers of the long-scale coordinate l,

α = α0 + lα′
0 + l2

2
α′′

0 + l3

6
α′′′

0 + O(l4) as l → 0 (3.29)

and rewriting the series in terms of (lb)nd, one obtains (the subscript nd omitted)

α = α0 + εlbα′
0 + ε2l2b

2
α′′

0 + ε3l3b
6

α′′′
0 + O(ε4). (3.30)

Expressions (2.34)–(2.35) for the Lamé coefficients should be treated in a similar manner,

hl = 1 − τ

(
εα′

0 + ε2lbα′′
0 + ε3l2b

2
α′′′

0

)

− τ 2

2
(ε2α′2

0 + 2ε3lbα′
0α

′′
0 ) − ε3τ 3

(
1
6
α′′′

0 + 1
2
α′3

0

)
+ O(ε4), (3.31)

hτ = 1 + τ

(
εα′

0 + ε2lbα′′
0 + ε3l2b

2
α′′′

0

)

+ 3τ 2

2
(ε2α′2

0 + 2ε3lbα′
0α

′′
0 ) + ε3τ 3

(
1
6
α′′′

0 + 5
2
α′3

0

)
+ O(ε4). (3.32)
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Paradoxical predictions of liquid curtains

With α being a given function, the curvilinear coordinates no longer evolve with the flow
and, thus, the curve τ = 0 does not necessarily coincide with the centreline. As a result, τ+
and τ− should be treated as independent functions, not inter-related by constraint (2.11).

Replacing in non-dimensionalisation (2.17) the outer coordinate lnd with its inner
counterpart (3.28) and keeping in mind expansions (3.30)–(3.32), one can rewrite the
original equations (2.22)–(2.28) in the form (the subscript nd omitted)

ul

ε2
∂ul

∂lb
− εα′

0uτ + 1
ε

∂p
∂lb

= −ε sin α0 + O(ε2), (3.33)

ε
(
1 + 2ετα′

0
) ∂uτ

∂lb
+ u2

l

{
α′

0 + ε(2τα′2
0 + lbα′′

0 )

+ ε2

2

[
τ 2(8α′3

0 + τ 2α′′′
0 ) + 8τ lbα′

0α
′′
0 + l2bα

′′′
0

]}
+ ∂p

∂τ
= −ε2 cos α0 + O(ε3),

(3.34)

1
ε2

∂

∂lb

{
ul

[
1 + ετα′

0 + ε2
(

3τ 2

2
α′2

0 + τ lbα′′
0

)

+ ε3

(
τ 3

6
α′′′

0 + 5τ 3

2
α′3

0 + 3τ 2lbα′
0α

′′
0 + τ l2b

2
α′′′

0

)]}

+ ∂

∂τ

[
uτ

(
1 − ετα′

0
)] = O(ε2), (3.35)

1
ε2

∂τ±
∂lb

− (
1 ∓ 2εα′

0
)

uτ = O(ε2) if τ = ±1, (3.36)

p = ∓1 − 3εα′
0

ε

∂2τ±
∂l2b

∓ α′
0 − ε(α′2

0 ± lbα′′
0 )

∓ ε2

2
(3α′3

0 + α′′′
0 ± 4lbα′

0α
′′
0 + l2bα

′′′
0 ) + O(ε3) if τ = ±1. (3.37)

These equations were obtained under the following conjectures:

ul = 1 + O(ε2), τ± = ±1 + O(ε2), (3.38a,b)

accordingly, the solution of the boundary-value problem (3.33)–(3.37) should be sought
in the form

ul = 1 + ε2u(2)
l . . . , uτ = u(0)

τ + εu(1)
τ . . . , p = −α′

0τ + εp(1) . . . ,

τ± = ±1 + ε2τ
(2)
± . . . .

}
(3.39)
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E.S. Benilov

To leading order, one obtains

∂u(2)
l

∂lb
+ ∂p(1)

∂lb
= 0,

∂u(0)
τ

∂lb
+ 2τα′2

0 + lbα′′
0 + ∂p(1)

∂τ
= 0,

∂u(2)
l

∂lb
+ τα′′

0 + ∂u(0)
τ

∂τ
= 0,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.40)

∂τ
(2)
±

∂lb
− u(0)

τ = 0, p(1) = ∓∂2τ
(2)
±

∂l2b
− α′2

0 ∓ lbα′′
0 if τ = ±1, (3.41)

u(2)
l = u0, u(0)

τ = 0, τ
(2)
± = 0 if lb = 0. (3.42)

Equations (3.40)–(3.42) can be reduced to a boundary-value problem for u(0)
τ , which can

be solved using the Fourier transformation. Omitting the technicalities (which are similar
to those examined in Appendix A), one obtains

u(0)
τ = −α′′

0 l2b + A(0) sinh k∗τ sin k∗lb, (3.43)

where A(0) is an undetermined constant and k∗ satisfies

cosh k∗ − k∗ sinh k∗ = 0. (3.44)

If solved numerically, (3.44) yields k∗ ≈ 1.1997.
The term involving A(0) in solution (3.43) describes a short-scale varicose capillary

wave coming from infinity – bouncing off the outlet – going back to infinity. Since the
‘infinity’ here means the ‘outer region’ and since short waves have been scaled out from
the outer solution, one sets

A(0) = 0. (3.45)

Comparing the inner solution (3.43)–(3.45) with the inner limit of the outer solution (given
by (3.26)), one can see that they match only if α′′

0 = 0. This requirement amounts to the
boundary condition (3.4) for the outer solution, as required.

Note that condition (3.4) could be derived by forcing the outer u(0)
τ to satisfy the

boundary condition at the outlet, i.e. without considering the boundary layer. A similar
problem, however, arises in the next order: letting α′′

0 = 0 in (3.21), one obtains

u(1)
τ → τ sin α0 as l → 0, (3.46)

i.e. u(1)
τ vanishes at the outlet only if the curtain is ejected horizontally. This discrepancy

can only be resolved by examining the next order of the boundary-layer problem
(3.33)–(3.37), as done in Appendix A.

It is also shown in Appendix A that the boundary-layer solution describes varicose
capillary waves.

3.4. Discussion: conservation laws
It is instructive to compare equation (3.1) to similar asymptotic models, such as the
lubrication theory or shallow water.
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Paradoxical predictions of liquid curtains

Those typically include an equation reflecting the mass conservation law; in addition,
if viscosity is neglected, one can rearrange the model’s equations in the form of an
energy conservation law. Since, for steady flows, the fluxes of conserved quantities are
first integrals, they are of help when searching for steady-state solutions.

In the present case, however, it is not clear how (3.1) can be rewritten as either mass or
energy conservation law.

To understand why, assume for simplicity that the curtain is steady, i.e.

∂α

∂t
= ∂ x̄

∂t
= ∂ z̄

∂t
= 0. (3.47)

It can be shown that, in this case, the exact governing equations (2.20a,b)–(2.26) preserve
the non-dimensional mass flux,

Fm =
∫ W

−W
ulhτ dτ, (3.48)

and the non-dimensional energy flux,

Fe =
∫ W

−W
[ 1

2 (u2
l + ε4uτ ) + εp + ε2z]ulhτ dτ. (3.49)

Note that Fe does not include a capillary contribution.
To understand why, recall that surface energy is proportional to the area of the free

boundary. This implies that the capillary contribution to Fe does not vary along a steady
curtain: if it did, the surface area between two cross-sections with different fluxes would be
varying in time. One can further show that, for evolving flows, the capillary contribution
to Fe is proportional to ∂W/∂t – hence, vanishes for steady flows.

Using the outer expansions (3.6), (3.15)–(3.24) to calculate Fm and Fe, and taking into
account (3.47), one obtains

Fm = 2 + ε2(2u0 + α′2
0 ) + O(ε3), Fe = 1 + ε2

(
3u0 − 5α′2

0
6

)
+ O(ε3). (3.50a,b)

Evidently, the mass and energy fluxes do not depend on α and, thus, are spatially uniform.
In principle, (3.1) can reflect a higher-order conservation law, but this seems unlikely: if

it did, its steady-state version would have a first integral – but I was unable to find it within
a reasonable timeframe.

4. Steady curtains

Letting ∂α/∂t = 0 and omitting the overbars above x̄ and z̄, one can reduce the
boundary-value problem comprising (3.1), (2.30a,b), (3.2)–(3.4), and (2.31) to

dα

dl

[
v0 − 1

2
z + 1

12

(
dα

dl

)2

− 1
6
α′2

0

]
+ 1

6
d3α

dl3
= −1

2
cos α, (4.1)

dx
dl

= cos α,
dz
dl

= sin α, (4.2a,b)

α = α0
dα

dl
= α′

0,
d2α

dl2
= 0 if l = 0, (4.3)

x = 0, z = 0 if l = 0. (4.4)
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Observe that the equation and boundary condition for x(l) decouple from the rest of the
problem and can be solved separately, after α(l) and z(l) have been found.

4.1. The difference between upward- and downward-bending curtains
Three parameters appear in the boundary-value problem (4.1)–(4.4): the ejection angle α0,
the excess ejection velocity v0 and the curtain’s near-outlet curvature α′

0. The first two
are controlled in an experiment – hence, should be treated as given. The third parameter,
in turn, can not be set by the experimentalist – hence, the mathematician should either
treat it as arbitrary (and find a solution for each value of α′

0 for which a solution exists)
or determine it as part of the solution (the same way eigenvalues are determined together
with the eigenfunctions).

It turns out that the former is the case for the usual, downward-bending (DB) curtains –
and the latter, for upward-bending (UB) curtains.

To describe a DB curtain, require

α → −π

2
as l → ∞. (4.5)

To examine how the solution of (4.1)–(4.4) approaches this limit, let

α = −π

2
+ α̃, z = −l + Δ∞ + z̃, (4.6a,b)

where

Δ∞ = lim
l→∞

(z + l) , (4.7)

so that z̃ → 0 as l → ∞. Linearising (4.1), one obtains

dα̃

dl

[
v0 − 1

2
(−l + Δ∞) − 1

6
α′2

0

]
+ 1

6
d3α̃

dl3
= −1

2
α̃, (4.8)

whereas the equation for z̃ decouples from the above and is unimportant.
Let the general solution of (4.8) be

α̃ = C1 α̃1(l) + C2 α̃2(l) + C3 α̃3(l), (4.9)

where C1,2,3 are arbitrary constants. The linearly independent solutions α̃1,2,3(l) can be
fixed by their large-l asymptotics,

α̃1 ∼ l̃−1, α̃2 ∼ l̃−1/4 sin
2l̃3/2

31/2 , α̃3 ∼ l̃−1/4 cos
2l̃3/2

31/2 as l → ∞, (4.10)

where

l̃ = l − Δ∞ + 2u0 − 1
3α′2

0 . (4.11)

Most importantly, α̃1,2,3 all decay as l → ∞ – which means that the point α = −π/2 is an
attractor. As a result, solutions are likely to exist for a range of α′

0 (not just a set of discrete
values): one can ‘shoot’ a solution of (4.1)–(4.4) from the outlet with a value of α′

0 from
the allowed range, and this solution will end up at the attractor. Thus, there is no need to
seek new solutions by parametric continuation from the already-found ones.
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–4 –3 –2 –1 0 1 2 3 4 5 6 7
v0

0

1

2

3

4

5

6

7

α′
0

–1

0

1

Figure 2. The near-outlet curvature α′
0 of UB curtains vs the excess ejection velocity v0. The curves marked

by (±1) and (0) correspond to α0 = ±π/4 and α0 = 0, respectively.

UB curtains, in turn, imply that

α → π

2
as l → ∞, (4.12)

and the large-l analysis yields

z ∼ l + Δ∞, α ∼ π

2
+ C1 α̃1 + C2 α̃2 + C3 α̃3 as l → ∞, (4.13)

where

α̃1 ∼ l̃−1, α̃2 ∼ l̃−1/4 exp
2l̃3/2

31/2 , α̃3 ∼ l̃−1/4 exp

(
−2l̃3/2

31/2

)
as l → ∞, (4.14)

l̃ = l + z∞ − 2u0 + 1
3α′2

0 . (4.15)

Evidently, α̃2 grows as l → ∞ – hence, the point α = π/2 is not an attractor. As a result,
problem (4.1)–(4.4), (4.12) may have a solution only for discrete values of α′

0, such that C2
in asymptotic (4.13) vanishes.

4.2. Numerical results
The boundary-value problem (4.1)–(4.4) was solved numerically. The following results
have been obtained.

(i) The numerical method for the UB problem (comprising (4.1)–(4.4) and (4.12)) is
described in Appendix B. The parameter plane (α0, v0) has been thoroughly trawled, and
it has turned out that, for a given pair (α0, v0), a UB curtain exists only for a single value
of α′

0. The dependence of α′
0 on v and α0 is illustrated in figure 2, and examples of UB

curtains are shown in figure 3.
The mere fact of existence of gravity-defying flows is highly counter-intuitive, but this

is not the only paradoxical feature of the solutions found. One would expect faster curtains
(those with larger v0) to be straighter than their small-v0 counterparts – but, in reality,
it is the other way around. This tendency is visible in the examples in figure 3, and is
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–0.5 0 0.5 1.0 1.5 2.0

–0.5 0 0.5 1.0 1.5 2.0

–0.5 0 0.5 1.0 1.5 2.0

x

–0.5

0

0.5

1.0

z 1

0

–1

α0 = −π/4

0

0.5

1.0

1.5

z 1 0 –1

α0 = 0

0

0.5

1.0

1.5

(a)

(b)

(c)

z

1 0 –1

α0 = π/4

Figure 3. Examples of UB curtains, as described by the boundary-value problem (4.1)–(4.4), (4.12). The
values of the ejection angle α0 are indicated in the corresponding panels, the values of v0 mark the
corresponding curves.

quantified in figure 2 (observe the growth of the near-outlet curvature α′
0 with increasing

v0). Furthermore, sufficiently fast curtains are so curved that they overshoot the vertical
direction and come back to it after an inflection point (this pattern is not evident from
figure 3, but it is clearly visible in figure 4). It should be emphasised, however, that
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1 2 3 4 5 6 7 8 9 10

l

0

0.5

1.0

1.5

2.0

α

1

0

–1

Figure 4. The local angle α between the curtain and the horizontal vs the centreline’s arclength l, for the
examples shown in figure 3(b) (α0 = 0, the values of v0 mark the corresponding curves). Observe that curve 1
overshoots the vertical direction (shown by the dotted line) and comes back to it after an inflection point.

solutions with large α′
0 may violate the slender-curtain approximation. Recalling how the

problem was non-dimensionalised, one can show that the applicability condition of the
solutions found is |α′

0| � ε−1.
The dependence of UB curtains on the ejection angle α0 does not seem to be essential,

as the trajectories of curtains with different values of α0 are qualitatively similar. Observe
also that the curves with different α0 in figure 2 are close to each other. One can expect
a different behaviour only in the limit α0 → −π/2 (nearly vertical curtains), which is not
considered here.

(ii) As mentioned before, the trajectories of DB curtains can be computed by simply
choosing a value of α′

0 and shooting the solution from l = 0 towards l → ∞. Numerous
examples have been computed via this approach, some of which are shown in figure 5.

Three features of these examples catch one’s eye. First, DB curtains are wavy (unlike the
UB curtains examined above, as well as the DB curtains with We 
≈ 1 examined in B19).
Second, curtains with a sufficiently negative v0 become so wavy that they self-intersect
(in figure 5, only the first intersection is shown; after that, the solution is meaningless
physically). Third, some of the self-intersecting curtains bend initially upwards (but if
their trajectories were extended beyond all intersections, one would see that they turn
downwards eventually).

(iii) UB and DB curtains can be viewed as different members of the same family of
solutions, as illustrated in figure 6.

From now on, self-intersecting curtains will be classified as UB or DB depending
on how they behave before the first intersection. Then, the curve corresponding
to non-self-intersecting UB solutions should be viewed as a separatrix between
self-intersecting UB and DB curtains.

Examples of near-separatrix curtains are shown in figure 7.

4.3. Comparison with B19
(i) In B19, UB curtains could only rise to the height where the fluid velocity vanishes, and
so all of the initial reserve of kinetic energy is used up. In the present model, on the other
hand, the leading-order non-dimensional velocity is unity (see (3.6)) and, thus, cannot
vanish – so the UB curtains formally rise infinitely high. However, it follows from (3.20)
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0 1 2 3

0 1 2 3

x

–3

–2

–1

0

z
0

1

–1

–2
(b)

α′
0 = 0.4

–3

–2

–1

0

z

1

0

–1
–2

(a)

α′
0 = 0

Figure 5. Examples of DB curtains, as described by problem (4.1)–(4.4), (4.5) with α0 = 0. The values of
the parameter α′

0 are indicated in the corresponding panels, the values of v0 mark the corresponding curves.
Panels (a,b) correspond to the two horizontal cross-sections of figure 6 labelled ‘Figure 5a’ and ‘Figure 5b’,
respectively.

that
u(2) ∼ −z as z → ∞, (4.16)

as a result, once z becomes O(ε−2), the whole expansion breaks down. This is the present
model’s equivalent of the limiting height of curtains in B19.

The growth of u(2) with growing z invalidates the large-z results for DB curtains too, but
this occurs when they are almost vertical and their evolution is trivial.

(ii) One should keep in mind that B19 assumes the characteristic radius of curvature to
be L = H Fr, whereas the present work considers a shorter scale, L = H Fr1/3. In addition,
the present work assumes We ≈ 1.

Thus, the two sets of results should agree only if the limit We → 1 is applied to the B19
solutions, whereas the present solutions are subject to

α′
0 � 1, v0 � 1. (4.17a,b)
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–2 –1 0 1 2 3
v0

–5

–4

–3

–2

–1

0

1

2

3

4

5

α′
0

Figure 5b

Figure 5a

Figure 7

Self-intersecting
downward-bending

curtains

Self-intersecting
upward–bending

curtains

Non-self-intersecting
downward-bending

curtains

Figure 6. Classification of curtains on the (v0, α
′
0) plane, as described by problem (4.1)–(4.4) with α0 = 0.

The thick solid curve corresponds to non-self-intersecting UB curtains (it is the same as curve 0 in figure 2). The
dashed line bounds the region of self-intersecting curtains. The curtains depicted in figures 5 and 7 correspond
to the circles connected by thin solid straight lines.

These two constraints guarantee that the curtain’s non-dimensional curvature is small both
near the outlet and globally (as follows from (4.1) with v0 � 1, the solution’s global spatial
scale is proportional to v0).

(iii) According to the present results, UB curtains exist for all v0, both positive and
negative – whereas B19 found such solutions only in the subcritical case v0 < 0.

The apparent contradiction can be resolved if one recalls that, for UB curtains, α′
0 is a

function of v0 and α0, such that α′
0 → ∞ as v0 → ∞ (see figure 2). Clearly, such solutions

are inconsistent with limit (4.17a,b), and so it comes as no surprise that supercritical UB
curtains have been missed by the asymptotic model of B19.

(iv) There is another apparent discrepancy between B19 and the present work: in the
former, a single DB curtain was found for given ejection velocity and angle, whereas the
latter found a whole family of solutions, differing from each other by their values of α′

0.
To resolve the discrepancy, one should look at the curtains found in the present work

under conditions (4.17a,b) – see figure 8. Observe that the medium-v0 curtains with
different α′

0 are located much closer together than their small-v0 counterparts, and the
curtains with the largest value of v0 are hardly distinguishable.

Thus, in limit (4.17a,b), curtains with different α′
0 collapse onto the same curve, i.e. the

dependence on α′
0 becomes weak – which reconciles the present results with those of B19.

Figure 8 also illustrates the fact that limit (4.17a,b) makes curtains less wavy, just as
they should be according to B19.

5. Physical aspects of the solutions found

(i) Experiments with capillary curtains are difficult to carry out. The problem is that,
unless the curtain’s edges are fixed, they tend to retract and the curtain contracts into a
circular jet.
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0 1
x

–2

–1

0

1

2

3

z
i

u

t

Figure 7. Examples of curtains with α0 = 0 and v0 = 1.5. Curve (u) is the non-intersecting UB curtain
(α′

0 ≈ 3.3177); curve (i) is an example of a self-intersecting UB curtain (with α′
0 = 3.6467); curve (t) is the

self-touching curtain separating self-intersecting and non-self-intersecting DB curtains (α′
0 ≈ 2.9799). The

solutions depicted correspond to the vertical cross-section of figure 6 labelled ‘Figure 7’.

0 1 2 3 4 5 6 7 8 9 10
x

–5

–4

–3

–2

–1

0

z

v0 = 2 v0 = 5

v0 = 12.5

Figure 8. Examples of DB curtains with α0 = 0. The three curves with v0 = 2 are for α′
0 = ±2.5, 0, those

with v0 = 5 are for α′
0 = ±1, 0 and those with v0 = 12.5 are for α′

0 = ±0.4, 0.
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There are two ways to fix curtains’ edges: either by walls (e.g. Finnicum et al. 1993) or
guiding wires (e.g. Roche et al. 2006; Lhuissier, Brunet & Dorbolo 2016). Both worked
well with vertical curtains – but with oblique ones, they probably would not. Walls imply
existence of contact lines which may be pinned and, thus, can prevent the curtain from
assuming its natural shape, whereas wires certainly prevent the curtain from assuming it.
The best option seems to consist in replacing the curtain with a liquid bell of a large radius
(P. Brunet, private communication) which does not have edges.

(ii) To come to terms with the counter-intuitive properties of liquid curtains, one should
keep in mind that one’s intuition may be misled by one’s everyday experience with jets
(those from taps and garden hoses). There is an important difference between the two types
of flows: if the Weber number of a jet is order one, it is highly unstable and breaks down
near the outlet by the Plateau–Rayleigh instability, so no one knows what shape it would
have if it were stable. Capillary curtains, on the other hand, are presumably stable – as
suggested by experiments with bells (Brunet, Clanet & Limat 2004; Jameson et al. 2010)
and vertical curtains (Finnicum et al. 1993; Roche et al. 2006), as well theoretical studies
of the latter (Benilov et al. 2016; Girfoglio et al. 2017).

(iii) The most counter-intuitive feature of DB curtains is the non-uniqueness of the
solution for a given ejection angle and velocity. Each of the existing solutions represents
a sinuous capillary wave, with spatially dependent amplitude and wavenumber – such
that the wave’s local phase velocity matches that of the flow. These solutions differ from
each other by the wave’s amplitude linked to the parameter α′

0: a larger |α′
0| generally

corresponds to a stronger wave. Setting α′
0 = 0, however, does not eliminate the wave

entirely (which can be only done by taking the limit v0 → ∞).
The presence in the solution of a wave component with an arbitrary amplitude gives rise

to two questions: (A) How are these waves generated? (B) Is there a way to narrow down
the family of solutions to the one and only ‘physically meaningful’ solution?

Question (A) can be answered with certainty: capillary waves are generated by the
variations of the curtain’s parameters on its way down – simply because a parameter
variation in a wave-supporting medium always generates waves. Interestingly, UB curtains
do not support waves. This is evident from the computed examples (see figure 3), as well
as the large-l asymptotics (4.13)–(4.15).

As for question (B), the steady state of a curtain probably depends on how it was created
– or, more generally, on the prior evolution.

One can verify or refute this hypothesis by creating a DB curtain – waiting until it
becomes steady – then altering (for a brief period of time) the ejection angle and/or
velocity. Once those have regained their original values, will the curtain regain its original
shape? To a degree of certainty, this question can be answered through a gedanken
experiment – by solving numerically or asymptotically the full (evolutionary) version of
problem (3.1)–(3.4) with time-dependent α0(t) and v0(t).

(iv) The simulation described above may also show how to create a UB curtain
experimentally.

Consider a pair of values (α0, v0) corresponding to a non-self-intersecting DB curtain
– one of those that do not contradict our intuition. It corresponds to a point in the
right-middle part of figure 6, which also shows that the UB curtain with the same pair
(α0, v0) has a larger near-outlet curvature α′

0.
Thus, one should be able to create a UB curtain by making a non-self-intersecting DB

curtain increase its α′
0.

This cannot be done directly, as α′
0 is not controlled in an experiment. One can, however,

alter α0(t) and/or v0(t) in such a way that the final steady state has a greater α′
0 than the

initial one.
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Indeed, let the injection velocity v0 be constant, while the injection angle α0(t) is slowly
increased and then abruptly decreased – as one does when cracking a whip. The near-outlet
part of the curtain has to adjust to the change of the injection angle, whereas its main bulk
– due to its inertia – will lag behind; as a result, α′

0 should grow. If it ends up near the
value corresponding to the UB curtain, the resulting steady state should also be close to
the UB curtain.

This approach, however, is unlikely to work for strongly subcritical UB curtains, i.e.
those with v0 � −1.

To create one of such, a non-self-intersecting DB curtain is needed to start from,
but such do not exist in this part of the parameter space (see figure 6). Computations
show that solutions there are highly sensitive to small variations of the parameters
involved, and that a randomly chosen solution is likely to involve the first self-intersection
very close to the outlet. A strongly subcritical curtain can be guaranteed to have a
reasonably long non-self-intersecting segment only if α′

0 is close to that of the UB
curtain with the same (α0, v0) – but creating such is as difficult as the UB curtain
itself.

(v) The range of physically meaningful solutions (for both DB and UB curtains) is likely
to narrow if a stability study is carried out.

Still, one should not expect that a single solution will emerge as stable for each (α0, v0).
Indeed, stable flows are generally either non-existent or occupy a finite-size region in
the problem’s parameter space. In the present case, this means that, for some (α0, v0),
there may not be any stable solutions at all – and for the others, there are infinitely many
solutions, corresponding to a finite-length interval of α′

0.
One can conjecture that unstable curtains are those with high curvature, where the

centrifugal force is too strong to be contained by surface tension. If this is indeed so,
all strongly supercritical (v0 � 1) UB curtains are unstable (because their near-outlet
curvature α′

0 is large – see figure 2).
It should also be mentioned that a sufficiently high curvature invalidates the

slender-curtain approximation underlying all of the results obtained.
In view of comments (iv)–(v), one should expect UB curtains to be observable only for

moderate v0 (or, physically, if We ≈ 1).

6. Concluding remarks

The present work should suffice as a proof concept, but an accurate description of UB
curtains should be based on a more comprehensive model.

Firstly, viscosity should be taken into account. This task cannot be done in a single step,
as two different regimes will have to be examined. Indeed, let ν be the liquid’s kinematic
viscosity. In B19, its importance was characterised by the non-dimensional parameter

μ = νu0

gH2 , (6.1)

and preliminary estimates show that, if

με2 � 1, (6.2)

viscous forces are comparable to those of inertia and surface tension. In this case, one
should expect the dynamics of curtains with We ≈ 1 to be governed by an incremental
modification of (3.1). A stronger viscosity, however, should dominate the flow and, thus,
significantly change the model.
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Paradoxical predictions of liquid curtains

Secondly, one should extend the present model to sheared flows, as this is the state in
which curtains emerge from the outlet. One should still keep in mind that the transitional
region where a sheared (say, Poiseuille) flow turns into a plug flow can be very small;
for jets, for example, the boundary velocity reaches 50 % of its maximum value after a
distance of only l ≈ 0.04 H Re (see Goren 1966; Sevilla 2011, figure 2b). If this applies to
liquid curtains as well, the initial shear would have little impact on the global dynamics.

Thirdly, one should examine the stability of steady curtains. Since viscosity is likely to
have a significant stabilising effect, stability study should be carried out only after this
effect has been incorporated into the model.
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Appendix A. The next-to-leading order of the boundary-layer solution

Observe that, under the condition α′′
0 = 0, the leading-order solution (3.43)–(3.45) for the

cross-stream velocity amounts to
u(0)
τ = 0. (A1)

Substituting this into the boundary-value problem (3.40)–(3.42), one can readily deduce
expressions for the rest of the leading-order unknowns,

u(0)
τ = 0, p(1) = −τ 2α′2

0 , τ
(2)
± = 0. (A2a–c)

Next, substitute series (3.39) into the full equations (3.33)–(3.37), take into account (A1)
and (A2) and, thus, obtain the next-to-leading-order equations (the subscript b omitted),

∂u(3)
l

∂l
+ ∂p(2)

∂l
= − sin α0, (A3)

∂u(1)
τ

∂l
+ 2u0α

′
0 + τ 2

2
(8α′3

0 + α′′′
0 ) + l2

2
α′′′

0 + ∂p(2)

∂τ
= − cos α0, (A4)

∂

∂l

(
u(3)

l + τα′
0u0 + τ l2

2
α′′′

0

)
+ ∂u(1)

τ

∂τ
= 0, (A5)

∂τ
(3)
±

∂l
− u(1)

τ = 0, p(2) = ∓∂2τ
(3)
±

∂l2
∓ 1

2
(3α′3

0 + α′′′
0 + l2α′′′

0 ) if τ = ±1, (A6)

u(3)
l = 0, u(1)

τ = 0, τ
(3)
± = 0 if l = 0. (A7)

One can eliminate from this problem all the unknowns except û(1)
τ and thus obtain

∂2u(1)
τ

∂τ 2 + 2lα′′′
0 + ∂2u(1)

τ

∂l2
= 0, (A8)

∂u(1)
τ

∂τ
− sin α0 = ±∂2u(1)

τ

∂τ 2 if τ = ±1, (A9)

u(1)
τ = 0 if l = 0. (A10)
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It is convenient to introduce û(1)
τ such that

u(1)
τ =

(
1 − τ 2

)
lα′′′

0 + τ sin α0 + l
∂α0

∂t
+ û(1)

τ . (A11)

In terms of the new unknown, (A8)–(A10) become

∂2û(1)
τ

∂τ 2 + ∂2û(1)
τ

∂l2
= 0, (A12)

∂ û(1)
τ

∂τ
= ±∂2û(1)

τ

∂τ 2 if τ = ±1, (A13)

û(1)
τ = −τ sin α0 if l = 0. (A14)

This boundary-value problem can be solved using the Fourier sine transformation, but the
Fourier transform of û(1)

τ would be singular, and it is not clear how the singularity should
be regularised. Its physical meaning, however, is clear: it describes a semi-infinite wave
generated in the boundary layer and radiated into the outer region. Since the structure and
wavenumber of this wave are easy to find, one can leave the wave’s amplitude arbitrary and
‘subtract’ the wave solution from û(1)

τ . Once the Fourier transform of the modified solution
is found, one can require it to be non-singular and thus find the (so far undetermined)
amplitude.

Following the above plan, introduce U(l, τ, t) such that

û(1)
τ = U + B(1) cos k∗l sinh k∗τ + A(1) sin k∗l sinh k∗τ, (A15)

where k∗ is determined by (3.44), B(1) is the amplitude of the wave radiated towards
infinity and A(1) is the amplitude of the wave coming from infinity – bouncing off the
outlet – and going back to infinity. Substituting (A15) into (A12)–(A14) and taking into
account (3.44) to simplify the boundary condition (A13), one obtains

∂2U
∂τ 2 + ∂2U

∂l2
= 0, (A16)

∂U
∂τ

= ±∂2U
∂τ 2 if τ = ±1, (A17)

U = −τ sin α0 − B(1) sinh k∗τ if l = 0. (A18)

Observe that A(1) remains undetermined, just like its previous-order counterpart A(0) in
expression (3.43).

Rewriting (A16)–(A18) in terms of the Fourier transform

Ũ(k, τ, t) =
∫ ∞

0
U(l, τ, t) sin kl dl, (A19)

one obtains

∂2Ũ
∂τ 2 − k

(
τ sin α0 + B(1) sinh k∗τ

)
− k2Ũ = 0, (A20)

∂Ũ
∂τ

= ±∂2U
∂τ 2 if τ = ±1. (A21)
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This boundary-value problem can be readily solved,

Ũ = sinh kτ
cosh k − k sinh k

[
sin α0

k2 + B(1)k (cosh k∗ − k sinh k∗)
k2 − k2∗

]

− τ sin α0

k
− kB(1) sinh k∗τ

k2 − k2∗
. (A22)

Observe that (A22) is not singular at k = k∗ only if

B(1) = 2 sin α0

k2∗ sinh k∗
. (A23)

Together with the expression for the inverse Fourier transform,

U(l, τ, t) = 2
π

∫ ∞

0
Ũ(k, τ, t) sin kl dl, (A24)

formulae (A22) and (A23) complete the solution of problem (A12)–(A14).
It can be shown that the non-oscillating part of the boundary-layer solution found

matches the outer solution – but the wave part (the second and third terms in (A15)) implies
the inclusion of similar terms in the outer solution. This has not been done, as such (small
and fast-oscillating) component would affect the global dynamics only when it appears in
quadratic terms – just as the fast wave component in the Davey–Stewartson system (Davey
& Stewartson 1974). In the present problem such terms come up in the fourth order of the
perturbation expansion – whereas the leading-order dynamics (4.1) emerges in the third
order.

Furthermore, if viscosity is introduced, the radiated wave is confined to the boundary
layer and, thus, its effect on the global dynamics is exponentially weak.

Finally, observe that u(1)
τ is an odd function of τ , which means that it describes

varicose capillary waves. Given that u(0)
τ is zero, this conclusion applies to the whole

boundary-layer solution.

Appendix B. Numerical solution of problem (4.1)–(4.4), (4.12)

As argued in § 4.1, the exponentially growing term in asymptotics (4.13)–(4.15) has to be
eliminated by setting C2 = 0, whereas the term involving α̃3 decays faster than 1/ln for any
n > 0. Thus, the large-l asymptotics of the solution of the full (nonlinearised) problem can
be sought in the form of a power series in 1/l.

Before doing this, however, it is convenient to introduce

Δ = z − l, (B1)

then define

Δ∞ = lim
l→∞

Δ, (B2)

917 A21-27

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

28
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.289


E.S. Benilov

and rewrite (4.1) and the second equation of (4.2a,b) in the form

dα

dl
= α′,

dα′

dl
= α′′,

dα′′

dl
= α′

[
3(l̃ + Δ − Δ∞) − 1

2
α′2

]
− 3 cos α,

dΔ

dl
= sin α − 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B3)

where l̃ is given by (4.15). The boundary conditions (4.3) and the second condition of
(4.4), in turn, take the form

α(0) = α0 α′(0) = α′
0, α′′(0) = 0 Δ(0) = 0. (B4a–d)

At infinity, let

α = 1
2π + α1 l̃−1 + α2 l̃−2 + α3 l̃−3 + α4 l̃−4 + O(l̃−5)

Δ = Δ∞ + Δ1 l̃−1 + Δ2 l̃−2 + Δ3 l̃−3 + Δ4 l̃−4 + O(l̃−5)

}
as l → ∞. (B5)

Substituting asymptotics (B5) into (B3), one can relate the coefficients in (B5) to one of
them – say, α1 – and thus obtain

α2 = 0, α3 = −1
3α3

1, α4 = 2
3α1,

Δ1 = 1
2α2

1, Δ2 = 0, Δ3 = −1
8α4

1, Δ4 = 1
6α2

1 .

}
(B6)

Note that asymptotics (B5) and (B6) involve three undetermined parameters: Δ∞, α1 and
α′

0 (the last one is ‘hidden’ in l̃, and also appears in (B3) and boundary conditions (B 4)).
To solve (B3) subject to the boundary conditions (B 4)–(B6), one should pick a large

l∞ and require that three of the four unknowns (α, α′, α′′, Δ) coincide at l = l∞ with the
values predicted by the asymptotics (B5) and (B6). This way, the solution will be fixed
together with the parameters Δ∞, α1 and α′

0.
This approach was realised twice: using the shooting method and the MATLAB function

BVP4c (based on the three-stage Lobatto IIIa formula – see Kierzenka & Shampine 2001).
The former was found to work only if l∞ � 7, and so was used only to validate the latter.
In either case, the results were independent of which three of the four unknowns are fixed
at l = l∞.
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