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Abstract

We give a new and simple proof of a result of Ding and Xin, which states that any smooth complete
self-shrinker in R3 with the second fundamental form of constant length must be a generalised cylinder
Sk × R2−k for some k ≤ 2. Moreover, we prove a gap theorem for smooth self-shrinkers in all dimensions.
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1. Introduction

A one-parameter family of hypersurfaces Mt ⊂ R
n+1 flows by mean curvature if

∂t x = −Hn,

where H is the mean curvature, n is the outward pointing unit normal and x is the
position vector.

We call a hypersurface Σn ⊂ Rn+1 a self-shrinker if it satisfies

H =
〈x,n〉

2
.

Under the mean curvature flow (MCF), Σ is shrinking homothetically, that is, Σt ≡√
−t Σ gives an MCF.
Self-shrinkers play a key role in the study of MCF. By Huisken’s montonicity

formula [12] and an argument of Ilmanen [14] and White [19], self-shrinkers provide
all singularity models of the MCF. Although there are infinitely many of them, we
only know a few embedded complete examples (see [2, 6, 15, 17, 18]). Moreover,
numerical results show that it is impossible to give a complete classification of self-
shrinkers in higher dimensions. Under certain conditions, there are many classification
results for self-shrinkers.

In [12, 13], Huisken proved that the only smooth complete embedded self-shrinkers
in Rn+1 with polynomial volume growth, H ≥ 0, and |A| bounded are the generalised
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cylinders Sk × Rn−k (where Sk has radius
√

2k). Here, |A| is the norm of the second
fundamental form. Later, Colding and Minicozzi [8] showed that this result holds
without the |A| bound, which was crucial in their study of generic singularities.
Moreover, after introducing the concept of entropy stability, they proved that the only
stable self-shrinkers are Sk × Rn−k, and all others can be perturbed away. Thus, the
only generic singularities are the generalised cylinders. A natural question is to seek
rigidity and gap results for the generalised cylinders. We are interested in conditions
involving the norm of the second fundamental form, that is, |A|. First, we consider the
following question.

Conjecture 1.1. Let Σn ⊂ Rn+1 be a smooth complete embedded self-shrinker with
polynomial volume growth. If the second fundamental form of Σ is of constant length,
that is, |A|2 = constant, then Σ is a generalised cylinder.

The case n = 1 follows from a more general result by Abresch and Langer [1],
which says that the only smooth complete and embedded self-shrinkers in R2 are the
lines and a round circle. In R3, that is n = 2, the above conjecture was proved by Ding
and Xin [11] using the identity

1
2L|∇A|2 = |∇2A|2 + (1 − |A|2)|∇A|2 − 3Ξ − 3

2 |∇|A|
2|2,

where L is the operator L = ∆ − 〈 1
2 x,∇·〉, hi j is the second fundamental form and

Ξ =
∑

i, j,k,l,m

hi jkhi jlhkmhml − 2
∑

i, j,k,l,m

hi jkhklmhimh jl.

In this note we give a new and simple proof of the above result without heavy
computation. More precisely, we prove the following theorem.

Theorem 1.2. Let Σ2 ⊂ R3 be a smooth complete embedded self-shrinker with
polynomial volume growth. If the second fundamental form of Σ2 is of constant length,
that is, |A|2 = constant, then Σ2 is a generalised cylinder Sk × R2−k for k ≤ 2.

The key idea in the proof of Theorem 1.2 is to analyse the point where |x| achieves its
minimum. Since Σ has polynomial volume growth and, thus, Σ is proper (see [5, 10]),
such a point always exists. At this point, we have ∇H = 0. Combining this with
|A| = constant implies that |A|2 ≤ 1/2. Therefore, the conclusion follows directly from
the fact that any smooth complete self-shrinker with polynomial volume growth and
|A|2 ≤ 1/2 must be a generalised cylinder. We remark that our method does not apply
to higher dimensions to prove Conjecture 1.1.

For self-shrinkers, there are some gap phenomena for the norm of the second
fundamental form. Cao and Li [4] proved that any smooth complete self-shrinker
with polynomial volume growth and |A|2 ≤ 1

2 in arbitrary codimension is a generalised
cylinder. Colding et al. [7] showed that generalised cylinders are rigid in the strong
sense that any self-shrinker which is sufficiently close to one of the generalised
cylinders on a large and compact set must itself be a generalised cylinder. Using this
result, we prove that any self-shrinker with |A|2 sufficiently close to 1

2 must also be a
generalised cylinder (cf. [11, Theorem 4.4]).
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Theorem 1.3. Given n and λ0, there exists δ = δ(n, λ0) > 0 so that if Σn ⊂ Rn+1 is a
smooth embedded self-shrinker with entropy λ(Σ) ≤ λ0 satisfying

(†) |A|2 ≤ 1
2 + δ,

then Σn is a generalised cylinder Sk × Rn−k for some k ≤ n.

Remark 1.4. It is expected that one could remove the entropy bound in Theorem 1.3
when n = 2. In other words, the bound for |A|2 may imply the entropy bound in R3.
Let Σ2 be a closed self-shrinker in R3 with |A|2 ≤ C, where C is a constant less than 1.
By the Gauss–Bonnet formula, one can easily see that the genus of Σ2 is 0 and, thus,
obtain an entropy bound for Σ2 (see [10]). Recently, Brendle [3] proved that the only
compact embedded self-shrinker in R3 of genus 0 is the round sphere S2(2).

2. Background

In this section we recall some background for self-shrinkers from [8]. Throughout
this note we assume self-shrinkers to be smooth complete embedded, without
boundary and with polynomial volume growth.

Let Σn ⊂ Rn+1 be a hypersurface, ∆ its Laplacian operator, n its outward unit normal,
H=divΣn its mean curvature and A its second fundamental form. With this convention,
the mean curvature H is n/r on the sphere Sn ⊂ Rn+1 of radius r.

First, recall the operators L and L defined by

L = ∆ − 1
2 〈x,∇·〉,

L = ∆− 1
2 〈x,∇·〉 + |A|

2 + 1
2 .

Lemma 2.1 [8]. If Σn ⊂ Rn+1 is a smooth self-shrinker, then

L|x|2 = 2n − |x|2,
LH2 = 2( 1

2 − |A|
2)H2 + 2|∇H|2,

L|A|2 = 2( 1
2 − |A|

2)|A|2 + 2|∇A|2.

A direct consequence of Lemma 2.1 is the following corollary.

Corollary 2.2 [4, 16]. Let Σn ⊂ Rn+1 be a smooth self-shrinker. If |A|2 ≤ 1
2 , then Σ

is a generalised cylinder Sk × Rn−k for some k ≤ n. Moreover, if |A|2 < 1
2 , then Σ is a

hyperplane.

Colding and Minicozzi [8] introduced the following notions of the F-functional and
the entropy of a hypersurface.

Definition 2.3. For t0 > 0 and x0 ∈ R
n+1, the F-functional Fx0,t0 of a hypersurface

M ⊂ Rn+1 is defined by

Fx0,t0 (M) = (4πt0)−n/2
∫

M
exp

(
−
|x − x0|

2

4t0

)
,
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and the entropy of M is given by

λ(M) = sup
x0,t0

Fx0,t0 (M),

where the supremum is taken over all t0 > 0 and x0 ∈ R
n+1.

3. Proof of Theorem 1.2

By Corollary 2.2, if |A|2 < 1
2 , then Σ is a hyperplane in R3. Therefore, in the

following we only consider the case where |A|2 ≥ 1
2 .

For any point p ∈ Σ, we can choose a local orthonormal frame {e1, e2} such that the
coefficients of the second fundamental form are hi j = λiδi j for i, j = 1, 2. By definition,

|∇H|2 = (h111 + h221)2 + (h112 + h222)2.

Since |A| = constant, Lemma 2.1 gives

h11h111 + h22h221 = h11h112 + h22h222 = 0 (3.1)

and
|∇A|2 = h2

111 + h2
222 + 3h2

112 + 3h2
221 = |A|2(|A|2 − 1

2 ).

First, we prove that |x| > 0 on Σ. We argue by contradiction. Suppose that Σ goes
through the origin. Then at the origin, we have H = |∇H| = 0. Therefore,

h11 + h22 = h111 + h221 = h112 + h222 = 0.

Combining this with (3.1) yields

h111 = h222 = h112 = h221 = 0.

This implies that

|∇A|2 = |A|2(|A|2 − 1
2 ) = 0, that is, |A|2 = 1

2 .

By Corollary 2.2, we conclude that Σ is S2 or S1 × R. However, this contradicts the
assumption that Σ goes through the origin.

Note that Σ is proper since Σ has polynomial volume growth (see [10] and
[5, Theorem 4.1]). By the maximum principle, Σ must intersect S2(2). Hence, there
exists a point p ∈ Σ which minimises |x|.

Now, at the point p, we have |x| > 0 and xT = 0, where xT is the tangential projection
of x. This implies that

4H2(p) = |x|2(p) and ∇H(p) = 0.

Thus, we have
h111 + h221 = h112 + h222 = 0.

By (3.1),
h111(h11 − h22) = h222(h11 − h22) = 0.
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If h111 = h222 = 0, then we see that |∇A|2 = 0 and |A|2 = 1
2 . By Corollary 2.2, we

conclude that Σ is a generalised cylinder.
If h11 = h22, then

|A|2 = 2h2
11 =

H2(p)
2

=
|x|2(p)

8
. (3.2)

Since every smooth complete self-shrinker must intersect the sphere S2(2), we
conclude that |x|(p) ≤ 2. By (3.2), this gives

|A|2 =
|x|2(p)

8
≤

1
2
.

The theorem follows immediately from Corollary 2.2.

4. Proof of Theorem 1.3

The proof of Theorem 1.3 relies on the following two ingredients from [7]. The
first one is a rigidity theorem for the generalised cylinders, and the second one is a
compactness theorem for self-shrinkers.

Theorem 4.1 [7]. Given n, λ0 and C, there exists R = R(n, λ0,C) so that if Σn ⊂ Rn+1 is
a self-shrinker with entropy λ(Σ) ≤ λ0 satisfying

• Σ is smooth in BR with H ≥ 0 and |A| ≤ C on BR ∩ Σ,

then Σ is a generalised cylinder Sk × Rn−k for some k ≤ n.

Lemma 4.2 [7]. Let Σi ⊂ R
n+1 be a sequence of F-stationary varifolds with λ(Σi) ≤ λ0

and such that
BRi ∩ Σi is smooth with |A| ≤ C,

where Ri →∞. Then there exists a subsequence Σ′i that converges smoothly and with
multiplicity one to a complete embedded self-shrinker Σ with |A| ≤ C and

lim
i→∞

λ(Σ′i) = λ(Σ).

Remark 4.3. In the above lemma, the entropy bound is used to guarantee that the
convergence is with finite multiplicity. Moreover, if the multiplicity is greater than
one, then the limit is L-stable [9]. Using the fact that there are no complete L-stable
self-shrinkers with polynomial volume growth (see [9, Theorem 0.5]) the multiplicity
of the convergence must be one.

Now we are ready to give the proof of Theorem 1.3.

Proof of Theorem 1.3. We will argue by contradiction, so suppose there is a sequence
of smooth embedded self-shrinkers Σi , S

k × Rn−k (k ≤ n) with λ(Σi) ≤ λ0 and

|A|2 ≤
1
2

+
1
i
. (4.1)
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By Lemma 4.2, there exists a subsequence Σi (still denoted by Σi) that converges
smoothly and with multiplicity one to a complete embedded self-shrinker Σ. By (4.1),
we can conclude that Σ satisfies |A|2 ≤ 1

2 , and thus, Σ is a generalised cylinder.
Now we choose the R as in Theorem 4.1. For N sufficiently large, Σm is very close

to Σ on B2R ∩ Σm for m ≥ N, that is,

Σm satisfies H ≥ 0 and |A| ≤ 1 on BR ∩ Σm.

By the rigidity theorem for self-shrinkers, Theorem 4.1, Σm is a generalised cylinder.
However, this contradicts our assumption that Σi is not a generalised cylinder,
completing the proof. �

Theorem 4.1 and Lemma 4.2 also imply that any self-shrinker satisfying |A|2 ≤ 1/2
on a large ball must be a generalised cylinder. This improves Corollary 2.2 and can be
thought of as a quantitative version of Corollary 2.2. The result is as follows.

Theorem 4.4. Given n and λ0, there exists R = R(n, λ0) so that if Σn ⊂ Rn+1 is a smooth
embedded self-shrinker with entropy λ(Σ) ≤ λ0 satisfying

• |A|2 ≤ 1
2 on BR ∩ Σ,

then Σ is a generalised cylinder Sk × Rn−k for some k ≤ n.
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