RIGID ARTINIAN RINGS

by K. R. McLEAN

(Received 29th September 1980)

1. Introduction

In [4], Maxson studied the properties of a ring R whose only ring endomorphisms $\phi: R \to R$ are the trivial ones, namely the identity map, id_R , and the map 0_R given by $\phi(R) = 0$. We shall say that any such ring is rigid, slightly extending the definition used in [4] by dropping the restriction that $R^2 \neq 0$. Maxson's most detailed results concerned the structure of rigid artinian rings, and our main aim is to complete this part of his investigation by establishing the following

Theorem. Let $R(\neq 0)$ be a left-artinian ring. Then R is rigid if and only if

- (i) $R \cong \mathbb{Z}_{p^k}$, the ring of integers modulo a prime power p^k ,
- (ii) $R \cong N_2$, the null ring on a cyclic group of order 2, or
- (iii) R is a rigid field of characteristic zero.

We shall also show that if $R(\neq 0)$ is any (not necessarily artinian) nilpotent ring, then R is rigid if and only if $R \cong N_2$.

From [4] Theorem 3.1, any rigid artinian ring is commutative and is either local or nilpotent. We shall examine these two cases separately.

2. Rigid artinian local rings

Let R be a rigid artinian local ring with radical m.

Maxson showed that if char R = 0, then R is a field [4, Theorem 3.2] and that if char R is a prime p, then $R \cong \mathbb{Z}_p$ [4, Corollary 3.2].

The remaining possibility is that char $R = p^k$ and char (R/m) = p for some prime p and some integer k > 1. In this case there exists an unramified complete discrete valuation ring V of characteristic zero whose residue field is isomorphic to R/m. This ring V is uniquely determined up to isomorphism by R/m and is called the v-ring with residue field R/m. (See [1] Lemma 13, p. 79 and Corollary 2, p. 83.) Moreover, by [1] Theorem 11, p. 79, R contains a subring R such that R = C + m. We shall call any such subring R a coefficient ring of R.

The following theorem, augmented by Maxson's results, determines the structure of a rigid artinian local ring.

Theorem 1. Let R be a rigid artinian local ring with radical **m** such that char $R = p^k$ and char (R/m) = p for some prime p and some integer k > 1. Then $R \cong \mathbb{Z}_{p^k}$.

Proof. Since k > 1, $m \ne 0$ and we can choose a non-zero element $a \in m^{t-1}$, where t is the index of nilpotence of m.

Let C be a coefficient ring of R and $\theta: R \to R/(pR + m^2)$ be the natural map. We have

$$pC \subseteq C \cap (pR + m^2) \subseteq C \cap m = pC$$

and $C/pC \cong R/m$. It follows that $\theta(C)$ is a field.

Suppose that $\theta(R) \neq \theta(C)$. Then there exist elements $x_1, \ldots, x_n \in R$ such that $\theta(1)$, $\theta(x_1), \ldots, \theta(x_n)$ is a basis for the $\theta(C)$ -vector space $\theta(R)$. Now define a map $\phi: R \to R$ as follows. Given $r \in R$, there are unique elements $\theta(c_i) \in \theta(C)$ such that

$$\theta(r) = \theta(c_0)\theta(1) + \theta(c_1)\theta(x_1) + \ldots + \theta(c_n)\theta(x_n).$$

Lift $\theta(c_1)$ to $c_i \in C$. Then c_i is unique modulo pC, so that c_1a is uniquely determined by r. Let

$$\phi(r) = r + c_1 a$$

and check that ϕ is a C-module homomorphism which acts as the identity on C. Since R = C + m, ϕ will be a ring endomorphism if $\phi(mm') = \phi(m)\phi(m')$ for all $m, m' \in m$. But $\theta(m^2) = 0$ gives $\phi(mm') = mm'$, whilst am = 0 yields $\phi(m)\phi(m') = mm'$. Hence ϕ is a ring endomorphism. Now $\phi(x_1) = x_1 + a$ and $\phi(1) = 1$, so that ϕ is neither id_R nor 0_R , contradicting the fact that R is rigid.

Thus $\theta(R) = \theta(C)$ and $R = C + pR + m^2$. This gives

$$m = (C \cap m) + pR + m^2 = pC + pR + m^2 = pR + m^2$$
.

Nakayama's lemma yields m = pR, whence R = C + pR. Using the lemma again, we get R = C.

If the residue field R/m where imperfect, it would possess a non-trivial derivation map, δ . Applying [2, Theorem 1], we could lift δ to a derivation of the v-ring V with residue field R/m, and hence to a derivation D of $R = C \cong V/p^k V$. As in [3 §V], the map $\alpha: R \to R$ given by

$$\alpha(r) = r + pD(r) + \frac{p^2}{2!}D^2(r) + \ldots + \frac{p^{k-1}}{(k-1)!}D^{k-1}(r)$$

would be a non-trivial automorphism of R, contradicting the rigidity of R.

Hence R/m is a perfect field and, by [4, Theorem 3.3], $R \cong Z_{p^k}$.

3. Rigid nilpotent rings

No artinian hypothesis is needed in the next theorem.

Theorem 2. Let $R(\neq 0)$ be a rigid nilpotent ring. Then $R \cong N_2$.

Proof. Suppose that $R^2 \neq 0$. Then R has index of nilpotence t > 2 and there exists $a \in R^{t-2}$ such that $aR \neq 0$. The map $\phi: R \to R$ given by $\phi(r) = r + ar$ is a ring endomorphism which is not the identity, but which acts as the identity on the non-zero ideal R^2 . This contradicts the rigidity of R.

Hence $R^2 = 0$. By considering the map $r \to 2r$ on R, it is easy to see that $R \cong N_2$.

Combining Maxson's results with our own, we have the theorem stated in the introduction.

REFERENCES

- 1. I. S. COHEN, On the structure and ideal theory of complete local rings, *Trans. Amer. Math. Soc.* 59 (1946), 54-106.
 - 2. N. HEEREMA, Derivations on p-adic fields, Trans. Amer. Math. Soc. 102 (1962), 346-351.
- 3. N. HEEREMA, Higher derivations and automorphisms of complete local rings, Bull. Amer. Math. Soc. 76 (1970), 1212-1225.
 - 4. C. J. MAXSON, Rigid rings, Proc. Edinburgh Math. Soc. 21 (1978), 95-101.

SCHOOL OF EDUCATION UNIVERSITY OF LIVERPOOL P.O. Box 147 LIVERPOOL L69 3BX