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SUBFIELDS AND INVARIANTS OF
INSEPARABLE FIELD EXTENSIONS

JAMES K. DEVENEY AND JOHN N. MORDESON

Introduction. Let L/K be a field extension of characteristic p # 0. The
existence of intermediate fields over which L is regular, separable, or modular
is important in recent Galois theories. For instance, see [1;2;3;4;7;8;9 and
14]. In Section 1 we prove the existence of unique minimal intermediate fields
H*, C*, Q* of L/K such that L/H* is regular, L/C* is separable and L/Q* is
modular. If R* denotes the field of constants of all infinite higher derivations
on L over K, then R* = N C*(L*") = N H*(L"").

Dieudonné introduced and applied the concept of a distinguished subfield
of a field extension with finite inseparability exponent. In Section 2 we intro-
duce two numerical invariants on L/K which we connect with known measures
of inseparability in order to determine properties of L/K via distinguished
subfields. For instance, if L/K has finite inseparability exponent, we give a
necessary and sufficient condition for L to be modular over every distinguished
subfield. In certain cases, the same invariant can be related to the structure of
Q*/K. Distinguished subfields are characterized in terms of the other numerical
invariant.

Unless specified otherwise, L/K always denotes an arbitrary field extension
of characteristic p # 0. The inseparability exponent of L/K is the

min {n|K(L"™)/K is separable}
if this exists, and is o0 otherwise. We say L/K splits, and write L = F Q J,
when L is the field composite over K of two intermediate fields F and J where
F/K is separable and J/K is purely inseparable. L is modular over K if and
only if L”" and K are linearly disjoint for all n. L is reliable over K if L = K (M)
for every relative p-basis M of L/K. We often use the fact that if L/K is

reliable, then L/L’ is reliable for every intermediate field L’ [16, Proposition
1.15, p. 9].

1. Unique minimal intermediate fields.

TuaeorREM (1.1). There exist unique minimal intermediate fields H*, C*, and
Q* of L/K such that L/H* 1s regular, L/C* is separable, and L/Q* 1is modular.
These intermediate fields satisfy the properties H* D C* D Q*, H* = C* = Q*
(the algebraic closure of Q* in L), C*/Q* 1s purely inseparable modular, and H* =
S ® o C* where S is the maximal separable intermediate field of H*/Q*.

Proof. Let H = {H,|H, is an intermediate field of L/K such that L/H, is
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regular. Since L € H, H # (. Now L? and H, are linearly disjoint over H,".
By [21, Theorem 1.1, p. 39], L? and N, H, are linearly disjoint over L? M
(NeHy) = Ne L”» N Hy) = Na HP = (Na Ha)?. Set H* = N, H,. Then
L/H* is separable. Any element of L which is algebraic over H* is also alge-
braic over every H,, and hence is in every H,. Thus H* is the unique minimal
intermediate field over which L is regular. The existence of C* follows in a
similar manner. The existence of Q* is nearly immediate from [21, Theorem
1.1, p. 39]. Clearly H* D C* D Q*. Since C*/C* is algebraic, L/C* is separable.
Since also C* is algebraically closed in L, L/C* is regular. Hence C* D H*.
Since C*/C* is separable algebraic, C*/H* is separable algebraic. Thus C* =
H*. Since L/Q* is modular, L/(Q*™® M L) is separable and (Q*™™ M L)/Q*
is modular by [13, Theorem 1, p. 1177]. Since L/(Q**"* M L) is separable,
Q¥ ML D C* by the minimality of C*. Since L/C* is separable and
(Q**™= M L)/C* is purely inseparable, Q*™ M L = C*. Clearly H* = (Q*
and H* = S ® o4 C*. This completes the preof.

Clearly K»~ M L C C*. If either L/K is modular or L/K splits, then C* =
K™ M L. In fact, if L/K is modular, then K, the algebraic closure of K in L,
is modular over K since K = Q* and hence K = H*. If L/K is relatively
separated (L/K (M) is separable algebraic for every relative p-basis M), then
L/C* and L/H* have finite separating transcendence bases by [17, Corollary,
p. 418] and [17, Theorem 1, p. 418]. Hence if L/K is relatively separated and
modular, then L/K splits by [10, Proposition 1, p. 2].

If L/K (or C*/K) has finite inseparability exponent ¢ and K (L*?)/K
(or K(C*°)/K) has a finite separating transcendence basis, then C*/K is
relatively separated by [17, Theorem 2, p. 419]. If L/K (or C*/K) is finitely
generated, then C*/K is relatively separated.

THEOREM (1.2). If C*/K is relatively separated, then C*/K has the following
properties:

1. C* is a maximal intermediate field of L/K which is reliable over K.

2. C* 1is the only intermediate field of L/K such that L/C* is separable and
C*/K 1is reliable.

Proof. 1. Since C*/K is relatively separated and has no proper coseparable
intermediate fields, C*/K is reliable [18, Theorem 1, p. 523]. Let F be any
intermediate field of L/C*. Then C* is a coseparable intermediate field of F/K.
Thus if F/K is reliable, F = C*. Hence C* is a maximal intermediate field of
L/K such that C*/K is reliable.

2. Let R be an intermediate field of L/K such that L/R is separable and R/K
is reliable. Then R D C* by the minimality of C*, whence R* = C* by (1).

Example (1.3). C* is not necessarily unique with respect to being a maximal
intermediate field of L/K which is reliable over K: Let L = P(x, y, z) and
K = P(x?, y?) where P is a perfect field of characteristic p # 0 and «x, y, z are
algebraically independent indeterminates over P. Set R = K(z, zx + ).
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Then R/K is reliable by [18, Example 1, p. 522]. Now [L : R] = p and L/K
is not reliable since L/K (x, v) is separable. Thus R is a maximal intermediate
field of L/K which is reliable over K. Now C* = K (x, y) since L/K (x, y) is
separable and K (x, y)/K is reliable.

The following result generalizes the structure theorem of Heerema and
Tucker [10, Corollary 7, p. 4] given for finitely generated extensions.

THEOREM (1.4). Suppose C*/K is reliable. Then L/Q* has finite inseparability
exponent, C*/Q* 1s purely inseparable modular with bounded exponent, and
L=FQs(S®qge C*) where S is the maximal separable intermediate field of
H*/Q* and F is an intermediate field of L/S which is regular over S and separable
over Q*.

Proof. By (1.1), C*/Q* is purely inseparable modular. Since C*/K is reliable,
C*/Q* is reliable and (17, Proposition 1.23, p. 16] shows C*/Q* is of bounded
exponent. By (1.1), H* = § ® ¢« C*, and thus H* is of bounded exponent
over S. Since L/H* is separable, L = F ® s H* by [13, Theorem 4, p. 1178].
ThusL = F Q@ 5 (S ® ox C*).

It is well known that the field of constants R* of all infinite higher derivations
on L/K is such that L/R* is regular [9, Theorem 2.3, p. 264]. Hence R* D H*.
We now determine R* by using H* and C*.

THEOREM (1.5). [2, Theorem 1, p. 50] The following conditions are equivalent
on L/K.

1. L/K is separable and N%3-1 K (L*") = K.

2. K 15 a field of constants of a set of infinite higher derivations on L.

THEOREM (1.6). Let R* be the field of constants of all infinite higher derivations
on L/K. Then

R* = HAI) = ( CH(17Y).
i=1 =1

Furthermore, R* is the unique maximal relatively perfect field extension of C*
in L.

Proof. We first show that L is separable over N5—1 C*(L*"). Since L/C* is
separable, L/C* is modular. Thus L/N%-1 C*(L?") is modular. Hence it suffices
to show that L? N N1 C*(L*") = (N7-1 C*(L*"))?. Since L/C* is separable,
C* N\ L?» = C*. Since C*(L*") and C*(L**) N\ L? are intermediate fields of
L?/C*? and since C* and L? are linearly disjoint over C*?, we have that C* and
C*(L*") are linearly disjoint over C*» and that C* and C*(L**) N L? are
linearly disjoint over C**. Now C*(C**(L**)) = C*(L*") and since C**(L*") C
C*(LP'y N L» < C*(L*Y), it follows that C*(C*(L**) N L?) = C*(L*"). Thus
C*(L*") = L» M C*(L*"). Hence
?

PN A CHLY) = A L7 N CIP)) = A (7" = (Fﬂ C*(L”"))
i=1 i=1 i=1 i=1
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Therefore L/N5-1 C(L*") is separable. It is straightforward that
NF=1 ((NF=1 CHEP)) (IPY) = NTy CHLPY).

Thus by (1.5), N5=; C*(L*") is the field of constants of a set of infinite higher
derivations and R* C N7, C*(L*"). Since R* D C*, R* = NT., R*(L*") D
NF=1 C*(L?*) and we have R* = N%_; C*(L*"). Since H*/C* is separable
algebraic, R¥* = N%-; H* (L”i). Since R* is contained in C*(L?), no element of
R* which is relatively p-independent over C* can be relatively p-independent
in L/C*. Since L/R* is also separable, R* must have the empty set as a relative
p-basis over C*, ie., R*¥*/C* is relatively perfect. Since any relatively perfect
field extension of C* must be contained in NF-1 C*(L*"), R* is the unique
largest such field extension of C*.

CoroLLARY (1.7). Suppose L/K 1is relatively separated. Then R* = H*.

Proof. Since L/K is relatively separated, L/C* has a finite separating tran-
scendence basis as noted in the comments preceeding (1.2). Thus N-1 C*(L**) =
C* = H* by [18, Theorem 2, p. 524].

2. Distinguished subfields. In 1947 Dieudonne introduced the concept of
distinguished subfields of L/K. An intermediate field F is distinguished if and
only if Fisseparable over K and L C F(K?~%). If L/K is of finite inseparability
exponent, then there always exists distinguished subfields, but an example is
given in [5] of an extension which does not have a distinguished subfield. If L/K
is finitely generated then L has the same degree over each distinguished sub-
field and this degree is Weil’'s order of inseparability. The results in [12] for
the finitely generated case can be extended to field extensions L/K of finite
inseparability exponent to show that L has the same cannonical invariants
[16, Definition 1.30, p. 27] over each distinguished subfield. However, the
structure of L over different distinguished subfields can vary.

Example (2.1). L is modular over one distinguished subfield, but is not
modular over every distinguished subfield: let K = P(w, x, ) and L =
K (z, zw*™", 2w °x?"" 4 y7~') where P is a perfect field of characteristic p # 0
and w, x, y, z are algebraically independent indeterminants over P. Then L/K
has inseparability exponent 2. K (z) and K (zw” *x""" 4+ y*™!) are distinguished
intermediate fields of L/K. L/K(z) is not modular since z*°w, x, y are p-
independent in K (z) ([16, Example 1.59, p. 55]). However L/K (zuw” *x?*"" +
y*~ 1) is modular with modular basis {z, 2w 7).

We introduce a numerical invariant on L/K, namely m(L/K) = max
{r|[L/K (L*") is modular} if the maximum exists and m (L/K) = oo otherwise.
If L/K(L") is modular then L/K(L?") is also modular for r < n. We use
the invariant to study properties of L over its distinguished subfields and in
particular apply it to the fields C* and H* introduced earlier.
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THEOREM (2.2). Suppose L/K has finite inseparability exponent e. Then
m(L/K) = e if and only if L/F is modular for every distinguished intermediate
field F.

Proof. Suppose m(L/K) = ¢ and let F be a distinguished subfield. Since
F/K is separable, F is an equiexponential modular extension of K (F?°) of
exponent e. Since L C F(K?™°), K(L**) = K(F?*). Since L/K(L*%) is also
modular of exponent e, it follows that F is pure in L/K(L*°). Thus L/F is
modular [21, Definition and Note, p. 41].

Conversely, suppose L/F is modular for every such F. Then L/Np F is
modular [21, Proposition 1.2, p. 40]. Hence it suffices to show Nz F = K(L*").
Clearly K(L**) C Ng F. Letc € L — K(L**) and let F = K(L*) (V) be a
distinguished intermediate field of L/K where YV is relatively p-independent in
L/K and Y?°is a relative p-basis of K(L?°)/K. Since F/K (L") is modular, it
follows that MN,ey K(L?*) (Y — {y}) = K(L?°). Hence there exists y € ¥ such
that ¢ ¢ K(L**) (Y — v). Since L/F has exponent e, there exists x € L such
that x has exponent e over K (I7°) (Y). Y is an equi-exponential modular basis
of exponent ¢ + 1 of F/K(L***"). Thus y has exponent ¢ + 1 over K (L**T?)
(Y — {3}). Now both x and x + y have exponent e over K (L) (V) and either
x or x + y has exponent ¢ + 1 over K(L**t") (¥ — {y}). Thatis, there exists
z € L such that z has exponent e over K(L*°) (¥) and exponent ¢ + 1 over
K(LP**Y) (Y — {9}). Since clearly z has exponent e over K (L**T") (¥ — {y}),
K (L) (Y) N K(LP) (Y — {y},2) = K(L**)(Y — {y}). Hence ¢ ¢ K(L*)(Y)
N K(L*) (Y — {y}, z). We now show that K(L?*) (¥ — {y}, 2) is a distin-
guished intermediate field so that for any ¢ € L — K (L?°), there exists two
distinguished intermediate fields for which ¢ is not in their intersection whence
not in the intersection of all distinguished intermediate fields. Thus K(L?®) =
NrF. Now z @ K(L*) (V — {y}) else 22" € K(L*) (VY — {y}). Thus
(Y — {3}) U {2} is relatively p-independent in L/K. Also z* ¢ K (L")
(V7° — {y7}) else 27 € K(L**TY) (¥ — {y}). Thus (¥?° — [y?°}) U 2° is a
relative p-basis of K(L?°)/K. Hence K(L**) (Y — {y}, 2) is a distinguished
intermediate field of L/K.

As an application of (2.2) we consider the following. Every extension of a
field K of characteristic p 5 0 is separable if and only if [K : K?] = 1. In [13]
it is shown that every extension of K is modular if and only if [K : K?] < p.

COROLLARY (2.3). The following are equivalent for a field K of characteristic
p #0.

1) [K: K?] < p2.

2y m(L/K) = e for every extension L of inseparability exponent e.

Proof. Assume 1). It suffices to consider the case where |K : K?] = p2 Let L
be any extension of K of exponent e and let D be a distinguished subfield of
L/K. Let {x, v} be a p-basis for K. Then D(x?"°, y7 ) D L D D. Since
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D(x?~¢, y*~°) is modular over D, [16, Proposition 2.5, p. 76] shows L is modular
over D. By (2.2) L is modular over K(L?‘) and hence m(L/K) = e.
Conversely, assume 2). Suppose [K : K”] > p?, and we find a contradiction.
Let {w, x, y} be part of a p-basis for K. Then L = K (z, zw’", zw’ """ +
y~1), as in Example (2.1), is of exponent 2 and yet L/K (L?*) is not modular.

Ifm(L/K) = e, then 0* C K(L*°) so Q*/K is separable. In fact, m (L/K) =
e if and only if Q* C K (L?°) since when Q* C K (L*°), Q*(L*°) = K(L*) and
L/Q*(L?®) is modular.

We now direct our attention to the structure of Q*/K.

If L/K has finite inseparability exponent e and K (L?*)/K has a finite
separating transcendence basis (whence if L/K is finitely generated), then

N1 K(L"") is the separable algebraic closure of K in L ([18, Theorem 2,
p. 524]).

THEOREM (2.4). Suppose NGy K (L") is the separable algebraic closure of K
in L. Then m(L/K) = oo if and only if Q*/K s separable algebraic. If m(L/K)
= 00, then H* = C*if and only if Q* = NF=1 K(L?").

Proof. Suppose m(L/K) = oo. Then L/N%, K(L?') is modular. By the
minimality of Q% N%_1 K(L*') D Q* Hence Q*/K is separable algebraic.
Conversely, suppose Q*/K is separable algebraic. Then NF_; K(L*') D Q*
whence N%5_1 K (L?Y) = N%_1 O*(L*"). Since L/Q* is modular, L/ N%5_1 Q* (L*")
whence L/N%-1 K(L?") is modular. Thus m(L/K) = 0. It follows easily
from (1.1) that m(L/K) = oo implies that the equivalence of H* = C* and
Q* = N1 K(I7Y).

COROLLARY (2.5). Suppose L/K is reliable. Then NG—1 K (L") is the separable
algebraic closure of K in L and m(L/K) = o if and only if L/K 1s algebraic
and is of bounded exponent and modular over its maximal separable intermediate

field.

Proof. Since L/K has no proper coseparable intermediate fields, L = C*
and C*/K is reliable. Thus L/Q* is purely inseparable modular with bounded
exponent by (1.4). Hence if Q*/K is separable algberaic, then N7_; K(L?") is
the separable algebraic closure in L by the comments preceding (2.4). The
conclusion is now immediate from (2.4).

THEOREM (2.6). Suppose L/K is algebraic and let S denote the maximal sep-
arable intermediate field of L/K. Then L/S ts modular if and only if Q* is the
maximal separable intermediate field of C*/K. If L/S is modular, then Q* is the
unique minimal intermediate field over which L splits.

Proof. Suppose L/S is modular. Then Q* C .S by the minimality of Q%*.
Hence Q*/K is separable algebraic. By (1.1), C*/Q* is purely inseparable.
Conversely, suppose Q* is the maximal separable intermediate field of C*/K.
Then Q* C S and so S/Q* is separable algebraic. Since C*/Q* is purely in-
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separable and L/C* is separable algebraic, L = S ® o« C*. Hence L/S is
modular since C*/Q* is modular. Now suppose L/S is modular and L/Q splits
where Q is an intermediate field of L/K. Say L = S’ ® , C where S" and C are
intermediate fields of L/Q such that S'/Q is separable algebraic and C/Q is
purely inseparable. If Q/K is not separable, then there exists ', Q D Q" 2 K
where Q/Q’ is purely inseparable and Q'/K is separable algebraic. Thus C/Q’
is purely inseparab’e and L/C is separable algebraic and hence L splits over
Q' say L = §"” ®, C. If suffices to show Q' D Q*. As Q'/K is separable,
S” C S. Now L/S” is purely inseparable, so S” = S. Now L/C is separable,
so C* C C. Since L/Sis modular,Q* = SN C* C SN C = Q' whence Q 2 Q*

Definition (2.7). Let F be an intermediate field of L/K. The purity index of
Fin L/K is defined to be the largest nonnegative integer r such that F and
K (L") are linearly disjoint over K (F?") fori = 0,1, ..., r if such an 7 exists,
otherwise o is the purity index.

It is possible that F and K (L?") are linearly disjoint over K (F?*) for some
integer 7 and yet F and K(L**™") are not linearly disjoint over K (F*"!). We
note that if L/K is separable, then L is separable over an intermediate field F
if and only if the purity index of Fin L/K is positive.

If L/K is purely inseparable modular, then every basic intermediate field
[21] has purity index co. For L/K arbitrary, we characterize distinguished
intermediate fields in terms of purity index.

LemMMmA (2.8). Let F be an intermediate field of L/K. If there exists a field
extension H/K such that F @ x H is a field and L C F Q x H, then purity index

(F) = 0.

Proof. We have K (F*") € K(L*") € K(F"') @ x K(H"") and F and K (F*")
®x K(H"') are linearly disjoint over K(F**), i« = 0, 1, .... Thus F and
K (L") are linearly disjoint over K (F*"), 7 = 0, 1, ..., that is, purity index
(F) = 0.

THEOREM (2.9). Let F be an intermediate field of L/K such that L/ F s purely
inseparable and F/K is separable. Then F is distinguished if and only if purity
index (F) = .

Proof. Suppose F is distinguished. Then L C F ® x K~ “ so by (2.8) purity
index (F) = . Conversely, suppose purity index (/) = oo. Letx € K?~* (L).
Thenx € F" (L) = F" ™. Thusx € F* "and x € K*"’ (L) for some 7 and j.
Let » = max {4, j}. Then x € FP"" M K? " (L). Since F, K(L?") are linearly
disjoint over K(F?"), F*"" and K*~" (L) are linearly disjoint over K*~" (F).
Thus x € F" M\ K" (L) = K? ' (F). Hence x € K?® (F). Therefore
K™% (L) € K" % (F)so L C K™ (F). Since F/K is separable K~ (F) =
F ® x K" % so Fis a distinguished subfield.

https://doi.org/10.4153/CJM-1977-131-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-131-4

WA

FIELD EXTENSIONS 1311

REFERENCES

. S. Chase, On inseparable Galots theory, Bull. Amer. Math. Soc. 77 (1971), 413-417,

. R. Davis, Higher dertvations and field extensions, Trans. Amer. Math. Soc. 180 (1973), 47-52.

. J. Deveney, Fields of constants of infinite higher deriwations, Proc. Amer. Math. Soc. 41
(1973), 394-398.

4. An intermediate theory for a purely inseparable Galois theory, Trans. Amer. Math. Soc.
198 (1974), 287-295.

5. A counterexample concerning inseparable field extensions, Proc. Amer. Math. Soc.
56 (1976), 33-34.

6. J. Dieudonne, Sur les extensions transcendantes separables, Summa Brasil Math. 2 (1947),

10.

11.

12
13

14

15.

16

1-20.
. M. Gerstenhaber and A. Zaromp, On the Galois theory of purely inseparable field extensions,
Bull. Amer. Math. Soc. 76 (1970), 1011-1014.
. N. Heerema, A galois theory for inseparable field extensions, Trans. Amer. Math. Soc. 154
(1971), 193-200.
. N. Heerema and J. Deveney, Galois theory for fields K/k finitely generated, Trans. Amer.
Math. Soc. 189 (1974), 263-274.
N. Heerema and D. Tucker, Modular field extensions, Proc. Amer. Math. Soc. 63 (1975),
1-6.
L. Kime, Purely inseparable, modular extensions of unbounded exponent, Trans. Amer. Math.
Soc. 176 (1973), 335-349.
. H. Kraft, Inseparable Korpererweiterungen, Comment. Math. Helv. 45 (1970), 110-118.
. H. Kreimer and N. Heerema, Modularity vs. separability for field extensions, Can. J. Math.
27 (1975), 1176-1182.
. J. Mordeson, On a Galois theory for inseparable field extensions, Trans. Amer. Math. Soc.
(1975), 337-347.
Splitting of field extensions, Archiv der Mathematik 26 (1975), 606-610.
. J. Mordeson and B. Vinograde, Structure of arbitrary purely inseparable extension fields,
Lecture Notes in Math., Vol. 173 (Springer-Verlag, New York, 1970).

17. Separating p-basis and transcendental extension fields, Proc. Amer. Math. Soc. 31,
(1972), 417-422.

18. Relatively separated transcendental field extensions, Archiv der Mathematik 24
(1973), 521-526.

19. Inseparable embeddings of separable transcendental extensions, Archiv der Mathe-
matik 27 (1976), 42-47.

20. G. Pickert, Inseparable Korpererweiterungen, Math. Zeit. 52 (1949), 81-135.

21

. W. Waterhouse, The structure of inseparable field extensions, Trans. Amer. Math. Soc. 211
(1975), 39-56.

Virginia Commonwealth University
Richmond, Virginia;

Creighton University,

Omaha, Nebraska

https://doi.org/10.4153/CJM-1977-131-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1977-131-4

