
J. Fluid Mech. (2020), vol. 883, A33. c© The Author(s) 2019
This is an Open Access article, distributed under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/),
which permits non-commercial re-use, distribution, and reproduction in any medium, provided the
original work is unaltered and is properly cited. The written permission of Cambridge University Press
must be obtained for commercial re-use or in order to create a derivative work.
doi:10.1017/jfm.2019.793

883 A33-1

A realizable data-driven approach to delay
bypass transition with control theory

Pierluigi Morra1,†, Kenzo Sasaki2, Ardeshir Hanifi1, André V. G. Cavalieri2

and Dan S. Henningson1

1KTH Royal Institute of Technology, Linné FLOW Centre, Department of Mechanics, SE-10044,
Stockholm, Sweden

2Instituto Tecnológico de Aeronáutica, Aerodynamics Department, São José dos Campos, 12228900,
Brazil

(Received 30 January 2019; revised 6 July 2019; accepted 26 September 2019)

The current work presents a realizable method to control streaky disturbances in
boundary layer flows and delay transition to turbulence by means of active flow
control. Numerical simulations of the nonlinear transitional regime in a Blasius
boundary layer are performed where streaks are excited in the boundary layer by
means of a high level of free-stream turbulence. The occurring disturbances are
measured by means of localized wall-shear-stress sensors and damped out using
near-wall actuators, which resemble ring plasma actuators. Each actuator is powered
by a time-varying signal whose amplitude is computed by processing signals from the
sensors. The processed signal is the result of two control laws: the linear quadratic
Gaussian regulator (LQG) and the inverse feed-forward control technique (IFFC).
The use of the first control method, LQG, requires a state-space representation of the
system dynamics, so the flow is described by means of a linear time-invariant operator
that captures only the most relevant information of the dynamics and results in a
reduced-order model (ROM). The ROM is computed by means of the eigensystem
realization algorithm (ERA), which is based on the impulse responses of the real
system. Collecting such impulse responses may be unfeasible when considering
free-stream turbulence because of the high dimensionality of the input forcing needed
for a precise description of such a phenomenon. Here, a new method to identify the
relevant system dynamics and generate the needed impulse responses is proposed,
based on additional shear-stress measurements in an upstream location. Transfer
functions between such measurements and other downstream sensors are obtained
and allow the derivation of the ERA system, in a data-driven approach that would
be realizable in experiments. Finally, in order to discuss the advantages of the LQG
based on the ROM and analyse its performance, the implemented LQG is compared
to the IFFC, which consists of wave cancellation. The work (i) presents a systematic
and straightforward way to deal with high-dimensional disturbances in order to build
ROMs for a feasible control technique, and (ii) shows that even when considering
practical constraints, such as the type and size of actuators and sensors, it is possible

† Email address for correspondence: pmorra@mech.kth.se

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

79
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://orcid.org/0000-0001-6343-7507
https://orcid.org/0000-0002-3347-4996
https://orcid.org/0000-0002-5913-5431
https://orcid.org/0000-0003-4283-0232
mailto:pmorra@mech.kth.se
https://doi.org/10.1017/jfm.2019.793


883 A33-2 P. Morra and others

to achieve at least as large delay of bypass transition as that obtained in more
idealized cases found in the literature.

Key words: boundary layer control, drag reduction, transition to turbulence

1. Introduction
The laminar flow state is characterized by a lower friction drag than the

turbulent one, which implies less energy consumption for many applications, such as
transportation means like trains and aircraft. Therefore, control of laminar–turbulent
transition is of great interest in many technical areas. The transition scenario depends
on a number of parameters, and an overall picture of these different scenarios can be
found in Schmid & Henningson (2001). Transition to turbulence in boundary layer
flows where free-stream turbulence has an intensity higher than ≈1 % occurs rapidly
and bypasses the classical scenario triggered by Tollmien–Schlichting (TS) waves, as
shown by Arnal & Juillen (1978). When free-stream turbulence is present, a set of
low-frequency vortices (Hultgren & Gustavsson 1981; Hunt & Durbin 1999; Zaki &
Saha 2009; Zhang et al. 2011) enter the boundary layer and causes the appearance
of elongated streaky structures of alternating high and low streamwise velocity. The
effects of free-stream turbulence on the boundary layer flow were firstly observed
in the experimental studies of Klebanoff (1971). The amplitude of such velocity
fluctuations grows linearly along the streamwise direction (Andersson, Berggren
& Henningson 1999; Luchini 2000) and is accompanied by growing secondary
fluctuations of the streaky structures on the planes perpendicular to the streamwise
direction. When the amplitude of such secondary cross-flow fluctuations is sufficiently
high turbulent spots appear (Brandt & Henningson 2002; Ricco, Luo & Wu 2011),
which grow and merge further downstream and ultimately lead to a fully turbulent
flow. This process was observed both in experiments (Matsubara & Alfredsson 2001)
and simulations (Brandt, Schlatter & Henningson 2004). Thus, the boundary layer
can be divided into three zones: (i) an upstream zone where there is high level of
receptivity and free-stream turbulence triggers disturbances in the boundary layer, (ii)
a middle zone where streaky disturbances grow due to the linear lift-up mechanism
and (iii) a downstream zone where the flow nucleates turbulent spots which grow
and merge as they propagate downstream until the boundary layer becomes fully
turbulent.

The boundary layer flow in the middle zone can often be described with sufficient
accuracy by the linearized Navier–Stokes (N–S) equations (Schmid & Henningson
2001). The possibility of working with a linear system greatly facilitates the
application of flow control techniques. The a priori knowledge of the linear behaviour
of the TS waves was exploited in the experiments of Thomas (1983) and in the
simulations of Laurien & Kleiser (1989) to counteract TS waves and delay transition.
Similarly, for bypass transition, Jacobson & Reynolds (1998) and Hanson et al. (2014)
exploited the linearity of the dynamical system to show the possibility to damp streaky
structures. In those works the a priori knowledge of the system dynamics was used
to create ad hoc counter disturbances. Such an ad hoc practice lacks in generality and
may require tedious testing, therefore it is appealing to apply optimal control theory to
flow control problems. The control theory community has produced many reliable and
elegant techniques to tackle linear systems. Among the first successful applications
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A realizable data-driven approach to delay bypass transition 883 A33-3

of optimal control theory in fluid mechanics are the works of Joshi, Speyer & Kim
(1997), Bewley & Liu (1998), Högberg & Bewley (2000) and Högberg, Bewley &
Henningson (2003), where optimal control methods are applied to linearized systems
and used in fully nonlinear channel flows. More recently, Monokrousos et al. (2008)
showed the successful application of the linear quadratic Gaussian regulator (LQG)
for control of streaks triggered by the free-stream turbulence.

In optimal control techniques the final goal is to find the function that takes
measurements as input and gives actuation signals as output while minimizing an
objective function. Particularly, in classical optimal control methods the optimal
solution for linear time-invariant systems is given by solving an algebraic Riccati
equation, which consists of a matrix equation whose dimensions are approximately
those of the original linear system to control. If the original linear system has
large dimensions, as is the case in fluid mechanics, the solution of the algebraic
Riccati equation may be extremely computationally demanding. A possible solution
is reducing the order of the optimal control problem by keeping only the information
useful for the control. This is the idea behind reduced-order models (ROMs). In fact,
measurements usually contain only a portion of the total information present in the
system and actuators can usually excite only certain structures. In control theory,
such limitations posed by sensors and actuators define two properties of the system:
its observability and its controllability, respectively. The control problem alone needs
only the portion of the system that is observable and controllable. The practice
of model reduction in flow control was treated in Bagheri, Brandt & Henningson
(2009), Semeraro et al. (2011), Poussot-Vassal & Sipp (2015) and Yao & Jaiman
(2017). The approach was shown to be successful in the sense that the solution to
the control problem was nearly unaffected by the use of a ROM. A classic technique
for achieving a ROM is the eigensystem realization algorithm (ERA) (Juang & Pappa
1985; Semeraro et al. 2013a). ERA is based on a set of impulse responses from
each input (actuators and disturbances) to each output (measurements). In order to
avoid confusion it is noticeable that this description of the ERA is also known as
ERA-POD, with POD standing for proper orthogonal decomposition.

Ma, Ahuja & Rowley (2011) showed that the ROM achieved by the ERA-POD
is equivalent to that achieved by approximate balanced POD truncation. This means
that the ROM resulting from the ERA-POD is a projection of the original system
onto the set of modes given by the intersection of the set of the most observable
flow structures and the set of the most controllable flow structures. Qualitatively, an
observable structure is one that generates non-zero outputs whereas a controllable
structure is one that can be excited by the inputs. The term ‘most’ is obviously case
dependent. For controllable structures it represents the number of flow structures
used to recreate with an acceptable small error the flow field obtained by an impulse
response. The same reasoning holds for the observable flow structures but with respect
to the adjoint system (see Bagheri et al. (2009) for a more detailed discussion of
controllability and observability in fluid mechanical systems). Examples of ERA-POD
applications in fluid mechanics are found in Semeraro et al. (2013a), for control of
a three-dimensional nonlinear TS wave packet, and Sasaki et al. (2018a), for control
of three-dimensional TS waves arising from stochastic disturbances.

A consistent modelling of the inputs implies correctly modelling the space spanned
by the disturbances, which may require the use of a basis with as many degrees of
freedom as the dimensions of the desired space. Thus, in case the space spanned
by a disturbance or an actuator has large dimensions it may become unfeasible
to collect all the impulse responses. A similar issue may also happen when the
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number of outputs is very high. Another possibility to avoid demanding computations
for solving the control problem is dropping the use of model-based methods, as
discussed by Fabbiane et al. (2014), who made use of a learning algorithm that
only needs the modelling of the transfer function (TF) from the actuators to the
measurements.

The present work addresses the delay of bypass transition in a framework which
can be reproduced in wind-tunnel experiments. The disturbance used is stochastic
and has high dimensions in order to model the effects of free-stream turbulence
in the boundary layer altogether. The number, the location and the type of devices
modelled as actuators or sensors are chosen by assuming limitations which occur in
experiments. We use a finite number of localized near-wall actuators that resemble
ring plasma actuators (Kim & Choi 2016; Kim, Forte & Choi 2017; Shahriari,
Kollert & Hanifi 2018) and localized wall-shear-stress sensors. The techniques to
build the ROM and design the controller are chosen by assuming the availability of
data which are feasible to collect in experiments. We make use of the ERA-POD, a
data-driven algorithm, to generate the ROM for the design of the controller. However,
ERA-POD is based on impulse responses from each input to each output, and if
the number of inputs is high, as occurs when modelling free-stream turbulence as
a disturbance, performing the ERA-POD becomes computationally heavy. Moreover,
it is not possible to collect impulse responses from free-stream turbulence in an
experimental set-up. So, we present a new method to identify the relevant effects of
free-stream turbulence for control purposes and generate a set of impulse responses
for the application of the ERA-POD. This new set of impulse responses is smaller
than the one needed if the complete disturbance had been used and is based only
on measurements. Therefore, the proposed method reduces the computational cost for
control design, when compared to the computational cost of the standard application
of the ERA-POD in the presence of a large number of inputs, and is feasible in
experiments. We design the LQG regulator on the state-space ROM and show that
the delay of bypass transition achieved in these realistic conditions is at least as
large as the one presented in more idealized studies which do not account for the
limitations present in experiments (Monokrousos et al. 2008). Moreover, in order to
further discuss the advantages of applying the LQG, which is not feasible in this flow
case without the availability of a ROM of reasonable dimensions, we compare the
behaviour of the implemented LQG with that of a different optimal control method,
the inverse feed-forward control (IFFC), whose action consists of wave cancellation
(Sasaki et al. 2018a).

In summary, the contribution of this work consists of: (i) presenting a data-driven
method based on localized wall measurements and actuators for the closed-loop
control of bypass transition, which exploits the characteristics of the boundary layer
flow to model free-stream turbulence in a ROM via ERA-POD and which can be
implemented in experiments; (ii) providing evidence via a numerical study that in
a realistic framework, considering the limitations which occur in experiments, it
is possible to achieve as large delay of bypass transition as that obtained in more
idealized cases found in the literature.

The paper is structured as follows. In § 2 the equations used to describe the full or
reduced system dynamics are introduced; in § 3 the control techniques of interest are
briefly described; in § 4 the details of the framework for the nonlinear simulations
are outlined; in § 5 the identification techniques and the used identified models are
presented; in § 6 the behaviour of the designed controller in the nonlinear N–S
equations is assessed. A summary of the main conclusions is given in § 7.
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2. Governing equations
2.1. Dynamical system

The N–S equations can be expressed in terms of the perturbation quantities as

∂q′

∂t
=−(q′ · ∇)qB − (qB · ∇)q

′
− (q′ · ∇)q′ −∇p′ + Re−1

∇
2q′ + f , (2.1a)

∇ · q′ = 0, (2.1b)
q′ = q′0 at t= 0, (2.1c)

where q′ = q′(x, t) is the perturbation velocity vector, qB = qB(x) the unperturbed
velocity vector, p′ = p′(x, t) the perturbation pressure, f = f (x, t) a body force vector,
Re the Reynolds number, t the time, x = (x1, x2, x3)

T the space variable and ∇ =
(∂x1, ∂x2, ∂x3) the gradient operator.

Here, the unperturbed velocity vector qB is the solution of an evolving zero-
pressure-gradient Blasius boundary layer. The velocity perturbation q′ satisfies no-slip
conditions at the wall x2 = 0 and Neumann conditions at free stream x2 = Lx2 .
Periodicity is assumed along the spanwise direction x3 and enforced along the
streamwise direction x1 by means of an artificial forcing f BC = λ(x1)(qB − q′), which
is placed in a fringe region at the outlet; λ(x) is a non-negative function which
is non-zero only within the fringe region; f BC forces all perturbations to zero and
modifies qB to be periodic (see Nordström, Nordin & Henningson (1999) for details
about f BC).

The flow control problem consists of finding the correct external action that modifies
the fluid dynamics to achieve a specific goal. In our case, such external action can
take the form of a boundary condition or a body force and can be expressed as
a function of time and space. It follows that the problem can be split into finding
the correct spatial distribution of such an action and its time modulation. In the
present work it is assumed that the spatial distribution and the time modulation of
the external action are decoupled. The spatial distribution is prescribed, so the flow
control problem reduces to the computation of its time-varying amplitude. From now
on this time-varying scalar is referred to as the input. Using a finite number of
actuators Nu, the external action used for control reads

f u =

Nu∑
k=1

u(t)kb(x)k, (2.2)

where b(x)k is the spatial shape of the kth body force, and u(t)k the corresponding
time variation. The latter represents the control input.

Free-stream turbulence is modelled as a forcing in the fringe region; f BC is modified
to force q′ to be equal to a prescribed perturbation that mimics the presence of free-
stream turbulence. The prescribed perturbation is of the form

q′FST =
∑
α

∑
β

∑
ω

Φ(α, β, ω)q̂′(x2, α, β, ω)ei(αx1+βx3−ωt), (2.3)

with q̂′ an eigensolution to the Orr–Sommerfeld–Squire eigenvalue problem for
a parallel flow in a semi-bounded domain, α the streamwise wavenumber, β the
spanwise wavenumber and ω the angular frequency. Free-stream disturbances are thus
expanded as a sum of eigenfunctions of the linearized parallel-flow problem (see
Brandt et al. (2004) for more details).

A linearized version of the N–S equations about qB can be obtained by dropping
the nonlinear term (q′ · ∇)q′ from (2.1a).
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Gyu
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x2
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FIGURE 1. Plant. Computational box (cut along x1): frame of reference x1x2x3, sensors
y and z (black circles), actuators u (white circles) and controller Gyu. Contour plots:
perturbation part of the streamwise velocity, q′1, snapshot of an uncontrolled case at time
t= t∗; the isolines of the contour plots are all for the same set of values. Boundary layer,
δ99, shown on the left wall of the box.

2.2. Reduced-order dynamical system
The linear dynamical system used for the application of control theory techniques is
a ROM and reads

q̇(t)= Aq(t)+ Bu(t)+Mdd(t), (2.4)

where q = q(t) is the N × 1 state vector (which generally is not exactly the same
quantity represented by q′), q̇ is its time derivative, A the N × N matrix that defines
the system dynamics, B the N × Nu matrix that characterizes the control inputs, u=
u(t) a Nu× 1 column vector containing all the input amplitudes u(t)k, Md the N ×Nd
matrix that characterizes the disturbance inputs and d= d(t) a Nd × 1 column vector
containing all the input amplitudes d(t)k. Here, N is the degree of freedom of the
ROM, Nu the number of control inputs and Nd the number of disturbance inputs.

We also assume to have access to two finite sets of measurements: y(t), Ny × 1
and z(t), Nz × 1, where Ny and Nz represent the respective number of measurements
available. It holds that

y(t)= Cyq(t), z(t)= Czq(t), (2.5a,b)

where the Ny×N matrix Cy and the Nz×N matrix Cz characterize the measurements
in the ROM. From now on y(t) and z(t) are referred to as outputs. Equations (2.4)
and (2.5) form a ROM state-space representation of the system.

A different description of the system can be given by means of transfer functions.
TFs are built by performing the Laplace transform on the state-space representation
and in general describe the system as a function of the angular frequency ω only.
Here, sensors and actuators are placed on straight lines along the spanwise direction
(figure 1), with Nu = Ny = Nz. Since the flow is periodic in the spanwise direction,
TFs, inputs and outputs can be expressed as functions of the spanwise wavenumber
β as well. The description by means of TFs reads

ŷ(ω, βk)= Ĝuy(ω, βk)û(ω, βk)+ Ĝdy(ω, βk)d̂(ω, βk),

ẑ(ω, βk)= Ĝuz(ω, βk)û(ω, βk)+ Ĝdz(ω, βk)d̂(ω, βk),

}
(2.6)
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where Ĝ = Ĝ(ω, βk) are the TFs, ŷ = ŷ(ω, βk) and ẑ = ẑ(ω, βk) the outputs in the
frequency domain, û= û(ω, βk) and d̂= d̂(ω, βk) the inputs in the frequency domain
and k is used to stress the fact that the number of outputs is finite, so there is a finite
number of available wavenumbers. From now on all the variables denoted by a hat
symbol are function of (ω, βk), and the explicit writing (ω, βk) is dropped.

The description of the system by means of TFs can be translated in the physical
domain by performing the inverse Fourier transform to (2.6), leading to

y(t)k =
∫ t

0

Nu∑
m=1

Guy
km(t− τ)u(τ )m dτ +

∫ t

0

Nd∑
m=1

Gdy
km(t− τ)d(τ )m dτ ,

z(t)k =
∫ t

0

Nu∑
m=1

Guz
km(t− τ)u(τ )m dτ +

∫ t

0

Nd∑
m=1

Gdz
km(t− τ)d(τ )m dτ ,


(2.7)

with k the output index, and m the input index. Equation (2.7) can also be obtained
by substituting the solution to (2.4), with q(0)= 0, into (2.5). This gives the identities

Guy
km(t− τ)= Cy,keA(t−τ)Bm, Gdy

km(t− τ)= Cy,keA(t−τ)Md,m,

Guz
km(t− τ)= Cz,keA(t−τ)Bm, Gdz

km(t− τ)= Cz,keA(t−τ)Md,m,

}
(2.8)

where Cy,k and Cz,k the kth row of Cy and Cz, and Bm and Md,m the mth column of
B and Md.

3. Control techniques

The present configuration of outputs and inputs together with the convective nature
of the flow make all the control techniques described in this section feed-forward
configurations (Belson et al. 2013).

The control techniques used in the present work are all based on the assumption
that the input u(t)k is a function of the upstream outputs y(t)m,

u(t)k =
∫ t

0

Ny∑
m=1

Gyu
km(t− τ)y(τ )m dτ , (3.1)

with k= 1, 2, . . . ,Nu; Gyu
km in (3.1) differs from the quantities in (2.7) because it does

not describe the open-loop input–output dynamics. It is designed via control theory for
the prescribed closed-loop dynamics. Since qB is independent of the spanwise direction
x3, the instantaneous linearized system dynamics is homogeneous along x3. The latter
and the fact that the outputs are all given by the same type of sensor allows us to
drop the usage of the index k in (3.1) to have Gyu

m . Then, (3.1) can be rewritten as

u(t)k =
∫ t

0

Ny∑
m=1

Gyu
m (t− τ)y(τ )m+k−1 dτ , (3.2)

where for m+ k− 1>Ny spanwise periodicity implies the use of m+ k− 1−Ny.
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3.1. Linear quadratic Gaussian regulator
The technique is based on a linear model, aims at minimizing a quadratic cost function
and assumes the presence of Gaussian white noise disturbances.

Gaussian white noise is added on the output y(t) in the ROM, which reads
y(t) = Cyq(t) + n(t), with n(t), Ny × 1 the time modulation of the noise. Here, d(t)
in (2.4) is also treated as white noise. There is no addition of noise to the output
z(t) because it represents a reference output to minimize, whose measurement is
not available in reality. The noise on the output y(t) corresponds to noise in a real
available measurement.

The covariance matrices associated with d(t) and n(t) are V d, Nd × Nd, and V n,
Ny × Ny, respectively, and are both diagonal and constant because of the assumption
that d(t) and n(t) are white noise disturbances; in particular, the following can be
written

V d = vdI, V n = vnI, (3.3a,b)

with vd > 0 and vn > 0 real scalars and I the identity matrix.
The technique consists of finding Gyu

m by minimizing a prescribed H2-norm of
interest. The disturbances d(t) and n(t) are treated as random variables, so the
objective function of interest is defined as the expected value of an H2-norm. Here,
the objective function contains both the reference output z(t) and the input for
the control u(t), which is added to avoid an infinite amplitude of the input signal,
penalizing excessive control action. The objective function reads

J =E
[

lim
T→∞

1
T

∫ T

0
z(t)TQz(t)+ u(t)TRu(t) dt

]
, (3.4)

where the N ×N matrices Q and R are design weights. The operator E[•] represents
the expected value. From now on the matrices V d, V n, Q and R are referred to as
weight matrices or design weights.

In the LQG it is assumed that u(t) is a linear function of the states, but it is
also assumed that not all the states are known at each time instant, so a second
system for state estimation is introduced. The estimation system makes use of the
known outputs to reconstruct the states at each instant of time, and is designed to
minimize the estimation error. Thus, in addition to the minimization of the objective
function (3.4) to compute the input that controls the system, the estimation introduces
a second minimization problem. Generally these two minimization problems are
coupled, but in the LQG they are independent and solved separately. They consist of
the linear quadratic regulator, which solves the control problem by assuming full-state
information, and the Kalman filter, which solves the estimation problem by assuming
stochastic disturbances on the outputs. The solution of the LQG is the combination of
the two independent solutions. More details about the LQG are given in appendix A,
whereas a thorough description can be found in Lewis & Syrmos (1995).

3.2. Inversion feed-forward control
Inversion feed-forward control is a technique developed in the frequency domain, and
is based on a system described by TFs (2.6). The technique is exactly the same one
used in Sasaki et al. (2018a), but in that work it is referred to as wave cancellation.
The authors decided to change the nomenclature to adopt the name used in the control
community.
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The contribution of the disturbance d̂ in the second equation of (2.6) may also be
expressed as

Ĝdzd̂= Ĝyzŷ+ p̂, (3.5)

where Ĝyz is a TF to design in order to maximize the extraction of information from
ŷ, while p̂ is the residual part of the information in ẑ which is not retrieved by Ĝyzŷ.
The loss of information, i.e. p̂ 6= 0, may be unavoidable and can be seen by resorting
to the state-space representation. The matrix Cy that characterizes the output y(t)
does not necessarily span the same space spanned by the matrix that describes the
system dynamics A, so the outputs y(t), being in a subspace, cannot reconstruct the
whole state space. It follows that the only portion of the signal ẑ(ω, βk) which can
be obtained from the outputs y(t) is

˜̂z= Ĝuzû+ Ĝyzŷ, (3.6)

where ˜̂z is an estimate of ẑ.
The objective of the control problem is the annihilation of the output ˜̂z. Then, a

straightforward strategy to solve the problem is to impose ˜̂z = 0, which is the basic
idea behind IFFC. Assuming û= K̂ŷ in (3.6) gives

K̂ = (Ĝuz)−1Ĝyz, (3.7)

where K̂ solves the control problem in the frequency–wavenumber domain. The
result in (3.7) is ill conditioned in the zeros of Ĝuz, which may lead to spurious
high amplitudes of the input. Moreover, model uncertainties are not considered,
and unstable zeros in Ĝuz would lead to an unstable controller, which is rarely
appreciated in practice. Such limitations are addressed in Devasia (2002), where the
TFs, the inputs and the outputs are functions of the angular frequency ω only. Here,
the same approach is used with some modification to account for a system description
as a function of ω and βk, following Sasaki et al. (2018a). The technique makes use
of two weights, R̂ and Q̂, which here are taken as constant, and solves the control
problem by minimizing the following prescribed objective function

J =
∫
∞

−∞

∑
k

(
ûHR̂û+ ẑHQ̂ẑ

)
1βk dω, (3.8)

where the superscript H indicates the complex conjugate transpose. The presence of
the objective function turns the nature of the problem into an H2 optimal control
problem, whose solution is given by

K̂ =
(Ĝuz)HQ̂Ĝyz

R̂+ (Ĝuz)HQ̂Ĝuz
. (3.9)

The inverse Fourier transform of K̂ gives Gyu
m as in (3.2); only the causal part of Gyu

m
is used for control, since actuation must be decided based solely on present or past
information from the sensors.

This technique was already applied by Sasaki et al. (2018a,b) and shown to
be successful in the control of Kelvin–Helmholtz and Tollmien–Schlichting waves,
where the equivalence between LQG and IFFC for the damping of TS waves was
also shown.
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4. Plant

The domain of interest is a box as shown in figure 1, where the white symbols
represent the outputs and the black symbols the inputs. For flow simulations the
pseudo-spectral code SIMSON (Chevalier et al. 2007) is used. Here, the reference
length is taken to be the displacement thickness of the boundary layer at the inlet
δ∗0 and the reference velocity is the free-stream velocity U∞. In all of the present
simulations the Reynolds number is Re= U∞δ∗0/ν = 300. All the results that involve
transition to turbulence are performed by means of large-eddy simulation (LES) on a
box of dimensions (Lx1,Lx2,Lx3)= (4000,60,50) with (Nx1,Nx2,Nx3)= (1024,121,108)
points for the discretization. The effect of the LES filter (see Schlatter, Stolz &
Kleiser (2004), Schlatter, Stolz & Kleiser (2006a) and Schlatter, Stolz & Kleiser
(2006b) for details) in the area where the flow dynamics is linear is negligible
(Monokrousos et al. 2008). All the results that do not need to include the fully
turbulent regime are performed by direct-numerical simulations (DNS) on a box of
dimensions (Lx1,Lx2,Lx3)= (1000, 60, 50) with (Nx1,Nx2,Nx3)= (1152, 121, 108) points
for the discretization. The points along the wall-parallel directions are equi-spaced,
whereas along the wall normal there are Gauss–Lobatto points.

The free-stream turbulence is modelled by superposition of 200 random modes from
the continuous Orr–Sommerfeld–Squire spectrum. The integral length scale and the
turbulent intensity used for all presented results are respectively L= 7.5δ∗0 and Tu=
3.0 %, considering the free-stream turbulence spectrum in Brandt et al. (2004).

As shown in figure 1, the input and output devices are placed along straight lines.
The first set of outputs is placed at x1,y= 250, which is downstream of the zone with
high receptivity. The second set of outputs is placed at x1,z = 400, since after that
position the nonlinearities start to be non-negligible. Input signals, corresponding to
actuators, are generated at x1,u= 325 to have the same 1x1 between input and outputs,
such that the travelling time of a disturbance from the first set of outputs to the inputs
is roughly the same as the travelling time from the inputs to the second set of outputs.
The chosen location for the devices is also optimal in terms of identification accuracy
for control design, as shown in appendix B. The number of devices along the spanwise
direction is the same for each set and it is equal to Nu=Ny=Nz= 36. Such a choice
is motivated by analysing the wavenumber spectrum of the average disturbance
energy. According to Shannon information theorem the sampling wavenumber needs
to be at least twice the wavenumber of interest. In this case measuring the highest
non-negligible spanwise fluctuation would require at least 18 devices. In order to
have a better measurement of the spanwise fluctuations 36 devices are used. The
devices are equi-spaced along the spanwise direction. The shape of the input actuator
is given by

b(x)= {0, b2(x), 0}T (4.1)

with

b2(x)= exp

[
−
(x1 − x1,0)

2

σ 2
x1

−
(x2)

2

σ 2
x2

−
(x3 − x3,0)

2

σ 2
x3

]
, (4.2)

where σx1 = 3, σx2 = 5 and σx3 = 1.5. The actuator shape resembles that of ring plasma
actuators (see Kim & Choi 2016; Kim et al. 2017; Shahriari et al. 2018), generating
a body force in the wall-normal direction. This is efficient to excite or cancel streaks
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due to the lift-up effect. A detailed analysis on the effect of the actuator shape is
presented in Sasaki et al. (2019), which is the parallel work to the present one.

The outputs are computed as

1
S

∫
S

∂q′1
∂x2

∣∣∣∣
x2=0

dS, (4.3)

with S the area on the wall where the measure is taken. This is an averaged measure
of the shear stress associated with the perturbation part of the streamwise velocity
component on the wall.

5. Reduced-order modelling and control design
Both control methods introduced in § 3 are model based. The IFFC technique

requires knowledge of two TFs, Ĝzu and Ĝyz; Ĝzu is by definition the Fourier transform
of the output signal resulting from an impulse-response simulation of the linearized
N–S equations, whereas Ĝyz needs to be modelled. The LQG technique, instead,
requires the knowledge of the matrices A, B, Cy, Cz and Md, which characterize
the ROM and need to be modelled.

The techniques used for this modelling are introduced in the remainder of this
section, and are all based on input–output data, which are usually available in
experiments. In input–output data part of the information about the system dynamics
is lost. However, its usage is a reasonable design choice, since the control techniques
work only with the observable and controllable structures, whose time evolution
is described by input–output signals. In fact, by definition, the information lost
in input–output data is that associated with the unobservable and uncontrollable
structures.

The present configuration of outputs and inputs together with the convective nature
of the flow allow us to estimate the downstream outputs z(t) from the upstream
outputs y(t). This fact is exploited in the following part of this section.

5.1. Empirical TFs
The estimation of downstream outputs ẑ by means of upstream outputs ŷ can be
performed by designing a TF Ĝyz. Here, Ĝyz is computed by means of an identification
technique using the information extracted from the output data. The TF obtained in
this way is referred to as empirical TF. This method was introduced in Sasaki et al.
(2017) for the estimation of a turbulent jet and applied in Sasaki et al. (2018b)
for the closed-loop control of a two-dimensional shear layer. Here, the approach is
extended to a flow with spanwise periodicity, i.e. outputs are functions of βk as well.
It was shown in Bendat & Piersol (2011) that the optimal frequency response, in the
least square sense, is defined from the auto- and cross-spectra of the input and output
signals

Ĝyz =
Ŝyz

Ŝyy

, (5.1)

where Ŝyy and Ŝyz are respectively the auto- and cross-spectra of the input and output
signals. Both Ŝyy and Ŝyz are computed as the expected values of ŷH ŷ and ŷH ẑ, which
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are obtained via the process of ensemble averaging (Bendat & Piersol 2011). Equation
(5.1), sometimes referred to as an Ĥ1 estimator (Rocklin, Crowley & Vold 1985),
minimizes the error due to noise in the output.

One desirable property of an H1 estimator is that the prediction error is linearly
uncorrelated to the available output signal (Rocklin et al. 1985; Bendat & Piersol
2011). Any remaining errors correlated to the available signal are either due to the
presence of noise in the measurements or to spectral leakage, which is unavoidable
because the signal is not exactly periodic in time. Spectral leakage can be minimized
by using long time series, by windowing the signal for the ensemble averaging or
via the calculation of an improved frequency response, as outlined in the following
section.

5.2. Improved frequency response
The method considered here is referred to as improved frequency response and
consists of improving the accuracy of a TF by means of an iterative algorithm.
This allows us to obtain a more accurate linear approximation of a system and
is particularly interesting when the impulse responses of the disturbances are not
available or unfeasible to collect, as is the case for the free-stream turbulence or
experimental implementations. The method is designed to minimize noise, spectral
leakage and capture some nonlinearity (Schoukens, Rolain & Pintelon 1998).

The algorithm is initialized with a first-guess TF Ĝyz
0 , which may be, for instance,

the result obtained from (5.1). Then, the estimation error, which is the difference
between the signal obtained by using Ĝyz

0 and the available output ŷ, is computed. The
error reads

e(t)k = z(t)k −
∫ t

0

∑
m

Gyz
0,m(t− τ)y(t)m dτ (5.2)

with Gyz
0,m(t) the inverse Fourier transform of Ĝyz

0 . Then, the TF between the error and
the available output ŷ is computed as Ĝyz

e = Ŝye/Ŝyy, which is used to update the initial
TF as Ĝyz

1 = Ĝyz
0 + Ĝyz

e . Iterations are performed until the error TF is minimized.

5.3. Eigensystem realization algorithm using TFs
In § 3 it was shown that in order to design the LQG regulator it is necessary to
solve two algebraic Riccati equations, and the computational power required for their
solution grows quickly with the dimensions of the matrix A, which is the linear time-
invariant operator used to describe the linearized system dynamics. Clearly, for fluid
mechanical systems, which in general present numerous degrees of freedom, the usage
of a ROM is preferable (Kim & Bewley 2007).

For the realization of the ROM we use the ERA-POD (Juang & Pappa 1985). The
ERA-POD is based on output signals resulting from impulse responses. It is necessary
to have access to an number of impulse responses equal to the number of total inputs
of the systems. The signals are written in a Hankel matrix whose dimensions depend
on the total number of inputs and outputs and on the length of the saved time series,
i.e. Nt(Ny + Nz)× Nt(Nu + Nd), Nt being the number of time samples needed to have
a good representation of the impulse response. In case the disturbance is free-stream
turbulence the number of degrees of freedom used for the implementation of d(t) in
the fully nonlinear N–S solver is of the order of hundreds. Then, since the Hankel
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matrix is decomposed by the singular value decomposition, it is clear that collecting
such a high number of impulse responses results in a heavy computational problem.
Besides, in a practical application it is not possible to collect the impulse responses
from the free-stream turbulence disturbance.

Therefore, in order to reduce the computational power required and to have a
method that can be applied in experiments as well, a different approach is proposed.
A new set Ny × 1 of outputs yd(t), which measure the same quantity as y(t) and
z(t), is introduced upstream of y(t), and the outputs generated by a nonlinear N–S
simulation with free-stream turbulence and without control action are stored. An
impulse response coincides with a TF by definition, so the following TFs can be
computed as in (5.1),

Ĝydy
=

Ŝydy

Ŝydyd

, Ĝydz
=

Ŝydz

Ŝydyd

, (5.3a,b)

and their inverse Fourier transforms can be used as a set of impulse responses to
mimic the presence of free-stream turbulence upstream of every control device. These
estimated impulse responses are used in the ERA-POD to model the impulse responses
coming from Mdd(t) in (2.4), which represents the disturbance in the system. The
number of impulse responses from the actuators, which are characterized by Bu(t), is
Nu. Nevertheless, only one of these impulse responses is collected because the other
ones can be computed by exploiting the homogeneity of qB and the periodicity of the
flow along the spanwise direction.

Once the whole set of impulse responses is available it is possible to build the
mentioned Hankel matrix, apply the ERA-POD and retrieve the ROM needed for the
design of the LQG. To the best of the authors’ knowledge, this is the first time this
approach has been used in fluid mechanics.

5.4. Identified reduced-order model
Given the position of the sensors, data-driven TFs can be computed by exploiting the
methods outlined in § 5.1 and § 5.3 and improved as described in § 5.2. Ensemble
averaging is performed on time series with a sampling frequency of 1/0.3, over a
sampling time of T = 25 000, with 16 000 samples per segment, an overlap of 80 %,
a total number of 22 segments and by means of a triangular windowing function.
The improvement of the empirical TF, with available outputs y(t)k at x1 = 250 and
estimated outputs z̃(t)k at x1 = 400, is summarized in figure 2 and table 1. Figure 2
shows a comparison between the TFs Ĝyz estimated with the two methods and
between the resulting estimated signals. It appears that the improved TF increases
the accuracy in estimating the frequencies (ω, βk) > (0.02, 0.9) present in the original
signal, as can be seen in figure 2(a–c). The reason is likely spectral leakage together
with the lower amplitude that the higher frequencies have with respect to the lower
frequencies. The error is reduced in the improved TF because it is computed in the
physical domain, as in (5.2), where it is possible to isolate the erroneous frequencies
bypassing the issue of relative amplitude and spectral leakage. Figure 2(d–f ) shows
that the signal estimated by the improved TF is closer to the measured signal, and
highlights the frequencies where the error is reduced. It is noticeable that the error per
frequency at (ω, βk) < (0.02, 0.9) is not reduced after the improvement. This suggests
that the error at these frequencies belongs to the null space of the measurement
operator (i.e. p̂ in (3.5)), so it cannot be further reduced as discussed in § 3.2. Errors
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FIGURE 2. (Colour online) (a–c) Comparison between empirical and improved TF;
(a) empirical TF, |Ĝyz

emp|; (b) improved TF, |Ĝyz
impr|; (c) |Ĝyz

emp − Ĝyz
impr|. (d–f ) Comparison

between the true z(t)k output from DNS data at x1 = 400 and the estimated output z̃(t)k
(available output yavail(t)k at x1= 250); (d) single output k= 9; (e) empirical TF error (%),
||ˆ̃z|2 − |ẑ|2|/max (Szz); ( f ) improved TF error (%), ||ˆ̃z|2 − |ẑ|2|/max (Szz).

in amplitude estimation are also related to the windowing procedure of the time
signal in the ensemble averaging. Even though the window is chosen to minimize
such errors, its usage inevitably alters the computed amplitudes. Table 1 shows the
normalized correlation value at zero delay, the mean square (MS) and the variance
(VAR) for the empirical TF and for the improved TF.

The TF that estimates the output z̃(t)k given the available output y(t)k, i.e. Ĝyz,
is used in the IFFC control technique. The identified TFs used to mimic the effect
of free-stream turbulence, characterized by Mdd(t) in the ROM, assume as available
output a set of sensors yd(t)k at x1 = 175 and estimate the outputs at x1 = 250, 400,
i.e. y(t) and z(t). These TFs correspond to (5.1).

The ROM resulting from the ERA-POD consists of N = 387 degrees of freedom,
which is considerably less than the degrees of freedom of the full system. The solution
of the algebraic Riccati equations, which is the most computationally demanding
step in the control design, with N = 387 can be computed within the order of
minutes nowadays (on a laptop). The value N = 387 is found by imposing the error
between the impulse response from the ROM and the original impulse response to
be small enough. Since the ERA-POD performs the singular value decomposition of
a Hankel matrix and the singular values are ordered such that σi > σi+1, the ratio
σN/σmax 6 5× 10−4 is used to determine N. Moreover, given the equivalency between
ERA-POD and approximate balanced POD truncation (Ma et al. 2011), the infinity
norm of the error between the exact linear system and the ROM has the upper bound
2
∑
∞

i=1 σN+i ≈ 0.56 × 10−2 ∑∞
i=1 σi for the chosen N. Figure 3 shows the singular

values of the Hankel matrix used for the ROM. Figure 4 compares the impulse
response from d(t) in the ROM resulting from the ERA-POD against the estimated
TF used as the original impulse response in the ERA-POD. The TFs are centred
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FIGURE 3. Singular values of the SVD of the Hankel matrix used for the ERA-POD.
Dots, singular values. Dashed line, last singular value used for the ROM, N = 387.

Corr. coeff. at zero delay MS (output) VAR (output)

DNS data 1 2.82× 10−3 2.56× 10−3

Empirical TF 0.90 2.12× 10−3 1.91× 10−3

Improved TF 0.90 2.44× 10−3 2.17× 10−3

TABLE 1. Correlation coefficient at zero delay (corresponding to its maximum value),
mean square MS[z(t)] (DNS) or MS[z̃(t)] (estimation), and variance VAR[z(t)] (DNS) or
VAR[z̃(t)] (estimation) for the cases shown in figure 2.

at zero and present a peak which is related to the group velocity of the structures.
There clearly is good agreement between the ROM and the original data.

6. Control performance: transition delay

Here, the results from the nonlinear simulations are presented. The controllers
are designed on the ROM and then applied to the nonlinear N–S equations in a
reduce-then-control approach (Anderson & Liu 1989). This approach can lead to
inconsistencies because the disregarded modes of the full-order linearized system may
become important in a closed loop, or the non-orthogonality of the linearized operator
may lead to non-negligible nonlinearities in the closed-loop dynamics. Nevertheless,
a Blasius boundary layer flow is convectively unstable and globally stable (Åkervik
et al. 2008), so the full-order linearized system has all eigenvalues with negative real
part, and the feed-forward configuration of the present plant grants the stability of
the system as long as the controller is stable (Belson et al. 2013; Semeraro et al.
2013b), which is assured by the control laws adopted. This implies that in the present
flow case the reduce-then-control approach can lead to inconsistencies only if the
closed-loop dynamics triggers non-negligible nonlinearities, which is shown not to
be the case in the following sections. In fact, disturbance attenuation and transition
delay are achieved. It should be noted that these non-negligible nonlinearities are
strictly related to two factors: the spatial support of the actuator and the amplitude of
actuation. An actuator can damp a disturbance in the linearized system, but requires
an amplitude of actuation high enough to trigger nonlinearities in the original system.
In this case the actuator is not efficient. This lack of efficiency lies in the spatial
support of the actuator. In fact, it is the shape of the actuator that defines the
controllability of the system (Lewis & Syrmos 1995; Bagheri et al. 2009), which
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FIGURE 4. (Colour online) Original identified impulse responses used for the ERA-POD
(solid black lines) versus ROM impulse response (dashed red lines). Impulse response
from d(t) to y(t) and z(t). The original identified impulse responses are built by the
improved frequency response technique. (a) Central output. (b) Complete set of TF.

Control method Control problem Estimation problem

IFFC Q= 1, R= 2× 104 none
LQG Q= 1, R= 50 vd = 1, vn = 5× 10−4

TABLE 2. Design weights of the Gyu
m (t) used in the fully nonlinear N–S simulations.

directly affects the gains of the controller that give the amplitude of actuation. Thus,
the shape of the actuator is key to obtaining the desired performance. Here, the
chosen actuator is efficient enough to require low amplitudes of the actuation signal,
but care should be taken in the choice of the actuator (see Sasaki et al. (2019) for a
discussion on the subject).

6.1. Transition delay

The Gyu
m (t) used in the nonlinear N–S simulations are those resulting in the best

performance in the control design. The weight matrices of the J functionals of
equations (3.4) and (3.8) are summarized in table 2 for IFFC and LQG, respectively.
The choice of weights for control design is made through input–output simulations
based on time signals stored from uncontrolled nonlinear N–S simulations. The
input–output simulations consists of a linear superposition of signals, which makes
them computationally inexpensive, such that their usage for control design becomes
convenient to determine appropriate weights (details can be found in appendix C).
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Control method Input–output sim. Nonlinear sim.

IFFC 37.31 % 40.43 %
LQG 16.30 % 34.34 %

TABLE 3. Performance, E , for the two control methods. Input–output versus nonlinear
N–S simulations.

In order to assess the performance of the controller, the following quantity is
introduced

E =
JM

controlled

JM
uncontrolled

, JM
=

1
T

∫ T

0
z(t)Tz(t) dt, (6.1a,b)

which corresponds to the average behaviour of the output to minimize. T is the total
time of the simulation.

Table 3 shows the performance of each control technique resulting from the input–
output and nonlinear N–S simulations. The comparison of the control techniques in the
input–output simulation is consistent with the results of the fully nonlinear N–S: LQG
outperforms IFFC. Moreover, both cases present a smaller reduction of the objective
function in the results from the N–S simulations than the input–output ones, which
may be attributed to nonlinearities. In figure 5 the kernels from the IFFC and the
LQG methods, respectively, are shown. These correspond to Gyu

m (t) as in § 3. It appears
that the LQG weights a lot more the recent history of the signal than the IFFC does,
which may be seen as the main reason for outperforming the IFFC result, as further
discussed next in § 6.2. In figure 6, the spanwise root-mean-square (r.m.s.) values of
Gyu

m (t)

rms[u]x3 =

(
1

Nu

Nu∑
k=1

u(t)2k

)1/2

=

(
1

Nu
u(t)Tu(t)

)1/2

, (6.2)

are plotted. We observe that: (i) the magnitude of the averages and the fluctuation
around the average values are higher for the signal generated by Gyu

m (t) from the
LQG, and (ii) the actuation signal from the IFFC is smoother. The first difference can
explain why the performance of the LQG drops more than that of the IFFC when
moving from the input–output to the N–S simulations. In fact, the actuation signal
multiplies a fixed spatial support, and an increase in the magnitude of the actuation
signal corresponds to a more intense forcing that leads to stronger nonlinearities. The
second difference comes from the shape of the Gyu

m (t) in figure 5. The Gyu
m (t) from

the IFFC is less localized around t= 0 than the one from the LQG, which means that
the latter only captures the low-frequency dynamics of y(t)k signals. This can also be
seen by comparing figures 6 and 7.

The effect of the actuation signal on the spanwise r.m.s. values of the streamwise
velocity component

q′1,rms =
√
〈(q′1 − 〈q

′

1〉t)
2〉t,x3, (6.3)

with 〈•〉 representing the sample average, at Rex = (1.51, 1.96, 2.40, 2.86) × 105, is
shown in figure 8. It is clear that LQG outperforms slightly IFFC also in terms of
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FIGURE 5. Control TF Gyu
k (t). (a) IFFC technique. (b) LQG technique. Notice the

different scales for the gains between the two panels.
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FIGURE 6. Spanwise r.m.s. values of the actuation signals u(t)k at x1 = 325. Solid line,
LQG. Dotted line, IFFC.
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FIGURE 7. Spanwise r.m.s. values of the output y(t)k at x1 = 250.

reduction of the disturbance amplitude throughout the boundary layer. The disturbance
energy drops by a factor of ≈40 % after the control action. As shown in figure 9,
despite the growth of disturbance amplitude beyond x1= 400 (Rex≈ 1.5× 105) where
the output z(t)k for the objective function is measured, the smaller amplitude of the
streamwise component of the perturbation and the downstream shift of the curves
imply dampening of the disturbance, and thus transition delay.
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FIGURE 8. (Colour online) (a) q′1,rms/q
′uncontrolled
1,rms averaged along the spanwise direction at

Rex= (1.51,1.96,2.40,2.86)×105; red dash-dotted line, uncontrolled case; black solid line,
LQG. (b) q1,rms averaged along the spanwise direction at Rex= 1.5× 105; red dash-dotted
line, uncontrolled case; black dotted line, IFFC; black solid line, LQG.
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FIGURE 9. (Colour online) Maximum along the wall-normal direction of the q1,rms
averaged along the spanwise direction. Red dash-dotted line, uncontrolled case. Black
dotted line, IFFC. Black solid line, LQG.

A different measure of transition delay is the skin friction coefficient, which
explicitly appears in the computation of the drag and is the measure of interest for
many applications. A measure of the skin friction coefficient based on the r.m.s.
values of the streamwise velocity component

Cf (x1)=

[
∂

∂x2

√
〈q′21〉t,x3

]
x2=0

(6.4)

is shown in figure 10. There, the threshold curves that represent the skin friction
of a laminar and a fully turbulent flat-plate boundary layer are also presented. It is
clearly the case again that LQG performs slightly better than IFFC and that in the
best case the transition delay is around 1Rex = 1.5× 105, which is at least as good
as most of the current results in the literature where more idealized cases are studied,
as in Monokrousos et al. (2008). There, a transition delay around 1Rex = 1.2× 105

is achieved in the best possible scenario for a case with turbulence intensity Tu =
3.0 % and integral length scale L= 5.0δ∗0 . Nevertheless, in Monokrousos et al. (2008),
actuation is performed by control of each point on a band of the flat plate, while
measurements consists of wall shear stress in both streamwise and spanwise directions
and wall pressure fluctuations over a band of the flat plate located downstream of the
actuation.
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FIGURE 10. (Colour online) Average skin friction coefficient Cf . Red dash-dotted line,
uncontrolled case. Black dotted line, IFFC control method. Black solid line, LQG control
method.

At a fixed Rex the mean value of the Cf of a fully turbulent and a laminar boundary
layer can be taken as reference to indicate a significant appearance of turbulence
spots. This mean value is reached at Rex ≈ 5 × 105 for the uncontrolled case and
at Rex ≈ 6.5 × 105 for the controlled case with LQG, as shown in figure 10. These
values represent only an indication of the significant appearance of turbulence spots.
The instantaneous behaviour of the skin friction coefficient over the flat plate

cf (x1, x3, t)=
[
∂

∂x2
q′1(x, t)

]
x2=0

(6.5)

is shown in figure 11. The uncontrolled flow shows turbulent spots upstream of
Rex = 5 × 105 together with wiggles typically present when secondary instability
occurs, as expected in laminar-to-turbulent transition due to the breakdown of streaky
structures. Only chaotic structures appear for Rex> 5× 105, consistently with the trend
of Cf in figure 10. The controlled flow shows the same behaviour of the uncontrolled
one but further downstream, with chaotic structures appearing only in an upstream
neighbourhood of Rex = 6.5 × 105. The controlled flow clearly appears smoother
than the uncontrolled one for Rex < 6 × 105, without the appearance of secondary
instabilities up to Rex ≈ 5.2× 105. This is caused by the lower streak amplitude (less
pronounced white and black areas in figure 11) achieved thanks to the application of
the controller.

6.2. Role of control methods, sensors and actuators for control performance
Figure 12 shows the difference between the uncontrolled and the controlled fields,
q′1,unc − q′1,ctr, at a time t = t∗ for the LQG and the IFFC cases. Such fields can be
understood as the disturbances induced by the actuators in the simulations. Both
controllers appear to trigger streaky structures in the boundary layer flow. Some
differences between the LQG and the IFFC actions appear, but cannot be attributed
to the stochastic nature of the disturbance because the starting seed for the random
free-stream turbulence is the same for all simulations. The actuator is the same
in both cases and the controllers handle only their amplitudes, so the differences
between the actions of the LQG and the IFFC must reside in the time signals. These
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FIGURE 11. Instantaneous skin friction coefficient cf (Rex, x3, t= t∗). (a) Uncontrolled case.
(b) Controlled case with LQG. Black and white colours, cf < 2.5× 10−3. Empty contours,
cf > 2.5× 10−3. Same time t = t∗ for both simulations; the starting seed for the random
free-stream turbulence generation is the same.

differences must also explain the reason behind the LQG outperforming the IFFC,
and is now discussed from a physical point of view.

A limiting characteristic for control performance is the relative position of sensors
and actuators, which was chosen to minimize prediction errors and exploit the linear
behaviour of the flow field. The input-to-output and the output-to-output time delays
are respectively τuz = 219.6 and τ IFFC

yz = 216; these delays correspond to the peak of
the transfer function, and approximate the average time for a structure induced by free-
stream turbulence or the actuator, respectively, to arrive at the z(t) sensors. Therefore,
the actuation is not sufficiently fast to cancel the streaks detected by the y(t) sensors,
which is reflected by IFFC resulting in a non-causal Gyu, as shown in figure 13. The
result suggests that the performance of the controller may improve if it were possible
to increase the difference between the time delays, which can be achieved either by
changing the relative position of the devices or by changing the type of sensors or
actuators. The limitations in the control performance are therefore not caused by the
control methods, but by the structure of the plant. However, it appears that LQG can
slightly compensate for this causality issue without any modification to the plant.

There exists a specific set of weights for which LQG outperforms IFFC, but there
also exists a different set of weights for which LQG results in the same solution given
by the IFFC. This is possible thanks to the presence of the estimation problem in
the LQG, which introduces two more degrees of freedom in the control design. It
follows that the reason behind the better performance of the LQG is the possibility
of optimizing the estimation inside the control method, which is not included in the
IFFC. Moreover, it appears that in the LQG keeping fixed the weight ratio RLQG/QLQG

associated with the best solution and increasing the value of the ratio vn/vd leads to
worse performance (appendix C). Thus, since the weights of the estimation problem
define the dynamics of the estimator (appendix A), the best solution comes from the
estimator with the fastest response. In the present ROM the estimator that corresponds
to τ LQG

yz = τ IFFC
yz = 216, as in the Gyz used in IFFC, has a slower response than the
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FIGURE 12. (Colour online) Effect of the actuator. Instantaneous subtraction between
an uncontrolled and a controlled field, q′1,unc(x, t∗) − q′1,ctr(x, t∗), at a time t = t∗ for
the LQG (a,c) and the IFFC (b,d). Streamwise component of the perturbation velocity.
(a,b) Cross-plane at x1= 400δ∗0 . (c,d) Wall-parallel plane at x2= 2.0δ∗0 . Red and solid lines,
positive values; blue and dashed lines, negative values. The starting seed for the random
free-stream turbulence generation is the same.
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FIGURE 13. (Colour online) Full non-causal control TF Gyu
k (t) from the IFFC control

method. (a) Central line; the dot represents the peak value. (b) Full TF.

one corresponding to the best solution found with LQG, where τ LQG
yz = 213. Thus, it

appears that LQG achieves better performance for a case where the difference between
the time delays, τuz− τyz, is higher than it is in IFFC, as suggested by the non-causal
result found from the IFFC, and that better performance is achieved by an estimator
with a fast response. The latter occurs because the weights of the estimation problem
define the dynamics of its error: an estimator with a fast response has a fast decaying
error. This implies that after the same 1t the faster estimator is more accurate.

The connection between the shorter time delay τ LQG
yz =213 mentioned earlier and the

presence of a fast responding estimator may be explained by analysing the capability
of the wall-shear-stress measurements to capture the dynamics of the streaks. An
alternative measure of the streaky perturbations is their maximum streamwise velocity.
Thus, a new set of outputs at (x1, x2)= (250, 2.25) with the same spanwise positions
of the other considered outputs is collected, as in figure 14(b). These outputs are
compared to those that measure the shear on the wall at (x1, x2) = (250, 0), which
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FIGURE 14. (Colour online) (a) Cross-correlation between the streamwise velocity
fluctuation at the peak of the urms profile and the shear of the streamwise fluctuation at the
wall. (b) Contours are the fluctuations of the streamwise velocity component; red and solid
lines, positive values; blue and dashed lines, negative values; dashed-dotted line, δ99/δ

∗

0 ,
boundary layer.

are used to compute the input u(t)k. Figure 14(a) shows the time–space correlation
between the two sets of measurements. It appears that the output resulting from
the measurements of the streamwise velocity perturbation and the output resulting
from the measurement of the shear on the wall are highly correlated in the positive
time half-plane. With the considered convention for the correlation, this implies that
fluctuations at the higher wall-normal position precede those on the wall, and thus
the instantaneous measure of the shear on the wall cannot predict the instantaneous
or future maximum velocity fluctuation of the streak. In other terms, there is reverse
causality between the measurements at x2= 0 and the measurements at x2= 2.25. This
effect can be associated with the tilting of the streaky structures shown in figure 14(b):
an advecting streak first passes at higher wall-normal positions (exemplified by the
considered probe), and only later leaves a wall-shear-stress signature. However, the
wall-shear-stress measurements are not completely unable to estimate the streaks’
velocity; they can effectively predict the velocity of the tilted structure at wall-normal
positions closer to the wall. There the velocity is lower, the convection velocity of the
streaks is reduced and thus the time delay τyz, which describes their travelling time,
is larger. A more accurate estimation, which corresponds to an estimator with a faster
response, can effectively predict the velocity further from the wall. There the velocity
is higher, so closer to the real travelling speed of the streaks, and the resulting time
delay τyz is smaller. This explains why to the best LQG solution corresponds a fast
estimator and its connection to a shorter time delay τ LQG

yz = 213.
Moreover, the fact that the LQG results in a Gyu which puts a lot of weight onto the

recent history of the output signal, around two orders of magnitude higher than the
one from the IFFC (figure 5), is also explained by the presence of a fast estimator. In
fact, the higher values of vn/vd, with RLQG/QLQG fixed to the value of the best solution,
correspond to a shape of Gyu which approaches the one of the best IFFC solution, so
the difference between the best LQG and IFFC results must come from the presence
of the fast estimator. The last statement is consistent with the present discussion, as it
implies that the performance of the controller improves when it mainly makes use of
the portion of the output that lies in a small neighbourhood of t=T , with t∈ (−∞,T]
the history time and T the running time. This neighbourhood contains the meaningful
information because of the mentioned reverse causality between the wall-shear-stress
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measurements and the dynamics of the streaks, as shown by the non-positive time
half-plane in figure 14(a).

In summary, it appears that using streamwise wall shear stress as a measure to
predict the dynamics of the streaks introduces a time delay in the ROM because
of the tilting of the structures. The time delay affects the actuation signal because
the controller is designed on the ROM, so the streaky structures generated by the
actuators are not exactly in phase with the incoming disturbance. Moreover, it can
be concluded that the LQG can achieve better performance than the IFFC thanks to
the weights in the design of the estimator. By choosing the appropriate value for these
weights the estimation accuracy increases because the estimator slightly compensates
for the reverse causality between the wall-shear-stress measurements and the dynamics
of the streaks. Finally, it appears that the limitation caused by the structure of the
plant, including the location of sensors and actuators and their shapes, is more critical
than the choice of control technique, and thus is the key design challenge (as further
discussed in the parallel work of Sasaki et al. (2019)).

7. Conclusions

The delay of bypass transition in a realistic scenario by means of active flow control,
control theory and system identification is presented. Numerical simulations of the
nonlinear transitional regime in a Blasius boundary layer are performed, where streaks
are excited in the boundary layer by means of a high level of free-stream turbulence.
A model-based method for the delay of bypass transition realizable in experiments is
introduced. It makes use of a ROM representation of the system and is based on the
signals from a finite number of localized sensors and actuators placed on the wall,
which mimic real shear-stress sensors and ring plasma actuators. A technique for the
characterization of disturbances with a large number of degrees of freedom for model-
based approaches is presented, which allows us to obtain reasonably low-dimensional
ROMs by isolating the dynamics of interest via system identification of the effects of
the disturbance on the system. The method is reliable, easy to implement and based on
measurement data, in a data-driven approach that would be realizable in experiments.
The presented technique is applied to generate the ROM via ERA-POD for solving the
flow control problem by means of LQG, which to the best of the authors’ knowledge
has never been done in a flow control application.

The performance of the LQG is compared to that of the IFFC optimal control
technique, which does not need the explicit characterization of the disturbance on
the system, thus, simplifying the flow control problem. The LQG is seen to perform
slightly better than the simpler IFFC method once appropriate weights in the cost
function are selected. The performance of the control techniques are compared
in linear input–output and nonlinear N–S simulations, showing that resorting to a
linear ROM for control design is reasonable also in presence of the high-amplitude
disturbances considered here. The effectiveness of the technique in delaying bypass
transition is shown. Using LQG a transition delay of 1Rex ≈ 1.4 × 105 for a case
with turbulent intensity Tu = 3.0 % and integral length scale L = 7.5δ∗0 is achieved.
This highlights the capability of the presented methods to achieve at least as large
a delay of bypass transition as that obtained in more idealized cases found in the
literature (Monokrousos et al. 2008).

Finally, the differences in the results obtained with IFFC and LQG are analysed and
related to the structure of the plant, so the limitations caused by the relative positions
of sensors and actuators and by the shape of the sensor are outlined. In particular,
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a reverse causality issue arising from using wall streamwise-shear-stress sensors to
predict the dynamics of the streaks is shown. The way in which this causality issue
limits the control performance is described and an explanation on the way in which
the LQG can compensate for such issue is provided.
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Appendix A. Linear quadratic Gaussian regulator
The LQG technique is designed to solve the control problem on a dynamical system

subject to stochastic white noise disturbances. Here, the dynamical system is a ROM
and reads

q̇(t)= Aq(t)+ Bu(t)+Mdd(t),
y(t)= Cyq(t)+ n(t),

z(t)= Czq(t).

 (A 1)

Since the LQG does not assume the full state to be known, an estimation of the
original dynamical system based on the known outputs is introduced,

˙̃q(t)= Aq̃(t)+ Bu(t)− L( y(t)− ỹ(t)),
ỹ(t)= Cyq̃(t),
z̃(t)= Czq̃(t),

 (A 2)

where q̃(t) and ỹ(t) are estimates of q(t) and y(t), and L is an N × Ny matrix to be
designed. The estimated system accounts for the stochastic disturbances through the
available outputs y(t). Subtracting (A 2) from (A 1) and substituting y(t)=Cyq(t) and
ỹ(t)= Cyq̃(t) gives

ė(t)= (A+ LCy)e(t)+Mdd(t)+ Ln(t), (A 3)

with e(t) = q(t) − q̃(t) the estimation error. Equation (A 3) shows that the error
dynamics is based on the matrix L and is driven by the stochastic disturbances. Thus,
the matrix L should stabilize the error dynamics and dampen the amplitude of the
stochastic disturbance n(t).

Since y(t) is an available measure, the estimated system is deterministic. Its solution
is used to compute the actuation input u(t)= K q̃(t), with K a matrix to be designed
to solve the control problem. Substituting u(t)= K q̃(t) in (A 2) gives

˙̃q(t)= (A+ BK )q̃(t)− L( y(t)− ỹ(t)),
ỹ(t)= Cyq̃(t),
z̃(t)= Czq̃(t).

 (A 4)
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The LQG technique consists of computing K and L to solve the control and the
estimation problem, respectively. These two problems are usually coupled in optimal
control, but in the LQG technique they are not and they result in the minimization of
two different H2-norms (Skogestad & Postlethwaite 2005). The matrix K results from
the linear quadratic regulator problem. It minimizes the objective function

J = lim
T→∞

1
T

∫ T

0
(z(t)TQz(t)+ u(t)TRu(t)) dt, (A 5)

and results in solving the following algebraic Riccati equation

ATPu + PuA− PuBR−1BTPu + CT
z QCz = 0, (A 6)

where Pu is a positive semi-definite N × N matrix which is the unknown of the
equation. The relationship between K and Pu reads

K =−R−1BTPu. (A 7)

The matrix L results from the Kalman filter. It minimizes the expected value of the
covariance matrix of the error at steady state

J = lim
t→∞

Tr(Pe(t)), Pe =E[e(t)e(t)T], (A 8a,b)

with Tr(•) the trace operator, and results in solving the following algebraic Riccati
equation

PeA
T
+ APe − PeC

T
y V−1

n CyPe +MdV dMT
d = 0, (A 9)

where Pe is a positive semi-definite N × N matrix and is the unknown of the
equation, and V d and V n are the covariance matrices of d(t) and n(t), respectively.
The relationship between L and Pe reads

L=−PeC
T
y V−1

n . (A 10)

Once both K and L are computed the state-space system based on q̃ gives the input
signal based on the history of the available output y(t),

u(t)=−
∫ t

0
Ke(A+BK+LCy)(t−τ)Ly(τ ) dτ . (A 11)

Appendix B. Prediction for different streamwise positions
The streamwise position of sensors and actuators on the flat plate was chosen by

also taking into account the estimation error. The behaviour of the estimation error
as a function of the relative streamwise position between the available output and
the output to estimate and as a function of the absolute position of the available
output is inspected. Given the set of Ny = 36 estimated outputs ỹ?est(t) and the set of
true outputs y?DNS(t), the error is defined as 1y?(t) = y?est(t) − y?DNS(t). The available
outputs are placed at a streamwise position x1 = xup

1 and the estimated outputs y?est(t)
are placed at a streamwise position x1 = xdown

1 . The true outputs y?DNS(t) are at the
same place as the available outputs. It also holds that xdown

1 > xup
1 , so the position
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FIGURE 15. Performance of the estimation of downstream outputs from available
upstream outputs: xup

1 represents the available output position; xdown
1 represents the position

of the estimated output. The outputs are the shear on the wall.

of the outputs to be estimated never coincides with that of the available outputs.
The available outputs are used to predict the downstream outputs in the future.
Figure 15 shows the MS[1y?(t)]. Estimation is performed by means of empirical TFs
because of their low computational cost. In figure 15 it is evident that the current
positioning of sensors and actuators, 250 6 x1 6 400, is adequate. For xup

1 = 150, 250,
the MS[1y?(t)] initially decreases due to decay of free-stream turbulence intensity
along the streamwise direction. For xdown

1 > 350, the MS[1y?(t)] increases in all cases
because from that position the nonlinear interactions become important. The value of
MS[1y?(t)] grows faster with increasing xdown

1 as the flow nonlinearity increases.
In order to further confirm the fact that the chosen positioning of sensors and

actuators is adequate, the coherence coefficient between the measurements at x1= 250
and x1 = 400 is calculated. The coherence γyz is defined as

γ 2
yz =
|Ŝyz|

2

ŜyyŜzz

. (B 1)

The definition holds for any pair of outputs. Its value varies between zero and one
and indicates that the TF may be nonlinear, noise enters the measurements or z is the
result of other inputs as well.

It is desirable to have the highest values of coherence in (ω, βk) regions where the
signals are most energetic. This may be evaluated by computing the power spectral
density (PSD). The coherence coefficient between signals at x1= 250 and 400 and its
normalized PSD is presented in figure 16. The results indicate an almost linear relation
between signals at these two streamwise positions for part of the (ω, βk) space that
is of interest. It is noticeable that most of the energy is strongly localized at very
low frequencies, ω ≈ 0, with a spanwise wavenumber β ≈ 0.4, which corresponds to
streaky motions with slow streamwise variation. This is the reason for the observed
good accuracy of the estimation and justifies the choices of placements for sensors
and actuators.

Appendix C. Choice of weights
The LQG has two objective functions, one for the control problem and one for

the estimation problem, whereas the IFFC has only one objective function, the one
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FIGURE 16. (Colour online) (a) Coherence γyz between the outputs y(t)k, at x1= 250 and
z(t)k, at x1= 400. (b) Normalized power spectral density of the output z(t)k: Ŝzz/max(Ŝzz).

for the control problem. The objective function for the control problem requires the
definition of the weight matrix on the output z(t) (or ẑ), Q (or Q̂), and the penalization
matrix on the input u(t) (or û), R (or R̂), while the estimation problem requires the
matrices that describe the covariance of the stochastic disturbance d, V d, and the noise
n(t), V n. The control problem deals with finding the function that, given an output,
provides an input to minimize an objective function, while the estimation problem
deals with finding the function that allows us to minimize the error in the estimation.
The weights introduce more degrees of freedom in the design problem, and are usually
left as free parameters. In fact, there is not a universally acclaimed method to compute
those weights and close the control design problem, such that they are usually chosen
iteratively (Skogestad & Postlethwaite 2005). Here, a brute force method is applied: a
grid of arbitrarily chosen weights is used and a set of Gyu

m (t) is computed by means of
the two control techniques as in § 3. The computed Gyu

m (t) are tested in input–output
simulations based on the linear superposition of the input and output time series only.
The input–output simulations make use of the second in (2.7) to compute the effect
of Gyu

m (t) on the reference output to annihilate, z(t), and on (3.2) for the relationship
between u(t) and y(t). The input–output simulation consists of computing for each
time step

u(t)k =
∫ t

0

Ny∑
m=1

Gyu
m (t− τ)y(τ )m+k−1 dτ ,

z(t)k =
∫ t

0

Nu∑
m=1

Guz
m (t− τ)u(τ )m+k−1 dτ + zd(t)k,

 (C 1)

with y(t)k and zd(t)k, at x1 = 250, 400, respectively, with the time series of outputs
saved from the nonlinear uncontrolled N–S simulations. The method is thus a
simpler simulation of the control effect considering only a linear superposition
of the open-loop output zd(t) and what would result from control action (via the
transfer function Guz

m ). The k index was dropped in Guz
km(t) from (3.2) because the

actuators have all the same spatial support and the linearized system dynamics is
instantaneously homogeneous along the spanwise direction x3. Here, Guz

m (t) is found
from an impulse-response simulation of the linearized N–S equations.
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FIGURE 17. (Colour online) Performance parameter, log10(E), as in (6.1), as a function
of the weight matrices. (a) IFFC control technique. (b) LQG control technique.

This method avoids the use of computationally demanding N–S simulations and is
reliable in identifying the best Gyu

m (t) and the associated weights. It also proves to
be consistent with the results of the nonlinear N–S simulations. The time required to
perform the input–output simulations is of the order of seconds on the average laptop.

Here, the covariance matrices are constants, as in (3.3), and the weight matrices for
the control problem are chosen to be constants,

Q̂=QIFFC, R̂= RIFFC,
Q=QLQGI, R = RLQGI.

}
(C 2)

In figure 17 the results of the input–output simulations based on the IFFC or LQG
methods are shown. From the results based on the IFFC technique it clearly appears
that there exists a combination of weights (Q, R) where E is constant. This occurs
because the J functional in (3.8) can be written as R, which is a constant in this
case, times another functional with only one weight in the form Q/R. The constant
R becomes irrelevant in the minimization problem, thus the minimization can be
performed with respect to the functional with the weight Q/R. The weights can be
related as

Q= c1R, (C 3)

with c1 a constant. By using (C 3), the solution to the control problem based on the
IFFC (3.9) can be written as

K̂ =
ĜH

uzĜyz

c−1
1 + ĜH

uzĜuz

. (C 4)

The results show (figure 17) c1 = 10−4. Moreover, by using (C 3), the objective
function of the IFFC control technique (3.8) can be written as

J = R
∫
∞

−∞

∑
k

(c1ûH û+ ẑH ẑ)1βk dω, (C 5)
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FIGURE 18. (Colour online) Estimation of TF. Estimating z̃(t) from the available
y(t). Solid black line, state observer. Dashed red line, empirical TF. (a) Central TF.
(b) Complete TF.

which shows how under the assumption of constant weights the optimal solution
depends only on the ratio of the weights. Writing the cost function as in (C 5)
combines the physical meaning of the weights in one single parameter and constrains
the solution of the minimization procedure to the isolines J(Q, R)= const.

Since the LQG results in two independent optimization problems, the control
problem and the estimation problem (appendix A), both the objective functions can
be expressed in a similar fashion as in (C 5). It follows that the performance E of
the LQG can be expressed as function of two weight matrices only: one weight
matrix from the control problem and one weight matrix from the estimation problem.
This result is shown in figure 17 as a function of RLQG/QLQG and vn/vd (as in (3.3)).
Since the variables are associated with two independent optimization problems, there
is no general reason for the existence of a set of weights for which the performance
parameter E is constant and has a minimum. In fact, figure 17 shows that E has a
minimum for a specific combination of (RLQG/QLQG, vn/vd).

The minimum value achieved by the LQG is below the one achieved by the IFFC,
Emin

LQG < Emin
IFFC. This occurs because the IFFC technique does not include the estimation

problem. In figure 18 the estimation function of the LQG corresponding to Emin
LQG is

compared to the Gyz
m , which is used in the IFFC and computed as in § 5.2. It can

be seen that the two curves are slightly different. This occurs because the design
parameters of the estimation problem can be tuned to seek for the overall optimal
solution, which does not appear to be given by the IFFC, even though it was shown
that Gyz

m is a good estimation function. In other terms, since the LQG has more design
parameters than the IFFC, it can span a space of solutions of higher dimensions
than the IFFC. The latter statement also implies that there exists a combination of
parameters for the estimation problem in the LQG for which ELQG= Emin

IFFC holds, and
that the result achieved by the IFFC can be seen as a suboptimal solution of the
LQG.

The input–output simulations allowed us to identify the weights that give the best
performance if the system were to be completely linear.
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