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1. Introduction. The rational Segal–Wilson Grassmannian Grrat parametrizes
the soliton solutions of the Kadomtsev–Petviashvili (KP) equation. In [10], Wilson
embarked upon a study of a subgrassmannian Grad ⊂ Grrat that he called the adelic
Grassmannian, which parametrizes the solutions of the KP equation, rational in x and
vanishing as x → ∞. The adelic Grassmannian has (and is indeed characterized by)
a remarkable bispectral involution V → b(V ), V ∈ Grad , which exchanges the role of
the ‘space’ and the ‘spectral’ variables in the corresponding stationary wave functions
ψV (x, z), that is

ψb(V )(x, z) = ψV (z, x). (1.1)

In particular, the reduced stationary wave function e−xzψV (x, z) depends rationally
not only on z, but also on x. In [11], Wilson gave an illuminating explanation for this
involution, by showing that

ψV (x, z) = exzdet
{
I − (xI − X)−1(zI − Z)−1}, (1.2)

with (X, Z) an element of a so-called Calogero–Moser space

CN = {
(X, Z) ∈ gl(N, �) × gl(N, �) : rank([X, Z] + I) = 1

}
/GL(N, �).
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Here, gl(N, �) denotes the space of complex N × N matrices, I is the identity matrix
and the complex linear group GL(N, �) acts by simultaneous conjugation of X and
Z. The bispectral involution (1.1) becomes transparent when expressed at the level of
Calogero–Moser spaces, as it is given by (X, Z) → (Zt, Xt), where Xt and Zt are the
transposes of X and Z.

In [5], one of us, motivated by previous studies of the first and third authors
on a discrete–continuous version of the bispectral problem in [6] and [7], suggested to
study yet another subgrassmannian of Grrat, the so-called trigonometric Grassmannian
Grtrig ⊂ Grrat, characterized by the property that the reduced stationary wave function
e−xzψV (x, z) should depend rationally on ex. The aim of this paper is to establish a
formula similar to (1.2), for a space V ∈ Grtrig, namely

ψV (x, z) = exzdet{I − X(exI − X)−1(zI − Z)−1}, (1.3)

with (X, Z) belonging now to a trigonometric Calogero–Moser space

Ctrig
N = {

(X, Z) ∈ GL(N, �) × gl(N, �) :

rank(XZX−1 − Z + I) = 1
}
/GL(N, �). (1.4)

The formula was conjectured in [5] and established only for a generic situation. There
are two main ingredients in the proof, which will allow us to derive the result from
(1.2). First, the notion of bispectral Darboux transformations as introduced and used
in other contexts by the second author in collaboration with Bakalov and Yakimov in
[1] and [2]; second, the discovery in [6] that if τ (t1, t2, t3, . . .) is a tau-function of the
KP hierarchy, then

τ (n, t1, t2, t3, . . .) = τ
(

t1 + n, t2 − n
2
, t3 + n

3
, . . .

)
, n ∈ � (1.5)

is a tau-function of the discrete KP hierarchy. Indeed, the trick to establish (1.3) is to
show via the technique of bispectral Darboux transformations, that

ψb
V (n, z) = ψV (log(1 + z), n), (1.6)

is a (stationary) wave function of the discrete KP hierarchy, which can be constructed
from an adelic tau-function τb(V )(t1, t2, . . .), with b(V ) ∈ Grad , via the formula (1.5).

Finally, we like to mention that during the ISLAND 3 conference where this work
was presented, Oleg Chalykh and Alexander Varchenko informed us that they have
obtained results related to ours, though with rather different aims and techniques
(O. A. Chalykh, private communication, July 2007; see also [9]).

2. The rational Grassmannian. In this section, we review the definition of the
rational Grassmannian Grrat in terms of Darboux transformations, following [1].

DEFINITION 2.1. A function ψ(x, z) is a Darboux transform of exz, if and
only if there exist monic polynomials f (z), g(z) and monic differential operators
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P(x, ∂), Q(x, ∂), with ∂ = ∂
∂x , such that

ψ(x, z) = 1
f (z)

P(x, ∂)exz (2.1)

exz = 1
g(z)

Q(x, ∂)ψ(x, z), (2.2)

with the order of P(x, ∂) equal to the degree of f (z).

Obviously

Q(x, ∂)P(x, ∂)exz = f (z)g(z)exz,

so that denoting the polynomial f (z)g(z) by h(z), we see that

h(∂) = Q(x, ∂)P(x, ∂). (2.3)

On the other hand, ψ(x, z) satisfies

P(x, ∂)Q(x, ∂)ψ(x, z) = f (z)g(z)ψ(x, z), (2.4)

showing that the operator L = PQ is a traditional Darboux transformation of the
operator h(∂) with constant coefficients, which justifies the terminology.

We shall denote by �[z] (resp. �(z)) the space of polynomials (resp. rational
functions) in z. According to [10], the rational Grassmannian Grrat is formed by
subspaces V ⊂ �(z) satisfying

g(z)�[z] ⊂ V ⊂ f (z)−1�[z], (2.5)

where f (z) and g(z) are polynomials, and the codimension of V in f (z)−1�[z] is equal
to the degree of f (z). Using the terminology of Sato’s theory of the KP equation, the
stationary wave function ψV (x, z) (the Baker function in [10]) of such a space turns
out to be a Darboux transform of exz, as defined earlier. In fact, the two notions are
equivalent. We shall need the bilinear form on the space �(z) defined by

B(u, v) = reszu(z)v(z), u, v ∈ �(z), (2.6)

with resz the coefficient of z−1 in the Laurent expansion around ∞.

PROPOSITION 2.2. A function ψ(x, z) is the stationary wave function of a space
V ∈ Grrat if and only if it is a Darboux transform of exz.

Proof. We only sketch the proof of the ‘if ’ part. The operator P in (2.1) being
monic is given by

P(φ) = Wr (φ1, . . . , φK , φ)
Wr (φ1, . . . , φK )

, (2.7)

with φ1, . . . , φK , a basis of the kernel of P, where Wr denotes the Wronski determinant.
From the factorization (2.3), we have that ker P ⊂ ker h(∂) and ker Q = P(ker h(∂)).
Since h(∂) is a constant coefficients operator, it follows that the coefficients of P and Q
are rational functions of x and eλx, for a finite number of values of λ.
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Hence, if we introduce the function

ψ∗(x, z) = 1
g(z)

Q∗e−xz, (2.8)

with Q∗ the formal adjoint of Q, defined by (a(x)∂)∗ = −∂ ◦ a(x), both e−xzψ(x, z) and
exzψ∗(x, z) are rational functions of x, eλx and z. Assuming (without loss of generality)
that these functions are regular at x = 0, the coefficients of the Taylor expansions of
ψ(x, z) and ψ∗(x, z) around x = 0, generate two subspaces V and V∗ of �(z), such that

V = span{∂ iψ(x, z)|x=0, i = 0, 1, 2, . . .} ⊂ f (z)−1�[z], (2.9)

V∗ = span{∂ iψ∗(x, z)|x=0, i = 0, 1, 2, . . .} ⊂ g(z)−1�[z], (2.10)

and the codimension of V in f (z)−1�[z] is equal to the degree of f .
The spaces V and V∗ are orthogonal with respect to the bilinear form B defined in

(2.6), as follows from a simple computation in the ring of formal pseudo-differential
operators. Indeed from (2.1) and (2.8),

ψ(x, z) = P ◦ f (∂)−1exz and ψ∗(x, z) = (
g(∂)−1 ◦ Q

)∗e−xz. (2.11)

Hence, for all i, j ≥ 0, by the ‘very simple and extremely useful lemma’ 6.2.5 of [4],
using (2.3), we compute

resz∂
iψ(x, z)∂ jψ∗(x, z)

= (−1)j resz
(
∂ i ◦ P ◦ f (∂)−1exz)((g(∂)−1 ◦ Q ◦ ∂ j)∗e−xz)

= (−1)j res∂

(
∂ i ◦ P ◦ f (∂)−1) ◦ (

g(∂)−1 ◦ Q ◦ ∂ j)
= (−1)j res∂∂

i ◦ P ◦ (Q ◦ P)−1 ◦ Q ◦ ∂ j

= (−1)j res∂∂
i+j = 0,

with res∂

∑
ak∂

k = a−1. Taking the orthogonal complement with respect to B of (2.10),
we deduce that g(z)�[z] ⊂ V , which on combining with (2.9), establishes that V ∈ Grrat,
as defined in (2.5). It is easy to check that ψ(x, z) = ψV (x, z), which finishes the
proof. �

3. The trigonometric Grassmannian.

DEFINITION 3.1. A Darboux transform ψ(x, z) of exz, will be called trigonometric
if and only if the operators P and Q in (2.1) and (2.2) have coefficients which are
rational functions of ex, i.e. P, Q ∈ �(ex)[∂].

In this section, we characterize the trigonometric Darboux transforms. With the
notations of the previous section, let us write the constant coefficients operator h(∂) in
(2.3) as

h(∂) =
n∏

r=1

nr∏
j=0

(∂ − λr + j)mr,j , (3.1)

where λ1, . . . , λn are distinct complex numbers such that λr − λs /∈ � for r 
= s and mr,j,
the multiplicities of the roots λr − j, are non-negative integers, with mr,0 > 0. Then, the
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kernel of h(∂) is given by

ker h(∂) =
n⊕

r=1

Wr,

where

Wr = span
{
xke(λr−j)x : k = 0, 1, . . . , mr,j − 1, j = 0, 1, . . . , nr

}
.

LEMMA 3.2. Let P ∈ �(ex)[∂] be an operator such that the factorization (2.3) holds.
Then

(i) φ(x) ∈ ker P ⇒ φ(x + 2π il) ∈ ker P, ∀ l ∈ �.

(ii) ker P =
n⊕

r=1

(
Wr ∩ ker P

)
.

Proof. (i) The assertion follows immediately from the invariance of the coefficients
of P under the change x → x + 2π il, l ∈ �, since they are rational functions of ex.

(ii) Since ker P ⊂ ker h(∂), any φ(x) in the kernel of P can be expanded as

φ(x) =
n∑

r=1

{
kr∑

k=0

pr,k(e−x)xk

}
eλrx,

with pr,k(e−x) ∈ �[e−x], some polynomial in e−x. The result will follow by induction,
if we can show that for every r ∈ {1, 2, . . . , n}, there exists an element φ̂r(x) ∈ ker P of
the form

φ̂r(x) =
⎧⎨
⎩pr,kr (e

−x)xkr +
∑
k<kr

p̂r,k(e−x)xk

⎫⎬
⎭ eλrx, (3.2)

with the same polynomial pr,kr (e
−x) in front of the highest power xkr and some other

polynomials p̂r,k(e−x) as coefficients of xk, k < kr.
To establish the existence of φ̂r(x), we observe that since φ(x + 2π i) ∈ ker P, for

any s ∈ {1, 2, . . . , n}, we have that

φ(x) = φ(x) − e−2π iλsφ(x + 2π i)

=
n∑

r=1

{(
1 − e2π i(λr−λs)

)
pr,kr (e

−x)xkr +
∑
k<kr

pr,k(e−x)xk
}

eλrx

is an element of the kernel of P. Since λr − λs 
∈ �, for r 
= s, the coefficient of xkr is the
same polynomial pr,kr (e

−x) multiplied by a non-zero constant for r 
= s and vanishes
for r = s. Iterating the process, we can produce an element from the kernel of the form

∑
r
=s

⎧⎨
⎩cr,kr pr,kr (e

−x)xkr +
∑
k<kr

pr,k(e−x)xk

⎫⎬
⎭ eλrx,
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with non-zero constants cr,kr . Pursuing the process, we can eliminate all exponentials
eλsx, except one, producing an element from the kernel of the form (3.2). This concludes
the proof of the lemma. �

THEOREM 3.3. The Darboux transform defined by (2.1) and (2.2) is trigonometric if
and only if

ker P =
n⊕

r=1

Kr,

with Kr a subspace of Wr having a basis which is a union of sets of the form

1
l!

∂ l
y

(
nr∑

j=0

mr,j−1∑
k=0

cr,k,jyke(λr−j)x

)∣∣∣∣∣
y=x

, l = 0, 1, . . . , l0, (3.3)

where l0 = max{k : cr,k,j 
= 0 for some j}.
Proof 1. Let us assume that the Darboux transform is trigonometric. From Lemma 3.2,
we can choose a basis {φ1, . . . , φK} of the kernel of P, such that each φi belongs to
some Wri , ri ∈ {1, . . . , n}. Any φ ∈ Wr can be expanded as

φ(x) =
nr∑

j=0

mr,j−1∑
k=0

cr,k,jxke(λr−j)x.

Since the coefficients of P are rational functions of ex, they are 2π i periodic, hence, for
every l ∈ �, we have

e−2π ilλrφ(x + 2π il) =
nr∑

j=0

mr,j−1∑
k=0

cr,k,j(x + 2π il)ke(λr−j)x ∈ ker P. (3.4)

Obviously, (3.4) must also hold for every l ∈ �. Differentiating repetitively this identity
with respect to l and putting l = 0 shows that the functions defined in (3.3) belong to
the kernel of P too.

Conversely, if we can choose a basis φ1, . . . , φK of the kernel of P with φi ∈ Wri ,
then from the ith column of the determinants in the numerator and the denominator
of (2.7), we can factor off eλri x, which shows that the coefficients of the operator
P depend rationally on x and ex, i.e. P ∈ �(x, ex)[∂]. From (3.3), it follows that
φ1(x + 2π i), . . . , φK (x + 2π i) is again a basis of the kernel of P. This shows that the
coefficients of P are 2π i periodic, hence, they must be purely rational functions of ex.
The coefficients of the operator Q such that QP = h(∂) are then automatically rational
functions of ex too, thus, completing the proof. �

To specify completely the trigonometric Darboux transformation given a
factorization of (3.1) as in (2.3), with P, Q ∈ �(ex)[∂], we still need to determine the
polynomials f (z) and g(z) in (2.1) and (2.2), for which there is some arbitrariness. We

1The arguments used in the proof are analogous to Lemmas 2.8 and 2.9 in [2], see also [3] where conditions
similar to (3.3) can be found, without proof.
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fix the arbitrariness by observing that there is a unique choice for the polynomial f (z)
such that

lim
ex→∞ ψ(x, z)e−xz = 1. (3.5)

By an argument similar to the one given in [10] (see Lemma 6.1 in [10], where this
condition is imposed when ψ(x, z) is a rational function of x instead of ex), one can
show that by normalizing the basis φ1, . . . , φK of the kernel of P, as described in
Theorem 3.3, so that φi ∈ Wri and

φi(x) = xki e(λri −ji)x + (
terms involving only xke(λri −j)x with j > ji

)
,

one must pick

f (z) =
K∏

i=1

(z − λri + ji). (3.6)

DEFINITION 3.4. The trigonometric Grassmannian Grtrig ⊂ Grrat is defined to be
the set of spaces V ∈ Grrat whose stationary wave function ψV (x, z) is obtained by a
trigonometric Darboux transform of exz, with the normalization of f (z) specified as in
(3.6).

4. Bispectrality and Calogero–Moser matrices. Let T be the shift operator acting
on functions of z by

Tf (z) = f (z + 1).

The pair of equations

∂exz = zexz

Texz = exexz

defines an anti-isomorphism between the algebra of differential operators whose
coefficients are polynomials in ex and the algebra of (positive) difference operators
whose coefficients are polynomials in z

b : �[ex][∂] → �[z][T ],

with

b(ex) = T and b(∂) = z. (4.1)

If ψ(x, z) is a trigonometric Darboux transform of exz, we can write the operators
P and Q in (2.1) and (2.2) as

P = 1
θ (ex)

P and Q = Q
1

ν(ex)
with P, Q ∈ �[ex][∂], (4.2)

and θ (ex), ν(ex) some polynomials in ex.
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PROPOSITION 4.1. Let ψ(x, z) be a trigonometric Darboux transform of exz. Then

ψ(x, z) = 1
θ (ex)

1
f (z)

b(P)exz (4.3)

exz = 1
ν(ex)

b(Q)
1

g(z)
ψ(x, z), (4.4)

with P, Q as in (4.2). As a consequence, ψ(x, z) in addition to be an eigenfunction of a
differential operator in x as in (2.4), is also an eigenfunction of a difference operator in z

f (z)−1b(P)b(Q)g(z)−1ψ(x, z) = θ (ex)ν(ex)ψ(x, z),

i.e. ψ(x, z) solves a differential-difference bispectral problem.

Proof. Equation (4.3) follows immediately from (2.1) and (4.2), using the definition
of the bispectral map (4.1). From (2.3) and (4.2), we have

Qν(ex)−1θ (ex)−1P = f (∂)g(∂),

implying

b(P)θ (T)−1ν(T)−1b(Q) = f (z)g(z).

Hence,

ψ(x, z) = f (z)−1b(P)θ (T)−1exz = g(z)
(
ν(T)−1b(Q)

)−1exz,

or, equivalently,

exz = ν(T)−1b(Q)g(z)−1ψ(x, z) ⇔ exz = ν(ex)−1b(Q)g(z)−1ψ(x, z),

which establishes (4.4) and concludes the proof. �
Let us now assume that the trigonometric Darboux transformation has been

normalized as explained in (3.6), or equivalently ψ(x, z) = ψV (x, z), for V ∈ Grtrig,
according to Definition 3.4. Let us define

ψb(n, z) = ψV (log(1 + z), n). (4.5)

Because of the normalization, we deduce from (3.5) that

lim
z→∞ ψb(n, z)(1 + z)−n = 1. (4.6)

Moreover, putting


 = T − I,

after substituting n for z and log(1 + z) for x in (4.3) and (4.4), it follows that

ψb(n, z) = 1
θ (1 + z)

R(n,
)(1 + z)n (4.7)

(1 + z)n = 1
ν(1 + z)

S(n,
)ψb(n, z), (4.8)
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with R(n,
) and S(n,
) some (positive) difference operators in 
 (acting on functions
depending on n), whose coefficients are rational functions of n. We introduce the
following definition.

DEFINITION 4.2. (i) A function ψ(n, z) which satisfies (4.7) and (4.8), for some
monic difference operators R(n,
), S(n,
), with θ (z) and ν(z) monic polynomials in
z such that the order of R is equal to the degree of θ , will be called a discrete Darboux
transform of (1 + z)n.

(ii) A discrete Darboux transform ψ(n, z) of (1 + z)n, will be called polynomial
when the coefficients of R(n,
) and S(n,
) are rational functions of n.

From Wilson’s result [11] for a space Ṽ ∈ Grad , there exists a Calogero–Moser pair
(X̃, Z̃) ∈ CN such that the corresponding tau-function is given by

τṼ (t1, t2, t3, . . .) = det

{
X̃ −

∞∑
k=1

ktkZ̃k−1

}
. (4.9)

From this formula and (1.5) it follows that

τṼ (n, t1, t2, . . . ) = τṼ

(
t1 + n, t2 − n

2
, t3 + n

3
, . . .

)
is a tau-function of the discrete KP hierarchy

∂L
∂ti

= [(Li)+, L], L = 
 +
∞∑

j=0

aj(n, t1, t2, . . .)
−j,

with (Li)+ the (positive) difference part of Li. The corresponding wave function (of the
discrete KP hierarchy) is

ψṼ (n, t, z) = (1 + z)n exp

( ∞∑
k=1

tkzk

)

× τṼ

(
n, t1 − 1

z , t2 − 1
2z2 , t3 − 1

3z3 , . . .
)

τṼ (n, t1, t2, t3, . . .)
. (4.10)

A simple computation using (4.9) shows that

τṼ (n, t1, t2, . . . ) = det

{
X̃ −

∞∑
k=1

ktkZ̃k−1 − n(I + Z̃)−1

}
. (4.11)

In [6] it was assumed that the eigenvalues of Z̃ are inside the unit circle, but clearly
the right-hand side of (4.11) is well defined as long as −1 is not an eigenvalue of
Z̃. Thus, analytic continuation shows that the above formula can be applied when
det(I + Z̃) 
= 0.

If we denote by ψṼ (n, z) = ψṼ (n, 0, z), the corresponding stationary wave function,
then from (4.10) and (4.11) it follows immediately that

lim
n→∞ ψṼ (n, z)(1 + z)−n = 1. (4.12)
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It was shown in [6] that ψṼ (n, z) is a polynomial discrete Darboux transform of (1 + z)n.
In fact, any polynomial discrete Darboux transform of (1 + z)n is obtained by the above
construction, up to a normalization, which can be fixed by imposing (4.12). The result
is summarized in the next theorem, of which we sketch the idea of the proof.

THEOREM 4.3. A function ψ(n, z) is a polynomial discrete Darboux transform of
(1 + z)n if and only if

ψ(n, z) = θ1(z)
θ2(z)

ψṼ (n, z),

where θ1(z) and θ2(z) are monic polynomials of the same degree, and ψṼ (n, z) is a
stationary wave function of the discrete KP hierarchy as in (4.10) and (4.11), built
from a space Ṽ ∈ Grad corresponding to a Calogero–Moser pair (X̃, Z̃) such that
det(I + Z̃) 
= 0.

The proof of the above theorem can be briefly explained as follows. First we show
that, up to a factor independent of n, polynomial discrete Darboux transforms of
(1 + z)n can be characterized by the fact that the kernel of the operator R in (4.7) has
a basis consisting of functions of the form

φj(n) = pj(n)(λj + 1)n, where λj ∈ �\{−1},
and pj(n) are polynomials of n. The space Ṽ ∈ Grad corresponds to a Darboux
transform of exz (in the sense of Definition 2.1) such that the polynomial P(x, ∂)
in (2.1) has a kernel spanned by the functions

fj(x) = pj
(
(1 + z)∂z

)
exz|z=λj .

The condition det(I + Z̃) 
= 0 in the theorem reflects the fact that λj 
= −1.
In this paper, we just like to explain how to deduce from this result a

parametrization of the trigonometric Grassmannian Grtrig in terms of trigonometric
Calogero–Moser matrices as defined in (1.4). We recall that Kasman and Gekhtman
(see [8], Corollary 3.2) have established that for any triplet (X, Y, Z) of N × N matrices
such that rank (XZ − YX) = 1, the function

τ(X,Y,Z)(t1, t2, . . .) = det

{
I − X exp

{
−

∞∑
k=1

tkZk

}
exp

{ ∞∑
k=1

tkY k

}}

is a tau-function of the KP hierarchy, corresponding to some space of Grrat. The next
theorem shows that the special choice Y = Z − I in their formula, with X invertible,
characterizes tau-functions of spaces of Grtrig.

THEOREM 4.4. There is a one-to-one correspondence between trigonometric
Calogero–Moser pairs (X, Z) (modulo conjugation) as defined in (1.4), and tau-functions
of spaces V ∈ Grtrig, which is given by

τV (t1, t2, . . .) = det

{
I − Xexp

{ ∞∑
k=1

tk
(
(Z − I)k − Zk)}}

. (4.13)

Proof. Let ψV (x, z) be the stationary wave function of a space V ∈ Grtrig. From
(4.6)–(4.8), it follows that ψb(n, z) as defined in (4.5) is a polynomial Darboux transform
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of (1 + z)n such that

lim
n→∞ ψb(n, z)(1 + z)−n = 1.

From Theorem 4.3 and (4.12), there exists a space Ṽ ∈ Grad and a pair of matrices
(X̃, Z̃) such that ψb(n, z) = ψṼ (n, z) can be computed via formulae (4.10) and (4.11).
By an easy computation we obtain

ψb(n, z) = (1 + z)ndet{I + (X̃ − n(I + Z̃)−1)−1(zI − Z̃)−1}.
Hence, by the definition of ψb(n, z) in (4.5),

ψV (x, z) = ψb(z, ex − 1)

= exzdet{I + (X̃ − z(I + Z̃)−1)−1((ex − 1)I − Z̃)−1}.
Defining

X = I + Z̃t, Z = X̃ t(I + Z̃t), (4.14)

since a determinant is invariant by transposition, we obtain

ψV (x, z) = exzdet
{

I + (
exI − (I + Z̃t)

)−1(X̃ t − z(I + Z̃t)−1)−1
}

= exzdet
{

I − X(exI − X)−1(zI − Z)−1
}
, (4.15)

where in the last equation, we have used that the multiplication of the matrices X and
(exI − X)−1 commutes. Since (X̃, Z̃) is a Calogero–Moser pair, we deduce that

rank (XZX−1 − Z + I) = rank ([X, ZX−1] + I)

= rank ([Z̃t, X̃ t] + I) = rank ([X̃, Z̃] + I) = 1,

showing that (X, Z) in (4.14) is a trigonometric Calogero–Moser pair.
On the other hand, denoting for short by exp{. . .} the expression that appears

inside the exponential in (4.13), one computes

τV

(
t1 − 1

z
, t2 − 1

2z2
, t3 − 1

3z3
, . . .

)
= det{I − X exp{. . .}(zI − (Z − I))(zI − Z)−1}
= det{I − X exp{. . .} − X exp{. . .}(zI − Z)−1},

from which it follows that

τV
(
t1 − 1

z , t2 − 1
2z2 , t3 − 1

3z3 , . . .
)

τV (t1, t2, t3, . . .)

= det
{

I − X(exp−1{. . .} − X)−1(zI − Z)−1
}
.

Putting t1 = x, t2 = t3 = · · · = 0 in this formula shows that ψV (x, z) in (4.15) satisfies
Sato’s formula, with τV as in (4.13). Since this formula determines the tau-function up
to a constant, the proof is complete. �
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