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This paper analyses fourth-order moments of polarized radiation passing through mag-

netoactive plasma with random irregularities both in electron density and magnetic field. 

We consider the new propagation effect arising from chiral properties of random magne-

toplasma. That is, the lenses formed by the same irregularities of magnetic field may be 

characterized by refractive properties of opposite sense vis-a-vis the rotation of wave po-

larization vector. This produces an appearance of slight circular polarization fluctuations 

arising from initially nonpolarised radiation. Analysis of the polarized radiation fluctua-

tions may allow the spatial spectrum of magnetic field irregularities to be detected. The 

enchanced level of circularly polarized component, and the share of fluctuations owing 

to magnetic field irregularities, can be readily observed at low frequencies only, say in 

the radiation passing through the solar chromosphere or Jovian and terrestrial ionosphere 

(magnitosphere). 

The shape of the wave amplitude or phase fluctuation spectrum in a plasma 

medium is relative to the spectrum of fluctuations in its refractive index, and hence 

that of electron density irregularities. In a number of cases question whether fluctu-

ations in the external magnetic field also affect parameters of the radiation received 

at the observation point is of interest. Is it possible to restore parameters of the spa-

tial spectrum of fluctuating magnetic field from the correlation function or power 

spectrum of observed electromagnetic scintillations? We believe that such measure-

ments could be useful for the study of magnetogasdynamic turbulence in the polar 

ionosphere and magnetosphere and, in particular, near the magnetopause where 

the random magnetic field component is especially pronounced. The study of mag-

netic fields in cosmic sources of synhrotron radiation leads to a similar problem. 

Spangler's (1982) paper was dedicated to fluctuations of the linearly polarized radi-

ation in a random magnetoplasma.The effect of the nonrelativistic electrons upon 

fluctuations of the Q and U Stokes' parameters was studied there on the basis of 

the radiation transfer equation which fails, however, to allow for diffraction effects. 

At centimeter wavelengths or in the case optically thin sources the method gives 

good results. At lower frequencies we obviously have to consider diffraction and, in 

particular include amplitude fluctuations in the analysis. 

Consider the correlation functions of the Stokes parameters defined as 

Γ α = r a (e ,R) = 

= (SaiQu ft) * Satei + R, ft + R)) ~ <£»(ft , ft)) * (S£(ft + R> ft + R)) 

(1) 

where ρ = ρ^ — ρ2 and Sa is either of the components of the Stokes vector 

S = { / , Q,U, V}, Sa = 5 a ( f t , f t ) . T h e latter represents a spatial Fourier com-
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ponent of the distribution S ( n ) of the polarized radiation from a source at the ob-

servation plane, S('n) = { / ( n ) , Q ( n ) , Î7(n, V ( n ) } and let assume that initial Stokes 

vector to take the value So (n ) . 

The equations governing the correlation function of the Stokes parameters generally 

are very cumbersome. We will consider the case of coincident observation points ( 

i.e. ρ = 0, R = 0 ) and analyse the effect o f both the electron density and magnetic 

field fluctuations. We shall also assume the source to be pointlike over the angular 

coordinates and the initial Stokes vector to take the value So = IQ, QOI £̂ O> Vb- The 

fluctuations in the electron density and the magnetic field are statistically inde-

pendent and both are of a turbulent nature. The spatial spectrum of the isotropic 

fluctuations can be written as 

= 0 . 0 3 3 C w , H 2 / c - 1 1 / 3 e x p ( - K 2 / « m 2 ) (2) 

where κ is a three- dimensional wave vector, « m = 5.92//o,/o = ΙΟΝ,Η a r e i n n e r 

turbulent scales of the δ Ν and δ Η irregularities, respectively, CN,H 2 are the struc-

ture constants of the relative fluctuations, δΗ = (Η — (Η))/(Η). In Eq.(2) we have 

taken a Kolmogorov model for the spectra of δ Ν and δ Η , with a power index 

of 11/3 . Stricktly speaking, the spectral indices for δ Ν and δ Η may be different 

but in fact it is too difficult to distinguish between these in the measured data. 

For the microscale magnetogasdynamic turbulence in the space plasma like that 

studied by Higdon (1986) the 11/3 power is applicable. Let assume UJH and ωΡ are 

the gyro and the plasma frequency, respectively, ω is the radiation frequency, ζ the 

plasma layer thickness and c the speed of light. First, we consider the equations 

for the mean square deviations of the total flux density, σ / 2 = Γν(Ο,Ο) and the 

circularly polarized component ay2 = I V ( 0 , 0 ) . These can be represented as sums 

of contributions from fluctuations in the electron density , δ Ν , and the magnetic 

field fluctuations, δ Η, viz. 

σ / , ν 2 = < τ / , ν ( " ) 2 + * / , ν ( * ) 2 (4) 

With Vo 2 > IO2(W/UJH)2 the equations for σ / W 2 and σ ν ^ 2 are similar to one 

another and can be written as 

In the case when the circularly polarized component Vo is absent in the initial 

flux from the sour ce,or its fraction is VQ2 <C IQ2(UH/U)2 ,we can write 

σ ν W 2 = ffIW\UH/u)2 (6) 

Here σ / W 2 is determined by Eq. (5) . The second term in Eq.(4) owing to scattering 

from longitudional inhomogeneities of the magnetic field is 

Ζ 1 1 / 6 ω 4 2 ^-^M^ (7) 
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for Vb 2 > Ιο2(ωΗ/ω)2 or 

= 4(ωΗ/ω)2σν

(Η)2 (8) 

for Vo 2 < Ι0

2(ωΗ/ω)2 and σ ^ Η ) 2 as given by Eq.(7) . 

Analysing the mean-square fluctuations of the linearly polarized component we 

can distinguish two limiting cases, depending on the value of the mean-square phase 

difference of the ordinary and extraordinary wave, 

γτ2 = ο.365^^[^2^5/3 + <V W / 3] (9) 
where LQH a l *d LQN are the outer turbulence scales for the 6N and 6H fluctuations. 

With JT2 <C 1, we have for the mean squared deviation of the linear polarization, 

στ} = <TQ2 + σ ν

2 

c L

2 « [ Q o 2 + Uo2] j ^ 2 + 0 . 2 1 2 ^ ^ 6 [ C N

2 - (^) W]} (10) 

Here Qo , UQ and χο are the Stokes parameters and the position angle of the lin-

early polarized radiation near the source, and φρ = ( ω p

2 ' ω Η Ζ)/(CU>)2 is the Faraday 

rotation angle in plasma layer. With JT2 ^ 1> the mean-squared deviations in Q 

and U can be written as 

<TQ2 « σ υ 2 = \[Q<? + Uo2] (11) 

As can be seen from Eq.(9) , the fluctuations in the linearly polarized component 

arise either from the phase, γ τ 2 , or the amplitude fluctuations. Note that the equa-

tions for linearly polarized fluctuations aç2 and συ2 obtained by Spangler(1982) for 

the case of nonrelativistic plasma involved just a single term, 7 τ 2 , (cf. Eq.(10)) ow-

ing to phase difference of the fluctuations in the ordinary and extraordinary waves, 

The mean-square deviation of the measure of rotation, σ ^ Μ 2 , is related to ητ2 by 

means of the equation JT2 = ^<^RM2- In the other limiting case, i.e. JT2 ^ 1> the 

mean-square deviation of the linear polarization fluctuations reaches a saturation 

level determined by the fraction of the linear polarization in the radiation from the 

source, Q n 2 + U o 2 . Thereby, the averaged Stokes parameters are exponentially small 

( (Q) ~ (U) ~ exp (—27T 2 ) ) , since the interference of the ordinary and extraordi-

nary waves is destroyed. As can be seen, the interference terms are not included in 

the invariant (Q2) + (U2). Therefore, with η\ > 1, the degree of linear polarization 

can be estimated from measurements of fourth-order field moments. 
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