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SUBFIELDS AND INVARIANTS OF 
INSEPARABLE FIELD EXTENSIONS 

JAMES K. DEVENEY AND JOHN N. MORDESON 

Introduction. Let L/K be a field extension of characteristic p ^ 0. The 
existence of intermediate fields over which L is regular, separable, or modular 
is important in recent Galois theories. For instance, see [ 1 ; 2 ; 3 ; 4 ; 7 ; 8 ; 9 and 
14]. In Section 1 we prove the existence of unique minimal intermediate fields 
H*, C*, Q* of L/K such that L/H* is regular, L/C* is separable and L/Q* is 
modular. If R* denotes the field of constants of all infinite higher derivations 
on L over K, then R* = fl C*(L?W) = CMI*{L*n). 

Dieudonné introduced and applied the concept of a distinguished subfield 
of a field extension with finite inseparability exponent. In Section 2 we intro­
duce two numerical invariants on L/K which we connect with known measures 
of inseparability in order to determine properties of L/K via distinguished 
subfields. For instance, if L/K has finite inseparability exponent, we give a 
necessary and sufficient condition for L to be modular over every distinguished 
subfield. In certain cases, the same invariant can be related to the structure of 
Q*/K. Distinguished subfields are characterized in terms of the other numerical 
invariant. 

Unless specified otherwise, L/K always denotes an arbitrary field extension 
of characteristic p F^ 0. The inseparability exponent of L/K is the 

min \n\K(Lpn)/K is separable} 

if this exists, and is GQ otherwise. We say L/K splits, and write L = F ®K J, 
when L is the field composite over K of two intermediate fields F and J where 
F/K is separable and J/K is purely inseparable. L is modular over K if and 
only if LpH and K are linearly disjoint for all n. L is reliable over K if L = K(M) 
for every relative ^-basis M of L/K. We often use the fact that if L/K is 
reliable, then L/L' is reliable for every intermediate field U [16, Proposition 
1.15, p. 9]. 

1. Unique minimal intermediate fields. 

THEOREM (1.1). There exist unique minimal intermediate fields H*, C*, and 
Q* of L/K such that L/H* is regular, L/C* is separable, and L/Q* is modular. 
These intermediate fields satisfy the properties H* 3 C* 3 Q*, H* = C* = Q* 
(the algebraic closure of Q* inL), C*/Q* is purely inseparable modular, and H* = 
S (8> Q* C* where S is the maximal separable intermediate field of H*/Q*. 

Proof. Let H = {Ha\Ha is an intermediate field of L/K such that L/Ha is 
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regular. Since L Ç H, H 9e 0. Now Lp and Ha are linearly disjoint over Ha
p. 

By [21, Theorem 1.1, p. 39], Lp and Ha Ha are linearly disjoint over Lp P 

(r iA) = n« (Lp n Ha) = n* np = (n« #„)*. set #* = n« #«. Then 
L/H* is separable. Any element of L which is algebraic over if* is also alge­
braic over every Ha, and hence is in every Ha. Thus H* is the unique minimal 
intermediate field over which L is regular. The existence of C* follows in a 
similar manner. The existence of Q* is nearly immediate from [21, Theorem 
1.1, p. 39]. Clearly H* 2 C* 2 <?*. Since C*/C*_is algebraic, L/C* is separable. 
Since also C* is algebraically closed in L, L/C* is regular. Hence C* 3 LP*. 
Since C* / C* is separable algebraic, C*/H* is separable algebraic. Thus C* = 
ff*. Since L/C* is modular, L/(Q*p~œ P L) is separable and (Q*^°° P L)/Q* 
is modular by [13, Theorem 1, p. 1177]. Since L/ (Q*p~œ P L) is separable, 
<2*p~°° H L 3 C * by the minimality of C*. Since L/C* is separable and 
(Ç^-œ n L ) / C * i s p u r e l y inseparable, Q*p~œ D L = C*. Clearly iï* = Q* 
andH* = S 0 Q* C*. This completes the proof. 

Clearly Kp~œ nLQC*. If either L/K is modular or L/K splits, then C* -
fcp-™ f^ L j n fact? if L/K is modular, then K, the algebraic closure of K in L, 
is modular over K since K = Q* and hence X = i/*. If L/K is relatively 
separated (L/K(M) is separable algebraic for every relative ^-basis M), then 
L/C* and L/H* have finite separating transcendence bases by [17, Corollary, 
p. 418] and [17, Theorem 1, p. 418]. Hence if L/K is relatively separated and 
modular, then L/K splits by [10, Proposition 1, p. 2]. 

If L/K (or C*/K) has finite inseparability exponent e and K(Lp6)/K 
(or K(C*p6)/K) has a finite separating transcendence basis, then C*/K is 
relatively separated by [17, Theorem 2, p. 419]. If L/K (or C*IK) is finitely 
generated, then C*/K is relatively separated. 

THEOREM (1.2). If C*/K is relatively separated, then C*/K has the following 
properties: 

1. C* is a maximal intermediate field of L/K which is reliable over K. 
2. C* is the only intermediate field of L/K such that L/C* is separable and 

C*/K is reliable. 

Proof. 1. Since C*/K is relatively separated and has no proper coseparable 
intermediate fields, C*/K is reliable [18, Theorem 1, p. 523]. Let F be any 
intermediate field of L/C*. Then C* is a coseparable intermediate field of F/K. 
Thus if F/K is reliable, F = C*. Hence C* is a maximal intermediate field of 
L/K such that C*/K is reliable. 

2. Let R be an intermediate field of L/K such that L/R is separable and R/K 
is reliable. Then R 2 C* by the minimality of C*, whence R* = C* by (1). 

Example (1.3). C* is not necessarily unique with respect to being a maximal 
intermediate field of L/K which is reliable over K: Let L = P(x, y, z) and 
K = P(xp, yp) where P is a perfect field of characteristic p 9e 0 and x, y, z are 
algebraically independent indeterminates over P. Set R = K(z, zx + y). 
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Then R/K is reliable by [18, Example 1, p. 522]. Now [L : R] = p and L/K 
is not reliable since L/K(x, y) is separable. Thus R is a maximal intermediate 
field of L/K which is reliable over K. Now C* = K(x, y) since L/K(x, y) is 
separable and K(x, y)/K is reliable. 

The following result generalizes the structure theorem of Heerema and 
Tucker [10, Corollary 7, p. 4] given for finitely generated extensions. 

THEOREM (1.4). Suppose C*/K is reliable. Then L/Q* has finite inseparability 
exponent, C*/Q* is purely inseparable modular with bounded exponent, and 
L = F ® s (S ® Q* C*) where S is the maximal separable intermediate field of 
H*/Q* and F is an intermediate field of L/S which is regular over S and separable 
over Q*. 

Proof. By (1.1), C*/Q* is purely inseparable modular. Since C*/K is reliable, 
C*/Q* is reliable and [17, Proposition 1.23, p. 16] shows C*/Q* is of bounded 
exponent. By (1.1), H* = S (g) Q* C*, and thus H* is of bounded exponent 
over S. Since L/H* is separable, L = F ® s H* by [13, Theorem 4, p. 1178]. 
ThusL = F®S(S ®Q*C*). 

It is well known that the field of constants R* of all infinite higher derivations 
on L/K is such that L/R* is regular [9, Theorem 2.3, p. 264]. Hence R* 3 H*. 
We now determine R* by using H* and C*. 

THEOREM (1.5). [2, Theorem 1, p. 50] The following conditions are equivalent 
on L/K. 

1. L/K is separable and CX?=1K(D,i) = K. 
2. K is afield of constants of a set of infinite higher derivations on L. 

THEOREM (1.6). Let R* be the field of constants of all infinite higher derivations 
on L/K. Then 

oo oo 

R* = nH*(Lpi) = n c*(Lpl). 

Furthermore, R* is the unique maximal relatively perfect field extension of C* 
in L. 

Proof. We first show that L is separable over H?=i C*(Lpl). Since L/C* is 
separable, L/C* is modular. Thus L/p)?=i C*(LP ) is modular. Hence it suffices 
to show that U> C\ OT=i C*(Lpi) = (fY?=i C*(Lpi)y. Since L/C* is separable, 
C* r\L* = C*p. Since C*(Lpi) and C*(LÔ H Lp are intermediate fields of 
Lp/C*p and since C* and Lp are linearly disjoint over C*p, we have that C* and 
C*(L^) are linearly disjoint over C*p and that C* and C*(Lpi) H Z> are 
linearly disjoint over C*p. Now C*(C*p(Lpi)) = C*(Lpi) and since C*p(Lpi) C 
C*(J>*) n ^ Ç C * ^ 1 ) , it follows that C*(C*(L^) H L*) = C*(L^). Thus 
C*p{Lpi) = Lp H C*(Z/). Hence 

Lpn n c*o^') = n (^ n c*api)) = n c*p(Lpi) = ( n c*(Lpl'))P. 
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Therefore L/HT=i C(Lpl) is separable. It is straightforward that 

n?-i ((n?=i C*(L^))(L^)) = n?=i c*^'). 

Thus by (1.5), DT=i C*(£p*) is the field of constants of a set of infinite higher 
derivations and R* Ç n?=i C*(L^). Since R* 2 C*, i?* = Pl?=i #*(Z^) ^ 
OT-i C*(LP') and we have i?* = OT=i C*(Lpi). Since i P / C * is separable 
algebraic, R* = n?=i H*(Lpt). Since i?* is contained in C*(LP), no element of 
-R* which is relatively ^-independent over C* can be relatively ^-independent 
in L/C*. Since L/R* is also separable, R* must have the empty set as a relative 
£-basis over C*, i e., .R*/C* is relatively perfect. Since any relatively perfect 
field extension of C* must be contained in Pj?=i C*(Lpl), R* is the unique 
largest such field extension of C*. 

COROLLARY (1.7). Suppose L/K is relatively separated. Then R* = H*. 

Proof. Since L/K is relatively separated, L/C* has a finite separating tran­
scendence basis as noted in the comments preceeding (1.2). Thus n?=i C*(Lpl) = 
C* = H* by [18, Theorem 2, p. 524]. 

2. Dist inguished subfields. In 1947 Dieudonne introduced the concept of 
distinguished subfields of L/K. An intermediate field F is distinguished if and 
only if F is separable over K and L C FÇK1*'"0). If L/K is of finite inseparability 
exponent, then there always exists distinguished subfields, but an example is 
given in [5] of an extension which does not have a distinguished subfield. If L/K 
is finitely generated then L has the same degree over each distinguished sub-
field and this degree is Weil's order of inseparability. The results in [12] for 
the finitely generated case can be extended to field extensions L/K of finite 
inseparability exponent to show that L has the same cannonical invariants 
[16, Definition 1.30, p. 27] over each distinguished subfield. However, the 
structure of L over different distinguished subfields can vary. 

Example (2.1). L is modular over one distinguished subfield, but is not 
modular over every distinguished subfield: let K = P(w, x, y) and L = 
K(z, zwp~ , zwp~ xp~ + yv~ ) where P is a perfect field of characteristic p 7e 0 
and w, x, y, z are algebraically independent indeterminants over P. Then L/K 
has inseparability exponent 2. K(z) and K(zwp~ xp~ + yp~l) are distinguished 
intermediate fields of L/K. L/K(z) is not modular since zp w, x, y are p-
independent in K(z) ([16, Example 1.59, p. 55]). However L/K(zwp~ xp~~ + 
yv~l) is modular with modular basis {z, zwp~ }. 

We introduce a numerical invariant on L/K, namely m (L/K) = max 
{r\L/K(LpT) is modular} if the maximum exists and m(L/K) = oo otherwise. 
If L/K(LpTl) is modular then L/K(LpT) is also modular for r fk n. We use 
the invariant to study properties of L over its distinguished subfields and in 
particular apply it to the fields C* and H* introduced earlier. 
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T H E O R E M (2.2). Suppose L/K has finite inseparability exponent e. Then 

m(L/K) ^ e if and only if L/F is modular for every distinguished intermediate 

field F. 

Proof. Suppose m (L/K) ^ e and let F be a distinguished subfield. Since 
F/K is separable, F is an equiexponential modular extension of K(Fpe) of 
exponent e. Since L C F(Kp~e), K(Lpe) = K(Fpe). Since L/K(Lpe) is also 
modular of exponent e, it follows tha t F is pure in L/K(Lpe). T h u s L/F is 
modular [21, Definition and Note, p . 41]. 

Conversely, suppose L/F is modular for every such F. Then L/Ç\F F is 
modular [21, Proposition 1.2, p. 40]. Hence it suffices to show C\F F = K(Lpe). 
Clearly K(Lpe) C OF Z7. Let c G L - K(Lpe) and let F = K(Lpe) (Y) be a 
distinguished intermediate field of L/K where F is relatively ^- independent in 
L/K and Yp€ is a relative £-basis of K(Lpe)/K. Since F/K(Ue) is modular, it 
follows tha t f V r i£ (£ p e ) ( F - {;y}) = K(Lpe). Hence there exists ;y Ç F such 
tha t c ? K(Lpe) (Y — y). Since L /7 7 has exponent £, there exists x Ç L such 
tha t x has exponent g over K(Lpe) (Y). F i s an equi-exponential modular basis 
of exponent e + 1 of F/K(LpB+l). T h u s 3/ has exponent e + 1 over K(Lpe+ ) 
( Y — {y)). Now both x and x + y have exponent e over K(Lpe) ( Y) and either 
x or x + y has exponent g + 1 over K(Lp6+ ) ( F — f^j). T h a t is, there exists 
z £ L such tha t s has exponent g over K(LpC) ( F ) and exponent e + 1 over 
K(Lpe+1) (Y - {y}). Since clearly z has exponent e over K(Lp6+1) (Y - {?}), 
tf(LO(I0nii:(L*e)(r- {?},*) = I f C ^ ' K F - {?}). Hence c <Z K(Lpe)(Y) 
C\ K(Lpe) (Y - {y}, z). We now show tha t K(Lpe) (Y - {y}, z) is a distin­
guished intermediate field so tha t for any c f L — K(Lpe), there exists two 
distinguished intermediate fields for which c is not in their intersection whence 
not in the intersection of all distinguished intermediate fields. T h u s K(Lpe) = 
DFF. N O W Z (? K(LP) (Y - {y}) else zp6~l Ç K(Lpe) (Y - {y}). T h u s 
(Y - {y}) KJ {z\ is relatively ^- independent in L/K. Also zp€ $ K(Lpe+l) 
(y*« _ {y>«}) else zpe G K(Lp6+l) (Y - {y}). T h u s (F^ e - {y*}) U zpe is a 
relative £-basis of K(Lpe)/K. Hence i£(Lp e) ( F - {3/}, z) is a distinguished 
intermediate field of L / K . 

As an application of (2.2) we consider the following. Every extension of a 
field K of characteristic p ^ 0 is separable if and only if [K : Kp] = 1. In [13] 
it is shown tha t every extension of K is modular if and only if [K : Kp] ^ p. 

COROLLARY (2.3). The following are equivalent for a field K of characteristic 
p 9* 0. 

1) [K : Kp] g p\ 
2) m (L/K) ^ e for every extension L of inseparability exponent e. 

Proof. Assume 1). I t suffices to consider the case where [K : Kp] = p2. Let L 
be any extension of K of exponent e and let D be a distinguished subfield of 
L/K. Let {x, 3;} be a />-basis for K. Then D(xp~\ yp~e) 3 L 3 L>. Since 
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D(xp~e, yv~e) is modular over D, [16, Proposition 2.5, p. 76] shows L is modular 
over D. By (2.2) L is modular over K(Lp€) and hence m(L/K) ^ e. 

Conversely, assume 2). Suppose [K : i£p] > p2, and we find a contradiction. 
Let {w, x, y) be part of a ^-basis for K. Then L = K(z, zwp~ , ZT£̂ ~ XP~ + 
yp~ ), as in Example (2.1), is of exponent 2 and yet L/K(LP ) is not modular. 

H m (L/K) ^ e, then Q* Ç X(Lpe) so Q*/X is separable. In fact, m{L/K) ^ 
e if and only if Q* C i£(Z/e) since when Q* Ç # ( # « ) , Q*(L*') = K(Lpe) and 
L/Q*(Lpe) is modular. 

We now direct our attention to the structure of Q*/K. 
If L/K has finite inseparability exponent e and K(Lp6)/K has a finite 

separating transcendence basis (whence if L/K is finitely generated), then 
n?=i K(Lpl) is the separable algebraic closure of i^ in L ([18, Theorem 2, 
p. 524]). 

THEOREM (2.4). Suppose P|?=i K(Lpl) is the separable algebraic closure of K 
in L. Then m (L/K) = oo if and only if Q*/K is separable algebraic. If m (L/K) 
= oojhenH* = C* if and only if Q* = CTi=iK(Lpi). 

Proof. Suppose m(L/K) = oo. Then L/HT=i K(Lpi) is modular. By the 
minimality of Q*, H?=i K(Lpl) 3 Q*. Hence Ç* /^ is separable algebraic. 
Conversely, suppose Q*/K is separable algebraic. Then H?=i K(Lpl) 3 Ç* 
whence n " = i ^ ( i p i ) = OT=i 0*(L^). Since L/Q* is modular, L/OT=i Q*(L^) 
whence L / n ? = i K(Lpl) is modular. Thus m (L/K) = oo. It follows easily 
from (1.1) that m (L/K) = oo implies that the equivalence of H* = C* and 
ç* = ni=iK(Lpi). 

COROLLARY (2.5). Suppose L/K is reliable. Then H?=i K(LpX) is the separable 
algebraic closure of K in L and m (L/K) = oo if and only if L/K is algebraic 
and is of bounded exponent and modular over its maximal separable intermediate 
field. 

Proof. Since L/K has no proper coseparable intermediate fields, L = C* 
and C*/K is reliable. Thus L/Q* is purely inseparable modular with bounded 
exponent by (1.4). Hence if Q*/K is separable algberaic, then OT=i K(Lpl) is 
the separable algebraic closure in L by the comments preceding (2.4). The 
conclusion is now immediate from (2.4). 

THEOREM (2.6). Suppose L/K is algebraic and let S denote the maximal sep­
arable intermediate field of L/K. Then L/S is modular if and only if Q* is the 
maximal separable intermediate field of C*/K. If L/S is modular, then Q* is the 
unique minimal intermediate field over which L splits. 

Proof. Suppose L/S is modular. Then Q* Ç S by the minimality of Q*. 
Hence Q*/K is separable algebraic. By (1.1), C*/Q* is purely inseparable. 
Conversely, suppose Q* is the maximal separable intermediate field of C*/K. 
Then Q* Q S and so S/Q* is separable algebraic. Since C*/Ç* is purely in-

https://doi.org/10.4153/CJM-1977-131-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1977-131-4


1310 J. K. DEVENEY AND J. N. MORDESON 

separable and L/C* is separable algebraic, L = 5 ® Q* C*. Hence L/S is 
modular since C*/Q* is modular. Now suppose L/S is modular and L/C splits 
where Q is an intermediate field of L/K. Say L = S' ® Q C where S' and C are 
intermediate fields of L/Q such that S'/Q is separable algebraic and C/Q is 
purely inseparable. If Q/K is not separable, then there exists Q', Q Z) Q' Z2 K 
where Q/Q' is purely inseparable and Q'/K is separable algebraic. Thus C/Q' 
is purely inseparab'e and L/C is separable algebraic and hence L splits over 
Q' say L = S" ® Q> C. If suffices to show Qf 2 (?*. As Q'/iC is separable, 
S" Ç 5. Now L/S" is purely inseparable, so S" = S. Now L/C is separable, 
so C* C C. Since L/S is modular, Ç* = S H C* Ç S H C = Q' whence Ç 2 Q* 

Definition (2.7). Let L be an intermediate field of L/K. The purity index of 
L in L /X is defined to be the largest nonnegative integer r such that L and 
K(Lpl) are linearly disjoint over K{Fpl) for i = 0, 1, . . . , r if such an r exists, 
otherwise oo is the purity index. 

It is possible that F and K(Lpl) are linearly disjoint over K(Fpl) for some 
integer i and yet F and K(Lpl~ ) are not linearly disjoint over K(Fpl~ ) . We 
note that if L/K is separable, then L is separable over an intermediate field F 
if and only if the purity index of F in L/K is positive. 

If L/K is purely inseparable modular, then every basic intermediate field 
[21] has purity index oo. For L/K arbitrary, we characterize distinguished 
intermediate fields in terms of purity index. 

LEMMA (2.8). Let F be an intermediate field of L/K. If there exists a field 
extension H/K such that F <g)K H is a field and L Ç F ®K H, then purity index 
(F) = o o . 

Proof. We have K(Fpi) Ç K(Lpi) Ç K(Fpi) ®K K(Hpi) and F and K(Fpi) 
®K K(Hpl) are linearly disjoint over K(Fpl), i = 0, 1, . . . . Thus F and 
K(Lpi) are linearly disjoint over K(FV%), i = 0, 1, . . . , that is, purity index 
(F) = oo. 

THEOREM (2.9). Let F be an intermediate field of L/K such that L/F is purely 
inseparable and F/K is separable. Then F is distinguished if and only if purity 
index (F) = oo. 

Proof. Suppose Lis distinguished. Then L Ç F ®K L?~°° so by (2.8) purity 
index (L) = oo . Conversely, suppose purity index (L) = oo . Let x G L?~°° (L). 
Then x Ç Lp~°° (L) = Fp~œ. Thus x Ç Fp~i and x Ç Kp~j (L) for some i and j . 
Let r = max {i, j \ . Then x Ç Lp~r C\ Kp~r (L). Since L, K(LpT) are linearly 
disjoint over K(Fpr)} FV~T and i ^ - r (L) are linearly disjoint over KV~T (L). 
Thus x Ç L2*-' C\ Kp~r (L) = iP -7" (L). Hence x Ç ^ " ° ° (L). Therefore 
i^-0 0 (L) Ç Kp-™ (L) so L Ç i ^ - œ (/r). Since F/K is separable i^~œ (L) = 
L ®K Kp~œ so Lis a distinguished subfield. 
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