MOS 50D35

BULL. AUSTRAL. MATH. SOC. VOL. 6 (1972), 61-67.

A characterization of generalized Hall planes

N.L. Johnson

We prove that a translation plane π of odd order is a generalized Hall plane if and only if π is derived from a translation plane of semi-translation class 1-3a. Also, a derivable translation plane of even order and class 1-3a derives a generalized Hall plane. We also show that the generalized Hall planes of Kirkpatrick form a subclass of the class of planes derived from the Dickson semifield planes.

1. Introduction and background

Kirkpatrick [6] defines generalized Hall planes as follows: A translation plane π is a generalized Hall plane if and only if π admits a collineation group G which fixes a Baer subplane π_0 pointwise and acts simply transitively on the points of $l_{\infty} - \pi_0 \cap l_{\infty}$.

Kirkpatrick (Theorem 1, [6]) shows that a generalized Hall plane of odd order admits a coordinatization so that the corresponding quasifield is a right two dimensional vector space over GF(q), q a prime power, where GF(q) coordinatizes π_0 . Furthermore, Kirkpatrick defines a class of quasifields that coordinatize generalized Hall planes of odd order and which properly contains the Hall quasifields.

Originally the Hall planes were defined by constructing a

Received 23 August 1971. This work was supported by a grant from the National Science Foundation of the USA.

coordinatizing quasifield (see [2], pp. 364-365). Albert [1] has shown the finite Hall planes to be precisely the planes derived from the desarguesian planes of square order.

We show analogously that a translation plane π of odd order is a generalized Hall plane if and only if π is derivable from a translation plane of semi-translation class 1-3a. Furthermore, if the generalized Hall planes of even order can be coordinatized by a quasifield which is a right vector space over GF(q) a similar result holds.

The author [5] considers translation planes derived from semifield planes. We show that the planes of Kirkpatrick (see [6], Section 3) are among the planes obtained by deriving the Dickson semifield planes. The results used in the following sections will be listed for convenience.

We shall write y = f(x) instead of $\{(x, y) \mid y = f(x)\}$ to indicate an affine line. The line at infinity will be denoted by l_{∞} and $x = 0 \cap l_{\infty}$ will be denoted by (∞) .

We shall also assume that the reader is somewhat familiar with Ostrom's development of "derivation". We refer the reader to [7] and [8] for the basic background material.

RESULT I (Ostrom [7], Theorem 6). Let π be an affine plane of order q^2 and let M be a set of q + 1 points on l_{∞} on π^* (the projective extension of π). Suppose that for every pair of distinct points P and Q such that $PQ \cap l_{\infty} \in M$ there exists a projective subplane of π^* which contains P, Q and M. Then the affine parts of the proper subplanes of π^* which contain M and the affine parts of the lines of π^* which do not intersect M form the lines of a new affine plane $\overline{\pi}$ (called the plane derived from π) containing the same points as π .

RESULT II (Ostrom [7], Theorem 7 and Corollary). Let σ be a permutation of the points of π inducing a collineation of π^* which carries M into itself. Then σ induces a collineation of $\overline{\pi}^*$ which carries \overline{M} into itself. Moreover, if σ is a translation of π , then σ induces a translation of $\overline{\pi}$.

The term "coordinate system" shall mean a Hall coordinate system (see for example [7], pp. 9-10).

RESULT III (Ostrom [7] - a strong form of Theorem 9). Let π be an affine plane of order q^2 coordinatized by a system Q such that

- (1) Q contains a subfield F of order q,
- (2) addition is associative and commutative,
- (3) Q is a right two dimensional vector space over F,
- (4) Q is linear with respect to F.

Then **#** is derivable and

 $\{(x, y) \mid x = a\alpha + c, y = a\beta + b, a \neq 0, b, c \text{ fixed in } Q$

and for all α , $\beta \in F$ }

is the set of points of an affine Baer subplane.

RESULT IV (Ostrom [7], Theorem 10). Let π be an affine plane coordinatized by a system Q as in Result III and let $t \in Q - F$. Then $\overline{\pi}$ (the plane derived from π) can be coordinatized by a system \overline{Q} such that a point with coordinates $(x, y) = (tx_1+x_2, ty_1+y_2)$ in Q; $x_i, y_i \in F$, i = 1, 2, has coordinates $(\overline{x}, \overline{y}) = (tx_1+y_1, tx_2+y_2)$ in \overline{Q} .

Let $(S, +) = (GF(q^2), +)$. Let t be a fixed element of S - GF(q). The multiplication of the Dickson semifields $(S, +, \cdot)$ is defined as follows:

 $t\alpha = t \cdot \alpha$, $(t\alpha + \beta) \cdot (t\delta + \gamma) = t(\alpha\gamma + \beta^{\sigma}\delta) + (\alpha^{\eta}\delta^{\rho}g + \beta\gamma)$ where σ , η , ρ are automorphisms of GF(q), g a non-square in GF(q), for all α , β , δ , $\gamma \in GF(q)$.

It easily follows that the Dickson semifield planes are derivable.

RESULT V (Johnson [5], Theorem (3.4)(1)). The planes derived from the Dickson semifields may be coordinatized by a right quasifield (S, +, *) such that $t * \alpha = t\alpha$,

$$(t\alpha+\delta)*(t\beta+\gamma) = t(\delta-\alpha\beta^{-1}\gamma)^{\sigma^{-1}}\beta + (\delta-\alpha\beta^{-1}\gamma)^{\sigma^{-1}}\gamma + \alpha^{\eta}\beta^{-\sigma\rho}g$$

for $\beta \neq 0$, α , β , δ , $\gamma \in GF(q)$, δ , η , ρ automorphisms of F, and g a nonsquare in GF(q). Also, $(t\alpha+\delta) \star \gamma = t(\alpha\gamma) + \delta\gamma$.

DEFINITION 1.1. Let π be a projective plane of order q^2 and π_{a}

a subplane of order q. Let p be a point of π_0 and L a line of π such that $L \cap \pi_0$ is a line of π_0 . π is said to be (p, L, π_0) -transitive if the stabilizer of π_0 in the group of all (p, L)-collineations of π induces a collineation group of π_0 such that π_0 is (p, L)-transitive (see for example, [3], p. 137).

DEFINITION 1.2. A projective plane π is a semi-translation plane with respect to a line L if and only if there is a Baer subplane π_0 containing the line L such that π is (p, L, π_0) -transitive for all points $p \in L \cap \pi_0$ (see [3], p. 1372 for another definition).

DEFINITION 1.3. A semi-translation plane π with respect to l_{∞} and subplane π_0 is of class 1-3a if and only if π is (p_{∞}, L, π_0) -transitive for all lines L of π_0 such that $L \perp p_{\infty}$, p_{∞} a fixed point of L_{∞} and (p, L, π_0) -transitive for all points $p \perp L_{\infty} \cap \pi_0$ for all lines of π_0 incident with p_{∞} (see [3], (2.16), p. 1380).

RESULT VI (Johnson [4], Lemmas (3.1), (3.2)). Let π be a semi-translation plane with respect to l_{∞} and Baer subplane π_0 . Assume π_0 is coordinatized by GF(q). If π is $((0), x = 0, \pi_0)$ - and $((\infty), x = 0, \pi_0)$ -transitive then $c(\alpha m) = (c\alpha)m$, and $c(\alpha + m) = c\alpha + cm$ for all c, m in a coordinate system for π and for all $\alpha \in GF(q)$.

Translation planes of class 1-3a

A translation plane π which contains a Baer subplane π_0 is a semi-translation plane. If π is of class 1-3a, π_0 desarguesian, and coordinates are chosen so that π_0 is coordinatized by GF(q), $p_{\infty} = (\infty)$ (see Definition 1.3), then clearly π is $((\infty), x = 0, \pi_0)$ - and $((0), x = 0, \pi_0)$ -transitive. By Result VI and the ordinary properties of a coordinatizing quasifield Q it follows that Q is a right two

Hall planes

dimensional vector space over GF(q). By Result III, π is derivable.

THEOREM 2.1. A translation plane π containing a desarguesian Baer subplane of semi-translation class 1-3a is derivable and derives a generalized Hall plane.

Proof. We choose coordinates as above and as in Result IV. By Result III (we also use here the fact that "derivation" is involutory) the x = 0 of π appears as a Baer subplane $\overline{\pi}_{0}$ in the plane $\overline{\pi}$ derived from π . By Result II, $\overline{\pi}$ is a translation plane and admits a collineation group inherited from the $((\infty), x = 0, \pi_{0})$ - and $((0), x = 0, \pi_{0})$ -collineation groups of π .

The group of $\overline{\pi}$ generated by the inherited groups clearly fixes $\overline{\pi}_0$ pointwise. Since the original group is simply transitive on the points of $l_{\infty} - \pi_0 \cap l_{\infty}$ and since the set of lines on these points is not altered by derivation (see Result I) it follows that the inherited group is simply transitive on $\overline{l}_{\infty} - \overline{\pi}_0 \cap \overline{l}_{\infty}$. Thus, the derived plane $\overline{\pi}$ is a generalized Hall plane.

3. Generalized Hall planes of odd order

Let $\overline{\pi}$ be a generalized Hall plane of odd order with Baer subplane $\overline{\pi}_{0}$. By Kirkpatrick's Theorem 1 [6], there is a coordinatizing quasifield \overline{Q} for $\overline{\pi}$ such that \overline{Q} is a right two dimensional vector space over F = GF(q) where F coordinatizes $\overline{\pi}_{0}$.

By Result III, π is derivable and by Result II the derived plane π is a translation plane.

Let \overline{G} denote the group acting simply transitively on $\overline{t}_{\infty} - \overline{\pi}_{0} \cap \overline{t}_{\infty}$. Clearly, \overline{G} induces an automorphism group \overline{G}_{α} on \overline{Q} which fixes Felementwise. Let $\{1, t\}$ be a basis for Q over F. Then $\overline{G}_{\alpha} = \{\sigma_{\alpha,\beta}; \alpha \neq 0, \beta \in F\}$ where $\sigma_{\alpha,\beta}$ is defined by $t\sigma_{\alpha,\beta} = t\alpha + \beta$.

It follows that the group \overline{G} is generated by the mappings: $(tx_1+x_2, ty_1+y_2) \rightarrow (tx_1\alpha+x_2, ty_1\alpha+y_2)$ and $(tx_1+x_2, ty_1+y_2) \rightarrow (tx_1+x_2+x_1\beta, ty_1+y_2+y_2\beta) \text{ for all } \alpha \neq 0 \text{ , } \beta \in F \text{ . By}$ Results II and IV, the mappings induce collineations of π represented by $(tx_1+y_1, tx_2+y_2) \rightarrow (tx_1\alpha+y_1\alpha, tx_2+y_2) \text{ and}$ $(tx_1+y_1, tx_2+y_2) \rightarrow (tx_1+y_1, t(x_2+x_1\beta)+(y_2+y_1\beta)) \text{ or rather}$ $(x, y) \rightarrow (x\alpha, y) \text{ and } (x, y) \rightarrow (x, x\beta+y) \text{ . These mappings clearly}$ represent $((0), x = 0, \pi_0)$ - and $((\infty), x = 0, \pi_0)$ -transitivity,

respectively. Thus, we have the following:

THEOREM 3.1. Generalized Hall planes of odd order are derivable and derive translation planes of semi-translation class 1-3a.

4. The planes derived from the Dickson semifields

The known translation planes of class 1-3a are semifield planes. The author has studied planes derived from semifield planes in [5]. In particular, the planes of [5], Theorem (3.1), (1), (3) and (4) are generalized Hall planes.

Kirkpatrick's generalized Hall systems are defined as follows (see Section 3, [6]).

Let $(Q, +) = (GF(q^2), +)$, q odd, and θ, ϕ automorphisms of GF(q) and ν a nonsquare of GF(q).

Define $(z\alpha+\beta)z = z\beta^{\theta} + \alpha^{\varphi}\nu$ for all $z \in Q - GF(q)$; $\alpha, \beta \in GF(q)$. Notice that if $\{1, t\}$ is a basis for Q over GF(q) and $z = tz_1 + z_2$; $z_i \in GF(q)$, then, for $\beta \neq 0$,

$$(t\alpha+\delta)(t\beta+\gamma) = \left[(t\beta+\gamma)(\beta^{-1}\alpha) + (\delta^{-1}\alpha\gamma) \right] (t\beta+\gamma)$$
$$= (t\beta+\gamma)(\delta^{-1}\alpha\gamma)^{\theta} + (\beta^{-1}\alpha)^{\varphi}\nu$$
$$= t(\delta^{-\alpha}\beta^{-1}\gamma)^{\theta}\beta + (\delta^{-\alpha}\beta^{-1}\gamma)^{\theta}\gamma + \alpha^{\varphi}\beta^{-\varphi}\nu$$

which is precisely the *-multiplication with $\theta = \sigma^{-1}$, $\phi = \eta$, $\phi \theta = \rho$ of Result V.

Thus, we have the following:

THEOREM 4.1. Kirkpatrick's generalized Hall planes form a proper subclass of the planes derived from the Dickson semifields.

66

Note added in proof on 22 September 1971. T.G. Ostrom has pointed out to the author that *derivable* translation planes of class 1-3a are semifield planes.

References

- [1] A.A. Albert, "The finite planes of Ostrom", Bol. Soc. Mat. Mexicana(2)]] (1966), 1-13.
- [2] Marshall Hall, Jr, The theory of groups (The Macmillan Company, New York, 1959).
- [3] Norman Lloyd Johnson, "A classification of semi-translation planes", Canad. J. Math. 21 (1969), 1372-1387.
- [4] Norman L. Johnson, "Derivable semi-translation planes", Pacific J. Math. 34 (1970), 687-707.
- [5] Norman L. Johnson, "Translation planes constructed from semifield planes", Pacific J. Math. 36 (1971), 701-711.
- [6] P.B. Kirkpatrick, "Generalization of Hall planes of odd order", Bull Austral. Math. Soc. 4 (1971), 205-209.
- [7] T.G. Ostrom, "Semi-translation planes", Trans. Amer. Math. Soc. 111 (1964), 1-18.
- [8] T.G. Ostrom, "Vector spaces and construction of finite projective planes", Arch. Math. 19 (1968), 1-25.

The University of Iowa, Iowa City, Iowa, USA.