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PROGRESS IN CLINICAL NEUROSCIENCES:
Charcot-Marie-Tooth Disease and Related
Inherited Peripheral Neuropathies

Timothy J. Benstead and lan A. Grant

ABSTRACT: The classification of Charcot-Marie-Tooth disease and related hereditary motor and
sensory neuropathies has evolved to incorporate clinical, electrophysiological and burgeoning molecular
genetic information that characterize the many disorders. For several inherited neuropathies, the gene
product abnormality is known and for others, candidate genes have been identified. Genetic testing can
pinpoint a specific inherited neuropathy for many patients. However, clinical and electrophysiological
assessments continue to be essential tools for diagnosis and management of this disease group. This
article reviews clinical, electrophysiological, pathological and molecular aspects of hereditary motor and
sensory neuropathies.

RESUME: Maladie de Charcot-Marie-Tooth et neuropathies périphériques héréditaires apparentées. La
classification de la maladie de Charcot-Marie-Tooth et des neuropathies sensitivo-motrices héréditaires apparentées
a été élargie afin d’inclure I’information clinique, électrophysiologique et moléculaire qui caractérise ces entités.
L’anomalie du gene et de la protéine en cause est connue dans plusieurs neuropathies héréditaires alors que dans
d’autres des genes candidats ont été identifiés. Chez plusieurs patients, des tests génétiques peuvent identifier une
neuropathies héréditaire spécifique. Cependant, 1’évaluation clinique et électrophysiologique demeure I’outil
essentiel pour le diagnostic et la prise en charge de ce groupe de maladies. Cet article revoit les aspects cliniques,
électrophysiologiques, anatomopathologiques et moléculaires des neuropathies sensitivo-motrices.
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Inherited peripheral neuropathy as a diagnostic group
encompasses a broad range of conditions with many presenting
symptoms and signs. Major subtypes include hereditary motor
and sensory neuropathies, hereditary sensory and autonomic
neuropathies, hereditary motor neuronopathies, and neuropathies
related to specific metabolic disorders. This review will focus on
the inherited motor and sensory neuropathy subgroup usually
referred to as Charcot-Marie-Tooth disease (CMT), for which
there has been an explosion of new molecular genetic
information over the past decade. Advances in our understanding
of the molecular basis of CMT have revealed an enormous
diversity in genetic mechanisms that lead to a clinical entity that
is relatively uniform in presentation. Clinicians experienced in
the diagnosis of neuromuscular diseases can readily identify a
patient with CMT by a group of symptoms and signs that fits a
classical pattern. Yet, that clinical pattern may be the result of
vastly different genetic defects. Accurate diagnostic characteri-
zation has evolved from simple pattern recognition to a more
complex series of diagnostic steps. Understanding the basis for
these steps will be essential for clinicians to participate fully in
the management of patients with CMT. This review will
summarize the current understanding of clinical, electrophysio-
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logical, pathological and molecular aspects of the various
subtypes of CMT.

CMT: GENERAL CLINICAL FEATURES

CMT is a common genetic disorder, estimated to be present in
1 in 2500-5000 people.' Patients with CMT can present with a
broad range of symptoms and signs. Disease expression varies
between and within kindreds. However, certain common features
are usually seen. CMT produces a distal greater than proximal,
lower extremity greater than upper, motor and sensory deficit, in
a typical diffuse peripheral neuropathy pattern. Significant
asymmetry of symptoms or signs should not be seen, except in
hereditary neuropathy with liability to pressure palsies (HNPP).
Hereditary neuropathy with liability to pressure palsies, which is
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Figure 1: Pes cavus. Twenty-year-old male with CMT 1A. This patient has high plantar arches with

hammer toes and atrophy of foot muscles.

discussed in detail later, is not usually considered a form of CMT
but it is aligned with this group of disorders by virtue of the
abnormality of peripheral myelin, which is the basis of its
pathogenesis. Weakness in CMT is usually present in foot and
lower leg muscles but is uncommon in upper leg or hip girdle
muscles in all but the most severely affected individuals. This
means that even patients with marked weakness are still usually
able to walk with the aid of ankle splints, due to preserved
proximal leg strength. Upper extremity weakness is usually
restricted to hand and forearm muscles, which may impair hand
function for fine motor and heavy tasks. The sensory loss is
glove and stocking in distribution and usually affects all
modalities. However, patients are usually less symptomatic from
sensory disturbance than motor problems; the early age of onset
and slow progression of the sensory deficit likely make sensory
loss less apparent to the CMT patient than to a patient with
acquired neuropathy. Some patients will deny any sensory
symptoms, despite evidence of marked loss of sensation on
examination. Paresthesias and neuropathic pain are less common
than in acquired sensory motor neuropathies.

Patients usually have foot deformities, most often pes cavus.
Pes cavus is recognized by high plantar arches. There is usually
wasting of foot muscles and pes cavus is often associated with
curled up or “hammer” toes (Figure 1). It is present in the
majority of patients with CMT, though it may only be evident as
high arches. In a few patients, normal arches or even flat feet
may be found.’ Pes cavus and hammer toes are characteristic of
CMT but are not specific. It can also develop with other forms of
chronic inherited neurologic dysfunction beginning during
childhood, when bone growth is still active.’ Occasionally, in
longstanding acquired neuropathies developing in adult life, the
appearance of the feet can mimic mild pes cavus. Pes cavus will
sometimes be seen in patients without neuropathy or other
neurologic deficit. Nevertheless, pes cavus remains a very
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important clinical clue that a neuropathy may be due to an
inherited process. Wasting of foot and distal lower extremity
muscles develops over time and may produce the classical
“inverted champagne bottle” appearance. Some severely affected
patients will develop scoliosis, but this is less common in CMT
than in inherited muscle disease, where weakness of trunk
muscles is a greater problem. In the demyelinating forms of
CMT, nerve hypertrophy may be visible and palpable in nerves
that are superficially located, such as the greater auricular nerve.

CMT CLASSIFICATION

Early diagnostic characterization of CMT relied on clinical,
electrophysiological and inheritance patterns to divide this
disorder into logical subgroups.>®1° Dyck and Lambert’s’
classification divided the hereditary motor and sensory
neuropathies (HMSN) into HMSN [, II, III, IV, V, VI, VII and X
(Table 1).

By the early 1980s, it was clear that multiple genetic
abnormalities lead to similar neuropathy phenotypes, such as
HMSN 1. The earlier HMSN classification was modified to
include linkage to chromosome 17 (HMSN IA), chromosome 1
(HMSN 1IB), the X chromosome (HMSN X) and unlinked
kinships (HMSN IC, etc.). As it became clear that the typical
HMSN I and II clinical and electrophysiological features may be
seen in patients without autosomal dominant inheritance, the
classification scheme was used by some to include patients with
nondominant inheritance patterns.!! Recessive and sporadic
inheritance can be difficult to ascertain, depending on how
intensively families are studied and the certainty of parentage.
Dyck!? demonstrated that intensive evaluation of families could
demonstrate unexpected inherited neuropathy in asymptomatic
or minimally symptomatic family members. Nevertheless,
recessive inheritance in patients with features of HMSN I and II,
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Table 1: Dyck and Lambert classification of hereditary motor
and sensory neuropathy (HMSN)3

Neuropathy Type Key Neuropathy Features

HMSN I Autosomal dominant inheritance with low NCV*

HMSN II Autosomal dominant inheritance with normal or
low normal NCV

HMSN III Probable autosomal recessive with very low NCV
and very severe clinical abnormality

HMSN IV Refsum’s syndrome

HMSN V Neuropathy with spastic paraplegia

HMSN VI Neuropathy with optic atrophy

HMSN VII Neuropathy with retinitis pigmentosa

*Nerve conduction velocity

Table 2: Current classification of Charcot-Marie-Tooth disease
and related neuropathies

Neuropathy Type Key Neuropathy Features

CMT 1 Dominantly inherited with low NCV*

CMT 2 Dominantly inherited with normal or
low normal NCV

CMT X X-linked inherited

HNPP** Dominantly inherited with focal nerve

lesions

Variable inheritance with very low NCV
and severe disability

Congenital Hypomyelination Sporadic inheritance with extremely low
NCYV and extremely severe disability
Recessively inherited CMT

Dejerine-Sottas syndrome

CMT 4

*Nerve conduction velocity, **Hereditary Neuropathy with Liability to
Pressure Palsies

from thoroughly assessed kindreds, were well described in the
premolecular genetic era.'3

MOLECULAR CONTRIBUTIONS TO CMT CLASSIFICATION

The first significant advance toward the current
understanding of the molecular basis for CMT came with linkage
of families to the Duffy locus on chromosome 1.'4!% Linkage to
the Duffy locus was designated HMSN IB. Several other
families were found to link to chromosome 17p,!¢ designated
HMSN IA; some families showed linkage to neither loci.'” The
families unlinked to chromosome 1 or 17 were given the
designation HMSN IC, though how many additional loci will be
discovered for the type I phenotype is not known. Subsequently
there has been an explosion of molecular information about the
various CMT subtypes. It has become apparent that the
classification of CMT needs to incorporate clinical,
electrophysiological and molecular features. The current
diagnostic classification scheme has evolved using a hybrid of
earlier eponyms and Dyck and Lambert’s scheme (Table 2).
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The molecular abnormalities associated with CMT subgroups
exhibiting presumed primary myelin dysfunction, suggested by
low nerve conduction velocity (NCV), revolve around
abnormalities of four key gene products (Table 3). Abnormalities
of chromosome 17p11.2-12 encoding peripheral myelin protein
22 (PMP22), 1922 encoding myelin P, protein, Xql3-22
encoding connexin-32 (Cx32) and 10g21.1-22.1 encoding early
growth response 2 (EGR2) produce variable phenotypic
presentations of neuropathy predominantly with demyelinating
features. These proteins are associated with myelin development
and function but it is clear that in severely affected myelinated
fibres, axonal degeneration will also occur.'®!° As noted below,
neuropathies associated with Cx32 mutations may have the
electrophysiologic features of an axonal or demyelinating
neuropathy and the primary process leading to nerve pathology
is less certain.

PMP22 is present in peripheral nervous system compact
myelin and constitutes up to 5% of the total myelin protein
content. Its role in myelin function and stability are not
completely understood but it contributes to the initial steps of
myelin production and maintenance of myelin in peripheral
nerves.” P, protein is the major protein component in peripheral
myelin and is responsible for adhesion of compact myelin.?!
Cx32 is a membrane spanning gap-junction protein that is
present in paranodal loops and Schmidt-Lanterman incisures of
central and peripheral nervous system myelin.?> Connexins form
channels that allow diffusion of ions and other molecules
between joined cells. Cx32 is likely important for cell-cell
interactions between axons and Schwann cells.?® The most recent
gene product found to be associated with demyelinating
neuropathies is EGR2.2* EGR?2 is a transcription factor involved
in gene expression. It contributes to the maturation of Schwann

Table 3: Neuropathies associated with inherited myelin gene
defects

Myelin Gene Defect Neuropathy
PMP22
duplication CMT 1A
homozygous duplication DSS
deletion HNPP
point mutation DSS
Myelin P, point mutation CMT IB
DSS
CH
Connexin-32 point mutation CMT X
EGR?2 point mutation CMT 1
DSS
CH

Abbreviations used: Charcot-Marie-Tooth (CMT), Dejerine-Sottas
syndrome (DSS), congenital hypomyelination (CH), peripheral myelin
protein 22 (PMP22), hereditary neuropathy with liability to pressure
palsies (HNPP), early growth response 2 (EGR2)
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Figure 2: Uniform versus nonuniform conduction slowing of median motor nerve conduction
in demyelinating neuropathies. Compound muscle action potentials were recorded from
abductor pollicis brevis with stimulation at the wrist (top traces) and elbow (bottom traces).
Panel A shows uniform slowing along the forearm segment in a patient with CMT 1A. Panel B
shows nonuniform slowing with temporal dispersion in a patient with chronic inflammatory
demyelinating polyradiculoneuropathy (CIDP). CV=conduction velocity; DL=distal latency.

cells leading to peripheral axonal myelination.> EGR2
mutations are uncommon but already it has become clear that
different missense mutations will lead to variable demyelinating
neuropathy patterns, including CMT 1,242 Dejerine-Sottas
syndrome (DSS),”” and congenital hypomyelination (CH)
neuropathy.”* Most EGR2 mutations have been dominant or
sporadic mutations, though recessive inheritance has been
described.?*

There are likely several factors that determine the severity of
neuropathy in these demyelinating disorders. For some
phenotypes associated with molecular abnormalities of the same
gene, gene dosage appears to be important. The neuropathies
associated with PMP22 gene abnormalities provide a good
example of this gene dosage effect. The level of expression of the
PMP22 gene in a patient will dictate the pattern of neuropathy.
With one copy of the gene, as occurs with PMP22 deletion, the
patient develops HNPP, usually the mildest phenotype of
PMP22-related neuropathies. HNPP patients with the deletion
have reduced expression of PMP22 in peripheral nerves.”® In
some HNPP families a frame shift point mutation in the PMP22
gene results in loss of function equivalent to the common
deletion, indicating that a reduction in PMP22 dosage is
necessary and sufficient for this phenotype.?*3! Possessing two
copies of the gene is normal. With three copies, resulting from
PMP22 duplication, the patient develops CMT 1A.
Immunohistochemical and immunoelectron microscopic studies
have demonstrated increased PMP22 expression in CMT 1A due
to the chromosome 17p11.2-12 duplication;*>* and increased
PMP22 messenger RNA has been found in nerve biopsy
specimens.* These findings provide clues to the gene dosage
effect, whereby increased expression of PMP22 (due to the extra
functioning gene copy) leads to an excess of PMP22 in the
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Schwann cell. It seems clear that the balance of PMP22
expression, reduced in HNPP and increased in CMT 1A, is
important in the pathogenesis of these disorders. In CMT 1A,
hypermyelination may be an important early stage in the
development of eventual demyelination and axon loss,* though
the precise mechanisms are not understood. Even greater
overexpression of the PMP22 gene, as would be expected with
homozygous inheritance of the PMP22 duplication from two
CMT 1A parents, leads to a more severe phenotype, suggestive
of DSS.3¢

Point mutations of the PMP22 and P, genes will produce a
variety of neuropathy patterns and some will be due to gene
underexpression, as in the case of HNPP associated with PMP22
mutation. However, toxic gain of function changes in the gene
product have the potential to produce more severe phenotypes,
such as DSS and CH.* Other unidentified factors presumably
play arole, as family members with identical genotype may have
markedly variable phenotype.

CMT 1A

A) Clinical

The commonest sub-group of CMT is type 1. In a large group
of unrelated CMT patients, 84% had electrophysiologic features
of CMT 1 and, of these, 68% had the PMP22 duplication of
CMT 1A.3 The CMT 1A duplication produces a variable clinical
presentation with a broad range of clinical severity, evident even
within individual families.>* Despite the existence of severely
disabled patients with CMT 1A, the majority of patients with the
trait are only mildly to moderately disabled. Many patients will
be asymptomatic, though careful examination usually
demonstrates signs such as loss of ankle reflexes and foot
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deformity. Birouk® found that in a group of 119 patients with the
17p11.2-12 duplication, about 25% were asymptomatic and that
a very small percentage had severe disability. The onset of
patient awareness of symptoms was in the first decade in 50%
and in the first two decades in 70% of the patients. However,
some patients did not experience symptoms until their seventh
and eighth decades. In children, difficulty running is often the
first symptom.>*° The age of onset of symptoms does correlate
with eventual severity and the disease is slowly progressive.?
The chromosome 17p11.2-12 duplication will produce atypical
presentation in some. In a group of 61 patients with the
duplication, eight had the Roussy-Lévy syndrome (CMT plus
essential tremor), three had pyramidal signs, one had muscle
cramps and calf hypertrophy and one had a predominantly
sensory disorder.** The new mutation rate of the PMP22
duplication is about 10%,*" which will account for the lack of
family history in some patients. Some patients will develop CMT
1A from a PMP22 point mutation.*?

B) Electrophysiology

Marked slowing of motor nerve conduction velocities is a
hallmark of CMT 1, historically serving as a basis for
differentiation of the demyelinating CMT 1 and axonal CMT 2
subtypes.”* In individuals with CMT 1, Harding and Thomas!!
found mean median and peroneal motor velocities of 21.1 and
16.6 m/s respectively. Comparing median motor conduction
velocities in patients with CMT 1 and 2, they found that 38 m/s
was a useful value in separating these groups. More recent
studies in families with documented CMT 1A due to 17p11.2-12
duplications have shown a similar degree of slowing,!®-3944-46
Occasional outliers with documented duplications have median
velocities above 40 m/s.*” Motor conduction velocities may be
quite variable within individual kindreds, with a range of greater
than 20 m/s in some families.*” Demyelination is also manifested
by prolonged distal motor latencies’® and prolonged F-wave
latencies. 4743

Conduction slowing appears very early in life. Penetrance
with respect to slowing is complete and may be evident as early
as two years of age.*®* The electrophysiologic changes are
present in patients with the PMP22 duplication, regardless of the
presence or severity of symptoms. In a longitudinal study,
Garcia*® followed 12 children with CMT 1A, performing clinical
and electrophysiologic assessments prior to age five and again
approximately seven years thereafter. Children as young as one
month of age were included. All children with the duplication
displayed nerve conduction abnormalities by age two. Changes
were usually present even earlier, with prolonged distal motor
latencies preceding conduction slowing in two infants less than
12 months of age. Motor and sensory NCV progressively
dropped over time, stabilizing by age five; a finding noted by
others.#’#" A reduction in compound muscle action potential
amplitude was also an early finding, present in recordings from
the foot in 50% of children by age five.

Uniformity of motor conduction slowing has been
emphasized as characteristic of CMT 1.1930-52 The underlying
demyelinating process affects all myelinated fibres to a similar
degree along the entire length of the nerve. Therefore, nerve
conduction studies show similar conduction slowing in proximal
and distal nerve segments, and among different nerves.

Volume 28, No. 3 — August 2001

https://doi.org/10.1017/50317167100001347 Published online by Cambridge University Press

LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES

Temporal dispersion and conduction blocks are absent. These
findings are diagnostically useful in differentiating CMT 1 from
acquired (and some inherited) demyelinating neuropathies in
which nonuniform slowing is prominent (Figure 2).3'3 Although
a few older series reported block in CMT 1 patients,”*> recent
large series generally have not confirmed this, instead
emphasizing uniformity of slowing. Kaku’? studied 129 patients
with CMT 1, including 82 with a confirmed chromosome
17p11.2-12 duplication. A similar reduction in motor NCV was
found comparing adjacent upper limb nerves, contralateral
nerves and proximal and distal segments of individual nerves.
Dispersion and conduction blocks were rare. Using relatively
conservative criteria (50% amplitude difference with proximal
versus distal stimulation) dispersion or block was found in only
5.3% of nerve segments studied. In most instances, this was
found in the setting of markedly reduced compound muscle
action potential amplitude, suggesting that the observed
amplitude change reflected phase cancellation rather than true
block. Where block occurred with normal motor amplitudes, the
affected site was usually one of common nerve compression
(such as the fibular neck). The authors interpreted these findings
as indicative of a high degree of uniformity of slowing. Although
sensory NCV are less well-studied, they are also reduced in a
uniform fashion."?

Sensory, and to a lesser degree, motor responses may be
absent. Commonly, no sensory potentials can be recorded from
the lower limbs and, in advanced cases, from the upper limbs as
well. Motor responses are also often absent recording from foot
muscles.

Weakness and clinical disability do not appear to correlate
well with NCV,"4 although a few studies have noted a
correlation.***® Conduction velocities change little over many
years despite progressive neurologic disability.'”*® Among eight
members of a family studied at a 22-year interval, Killian®
noticed a modest mean reduction in motor NCV of 2.2 m/s in the
median nerve and 3 m/s in the peroneal nerve. These findings
are consistent with the pathological observation that
demyelination is most active in the first five years of life but
relatively quiescent thereafter.’’ Disability correlates better with
compound muscle action potential amplitude.'®#4636  Motor
amplitudes gradually decrease over time, in keeping with
ongoing axon loss. Median nerve motor unit number estimates
also correlate with thenar weakness.!” Sensory deficits have
been correlated with sensory nerve action potential amplitudes
but not sensory NCV." These findings support the notion that
clinical severity relates to underlying axon loss rather than to
conduction slowing.

C) Pathology

Until recently, most information was derived from
undifferentiated CMT 1 cases. More recently, pathologic
findings in patients with 17p11.2-12 duplications have been
reported. Endoneurial area is increased.**® Onion bulbs,
concentric collections of Schwann cell processes surrounding a
myelinated or nonmyelinated axon or a regenerating cluster of
axons, are characteristic (Figure 3). Overlapping lamellae are
separated by collagen bundles. Onion bulbs are poorly
developed in childhood, becoming more prominent over
time.>*% In advanced cases with severe axon loss, onion bulbs
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Figure 3: Onion bulb formation. Electron micrograph of sural nerve
from an individual with CMT 1A showing characteristic concentric
Schwann cell cytoplasmic processes surrounding a myelinated axon.

are less prominent, with progressive replacement of the
endoneurial space by collagen.*

Morphometric studies reveal a reduction in myelinated fibre
density.**86! This reduction correlates with clinical severity.*
The size distribution of myelinated fibres is altered. Early in life
there is a modest loss of small fibres’” with a more prominent
reduction in large fibres occurring later.*>® Unmyelinated fibres
are normal in number.’%-2

Transverse sections and teased fibre studies reveal
demyelination and remyelination involving some fibres, and
areas of thin myelin are frequently observed.*>® Segmental
demyelination is most active before age five, slowing
thereafter.> Despite frequent areas of myelin remodeling, the
mean G ratio (axon diameter:total fibre diameter) is decreased in
young patients with CMT 1A, becoming increased later in
life.** Although axonal atrophy has been suggested as a basis for
the initial changes,** it now seems likely that these abnormali-
ties of myelin thickness reflect a state of hypermyelination.3>%

CMT 1B

A) Clinical

The less common P, protein related neuropathies vary from
the severe DSS and CH phenotypes to CMT 1B, which clinically
is often indistinguishable from CMT 1A. Multiple P, protein
mutations have been detected and the site of the mutation and its
consequent effect on P function does correlate with disease
severity.’” CMT 1B will vary from a mild neuropathy, as is often
seen in CMT 1A, to a condition that approaches the severity of
DSS.%

B) Electrophysiology

The electrophysiologic findings in CMT 1B are less well-
documented as large groups of patients are not available for
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study. Limited information suggests that conduction
abnormalities may be more severe than in CMT 1A. Bird®’
described the findings in the original CMT 1B family followed
over a 20-year period. Mean motor NCV was in the 9-11 m/s
range and lower limb motor responses were frequently
unobtainable. Similarly low velocities were described in the
original family with Roussy-Lévy syndrome, shown to possess a
P, mutation. All upper limb motor NCVs in this family were
under 16 m/s.%® Interpretation of reported electrophysiologic
abnormalities in patients with P; mutations is complicated by the
variable clinical phenotype, which includes individuals with
DSS and CH; very slow NCV in patients reported as having
CMT 1B may reflect overlap with the DSS and CH phenotypes.

C) Pathology

Similar to electrophysiology, the pathology of CMT 1B has
not been described in as much detail as CMT 1A. Bird®’ reported
the pathologic findings in CMT 1B patients with the C270A P
transversion. Sural nerve biopsy changes were similar to those
described for CMT 1A. A few fibres with focal myelin
reduplication (tomaculae) were found in one patient. Myelin
thickness was variably increased or decreased. One patient
underwent autopsy, revealing degeneration of the dorsal columns
(fasciculus gracilis) and chromatolysis and loss of some anterior
horn cells. Plante-Bordeneuve® described sural nerve biopsy
findings in three patients with the Roussy-Lévy syndrome due to
a Py Asnl31Lys (substitution of lysine for asparagine at the 131
position) point mutation. Focal myelin reduplication was present
in all patients to some degree. Also in contrast to CMT 1A,
onion bulbs were absent in two patients. Gabreels-Festen®
identified two contrasting patterns of pathology in patients with
P, mutations. Among seven patients with varying mutations,
four demonstrated uncompacted myelin, typically involving the
innermost layers of the myelin sheath, and widening of the major
dense line. Onion bulbs were prominent in this group. In
contrast, three patients showed normal compact myelin but
frequent focal myelin reduplication. The mechanism of
reduplication is unclear; however, the changes in compact
myelin are of interest, given the known role of P as a homophilic
myelin adhesion molecule.”

Roussy-Lévy syndrome

The original description by Roussy and Lévy was a large
kindred with typical clinical features of CMT, autosomal
dominant inheritance and associated essential tremor.”! Later
descriptions of HMSN I included Roussy-Lévy syndrome
patients under that general classification, as the clinical and
electrophysiologic features of the neuropathy component
resembled HMSN L3 It has been hypothesized that the genes for
the neuropathy and essential tremor are closely linked and in
some kindreds may be concurrently abnormal. Modern
molecular information has improved our understanding of the
tremor component of CMT. Roussy-Lévy syndrome is not due to
a single genetic defect. A subset of CMT 1A patients with the
chromosome 17p11.2-12 duplication will have a Roussy-Lévy
syndrome pattern,*” but the original Roussy and Lévy family has
a missense point mutation in the P protein gene.®® Tremor has
also been reported with CMT X.7? The coincidental expression of
essential tremor and CMT may not have anything to do with a
specific gene abnormality, though a separate genetic defect
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producing essential tremor may be present in some kindreds. In
many patients, the tremor may be merely a clinical manifestation
of the neuropathy, as in chronic inflammatory demyelinating
polyradiculoneuropathy and other acquired demyelinating
neuropathies an essential-like tremor may develop.”>’* The
presence of tremor is not currently a helpful sign in
distinguishing CMT genotype.

CMT 2

A) Clinical

Patients with a typical dominantly inherited CMT phenotype
who have electrophysiologic features of a primarily axonal
disorder have CMT 2. Typical patients with CMT 2 have a
similar clinical appearance to patients with CMT 1, though some
differences have been detected. The CMT 2 patients tend to
present with symptoms later in life than CMT 1 and the degree
of atrophy and weakness in distal lower extremity muscles may
be greater with relatively less weakness of intrinsic hand
muscles.® Nerve hypertrophy is absent. Similar to CMT 1,
multiple genetic abnormalities have been described producing
the CMT 2 phenotype but less is known about the gene products
of loci identified to date. Families with CMT 2 have been linked
to chromosome 1p35-p36 (CMT 2A),> 3q13-q22 (CMT
2B),”"78 7Tp14 (CMT 2D)™ and 8p21 (CMT 2E).* The CMT 2C
kindred has not yet been linked to a chromosomal region. The
CMT 2E trait has been associated with a mutation in the
neurofilament-light gene (NF-L), which likely leads to
impairment of axonal transport and axonal diameter. Some CMT
2 families have special features, such as mutilating ulcers (CMT
2B),”® diaphragm and vocal cord paralysis which can lead to
early death (CMT 2C)®' and greater weakness of hands than legs
(CMT 2D).” However, most CMT 2 families have typical CMT
features and would be difficult to distinguish from CMT 1 based
on clinical assessment alone without electrophysiologic
information.

Myelin protein gene abnormalities can occasionally lead to a
disorder that appears primarily axonal. In CMT 1 axonal
neurofilament numbers are reduced out of proportion to myelin
sheath thickness® and Schwann cells may influence axonal
repair through nerve growth factor support®> and other influences
on cytoskeletal elements.”> The CMT 2 phenotype has been
associated with mutations of myelin proteins such as P gene
mutations.®*#> A Thr124Met mutation on myelin P, may be
particularly important as multiple families with this mutation
have shown features of CMT 2.8 As well, CMT X
electrophysiology and nerve pathology can have the appearance
of an axonal process.

B) Electrophysiology

The EMG findings in CMT 2 are not distinctive and reflect an
axonal sensorimotor polyneuropathy. CMT 2 is differentiated
from distal spinal muscular atrophy (which it may resemble
clinically) by the presence of sensory conduction
abnormalities.®® Compound muscle action potentials are reduced
in amplitude or unobtainable but conduction velocities are
normal or only mildly reduced.® In Dyck’s® series, motor NCV
were within normal limits in most affected subjects, although
slightly reduced as a group when compared to unaffected family
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members. Harding and Thomas!! noted that CMT 2 motor NCV
exceeded 38 m/s. Sensory nerve action potentials are reduced or
unobtainable.® Tt should be noted that these changes are non-
specific, and may also be seen in patients with CMT X and CMT
4. Electrodiagnostic studies are thus mainly useful in excluding
CMT 1.

CMT 2 kindreds may include individuals with rather low
NCV, despite most affected subjects having velocities in the
normal range. Timmerman” reported one individual in an
otherwise typical CMT 2 family with motor conduction
velocities in the 25 m/s range. Patients with “intermediate”
conduction velocities (i.e. 30-40 m/s) may be identified, in
whom assignment to CMT 1 versus CMT 2 would be difficult in
isolation.  Possibilities include CMT X379 and CMT 2.
Electrodiagnostic study of family members will usually clarify
this.

Needle examination demonstrates evidence of chronic de-
and reinnervation. Motor unit recruitment is reduced, with
increased motor unit duration and amplitude. Motor units may
appear polyphasic but are often of simple configuration and high
amplitude given the indolent nature of the process. Fibrillations
are often present in distal muscles.

C) Pathology

These disorders are less well-characterized than CMT 1 and
the pathology is less distinctive. Myelinated fibre density is
reduced, especially distally.®? The size distribution may be
altered, with a relative reduction in large fibres.®2 Small
myelinated fibres are normal or increased in number relative to
controls, particularly in proximal nerve segments, due in part to
the presence of regenerating axons.’®2 Axonal atrophy is
present.”! Morphometric studies have shown a shift in the small
fibre peak to smaller diameters than controls, in keeping with
axonal atrophy, regeneration or both. Endoneurial area is normal
or slightly increased.”® Occasional small onion bulbs are present.
Teased fibres may show evidence of myelin re-modeling.

With the sub-classification of CMT 2 based on genetic
markers, more distinctive pathologic changes may eventually be
identified. In a German kindred with CMT 2 associated with
cardiomyopathy, sural nerve biopsy demonstrated focal axonal
swellings containing accumulations of neurofilaments.””> This
family appeared clinically and genetically distinct from giant
axonal neuropathy, in which similar pathology is seen.

CMT X

A) Clinical

Typical CMT with more severe expression in males than
females characterizes CMT X. The age of onset of symptoms is
usually younger in affected males than in female heterozygous
expressors. At least half of affected males have recognized
symptoms in the first two decades, whereas less than a third of
females note symptoms by this age.?® Males have significantly
greater muscle wasting, loss of reflexes and disability. However,
there is overlap in the severity of manifestations between males
and females of different kindreds. The intra-family comparison
is an important yardstick, which may raise consideration of X-
linked inheritance. Variable expression of CMT within families
is common in CMT 1 and 2 and without large kindreds it may not
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Figure 4: CMTX. The pedigree in the top panel demonstrates maternal transmission of a mutant
connexin 32 gene to a son and daughter. This family was shown to have a codon 3 mutation in the
connexin 32 gene by polymerase chain reaction amplification followed by Taql restriction analysis.
The G—C mutation in codon 3 creates a novel Taql restriction site. The mutant allele was detected in
patients IlI-1, 111-2, 1I-2 and I-1 (middle panel) by the presence of a 474 base pair fragment (lower

panel). [From Gupta S, Benstead T, Neumann P,

Guernsey D. A point mutation in codon 3 of connexin-

32 is associated with X-linked Charcot-Marie-Tooth neuropathy. Hum Mutat 1996;8(4):375-376.
Reprinted by permission of Wiley-Liss, Inc., a subsidiary of John Wiley & Sons, Inc.]

always be obvious that the inheritance is X-linked. Absence of
male-to-male transmission of a dominantly inherited CMT trait
should always raise the consideration of CMT X.?* The pedigree
in Figure 4 demonstrates the inheritance of a maternal mutant
Cx32 allele by a son and daughter.

CMT X is associated with point mutations in the gap-junction
protein Cx32 located at Xq13-22.°* The disorder is almost
always inherited dominantly. A de novo Cx32 mutation has been
described and this should be considered in seemingly sporadic
CMT cases.” Recessive inheritance has been reported,’ though
recessive inheritance should not be assumed without careful
clinical and electrophysiological assessment of female carriers,
due to the often-mild expression. Currently, around 160
mutations have been reported with some phenotypic variability
between families represented by different mutations. There is
some correlation between the location of the mutation on the
Cx32 gene and the character of the neuropathy. Missense
mutations within regions of the protein less critical to Cx32
function lead to a milder neuropathy. Nonsense mutations are
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associated with earlier onset of disease expression and more
severe neuropathy.?° About 10% of CMT patients have X-
linked inheritance, making CMT X the second most common
form of CMT?7 after CMT 1A.

The Cx32 defect has produced clinical manifestations
restricted to the peripheral nervous system in the majority of
patients reported to date, despite the presence of Cx32 in
oligodendrocytes. Mice without the Cx32 gene develop a
peripheral neuropathy but central myelinated fibres are
unaffected.”® Asymptomatic electrophysiological abnormalities
within the central nervous system have been reported in some
patients?®'% but a comprehensive assessment of CNS function is
not available for the majority of reported CMT X patients. It
seems unlikely that the CNS consequences of this gene defect
will be significant given the experience with the disorder to date.

B) Electrophysiology

Motor conduction slowing is typical of CMT X but this entity
has caused confusion in part due to the common occurrence of
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intermediate velocities falling between the ranges typical for
CMT 1 and CMT 2.87899.101  Men generally show slower
velocities than women.?”8% Interestingly, there is some
disagreement about which group displays the “intermediate”
velocities. For example, Nicholson®” described marked slowing
in affected males and intermediate velocities in females, while
Hahn® described intermediate velocities in males with
borderline normal values in women. Distal motor latencies are
typically prolonged. Compound muscle action potential
amplitudes are often reduced. Sensory potentials are small or
unobtainable; sensory conduction changes probably show less
difference between affected males and females than do motor
changes.”® Needle examination shows evidence of chronic
denervation and reinnervation, most marked in distal muscles.

Recent attention has focused on the occurrence of nonuniform
conduction slowing in CMT X. This is manifested as
heterogeneous slowing comparing multiple nerves and by the
presence of dispersion.'”!1%3  Sural nerve biopsy in these cases
has shown thin myelin and onion bulbs, in keeping with a
chronic demyelinating process. However, nonuniform
conduction slowing is not invariably found.*

The electrophysiologic features of CMT X are more likely to
suggest an axonal disorder than one characterized by primary
demyelination. However, some patients will have strong
indicators of demyelination, such as slow conduction velocities
and prolonged distal latencies. Differences in electrophysiologic
findings of various studies have made it difficult to categorize
CMT X based on usual parameters. The primary process leading
to neuropathy in CMT X will be difficult to define using
electrophysiologic criteria alone.

C) Pathology

Typical nerve biopsy findings include a reduction in
myelinated fibre density,?>® thinly myelinated fibres, many
regenerating clusters, and low-grade axonal degeneration.”®:104
In the largest series, Hahn?® described sural, superficial peroneal
or deep peroneal (motor) biopsy changes in seven unrelated male
patients with a variety of Cx32 mutations. There was mild to
moderate loss of myelinated fibres, which appeared age-related.
Frequent regenerating clusters and myelin remodeling were
present. Onion bulbs were absent. Teased fibre studies revealed
prominent paranodal demyelination with little segmental
demyelination or active axonal degeneration. Electron
microscopy revealed widening of the periaxonal space, Schmidt-
Lanterman incisures and adaxonal Schwann cell cytoplasm.
Axonal cytoskeletal changes were present with increased
neurofilament content.

There has been disagreement as to whether CMT X is a
primary demyelinating or axonal neuropathy. Previous reports
have emphasized the axonal changes,”>® while others have
described demyelination.'°>!9 This issue has not been
completely resolved. However, currently available evidence
suggests that while the most prominent, consistent changes are
axonal, some degree of demyelination is also present. Increasing
evidence, including that from animal models'® suggests that
Cx32 is important in Schwann cell-axon interactions and it may
be most accurate to categorize this disorder as a disease of
Schwann cells that leads to axonal loss and demyelination. The
variability in reported findings may relate to the large number of
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Cx32 mutations described and to varying disease expression
according to the specific mutation and resulting alteration in
protein function.

HEREDITARY NEUROPATHY WITH LIABILITY TO PRESSURE PALSIES

A) Clinical

Hereditary neuropathy with liability to pressure palsies is a
familial disorder with a predisposition to develop compression
and entrapment neuropathies. The condition has been recognized
for almost 50 years'® with clear descriptions, in the pre-
molecular era of the clinical, electrophysiological and
morphological features.!”” The disorder is dominantly inherited
and most kindreds demonstrate a deletion of the 17p11.2-12
region containing the PMP22 gene.'® In one group of HNPP
families the prevalence of the 17pl11.2-12 deletion was 68%.
Affected family members of symptomatic patients are often
asymptomatic or minimally symptomatic. Determining the
inheritance of patients with suspected HNPP often requires
detailed assessment of family members, as presence of the
disorder may not be appreciated by affected family members.'’
The family history may also be truly negative due to rare
sporadic cases from new mutations.!”” In some nondeletion
families a loss of function point mutation in the PMP22 gene will
produce the HNPP phenotype.?*-3!

Symptomatic HNPP patients may only become aware of their
problem after developing a focal neuropathy from an episode of
nerve compression or traction. From the history, the compressive
insult is often seemingly minor. Common sites for traumatic or
compressive nerve lesions are the median nerve at the wrist,
ulnar nerve at the elbow, radial nerve at the humeral groove and
peroneal nerve at the knee. However, HNPP patients will also
develop lesions at less common sites of compression if the
provocative factor is appropriate. The lesions usually recover in
a few weeks to months, similar to most sporadic mild
compression neuropathies. Without a provoking episode the
patient is often not aware of the problem. An exception is carpal
tunnel syndrome, which will often become symptomatic without
any definite provoking event. Family members of patients with
HNPP may have a history of carpal tunnel syndrome as the only
clue of their involvement.

The prevalence of HNPP was 16/100,000 in one population'!®
but epidemiological data are sparse in this disorder. In the
population studied, it was felt that the prevalence might have
been underestimated due to HNPP’s insidious nature and the
failure of many patients to seek attention for typical symptoms.
Variability in the phenotypic expression may also contribute to
under-recognition, as patients without typical syndromes may
not be tested appropriately. In a group of patients with multifocal
neuropathies, a PMP22 deletion was found in patients with a
typical presentation and in some with atypical features.!!!
Atypical presentation of HNPP includes episodes of acute
brachial neuropathy!®7!''"113 and polyneuropathy.!'>!'% The
brachial plexus lesions of HNPP are painless, as opposed to
inherited recurrent brachial neuropathy (hereditary neuralgic
amyotrophy), which is typically heralded by severe pain and
unaccompanied by nonbrachial conduction abnormalities.
Patients with hereditary neuralgic amyotrophy do not have a
chromosome 17p11.2-12 deletion,'’> but a locus has been
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identified in the chromosome 17q24-q25 region.''®!""7 HNPP can
produce a more diffuse polyneuropathy, sometimes severe and
fulminant''®!1° but, in others, without a clear stepwise
progression. Patients with polyneuropathy may be older, perhaps
due to the coalescence of many focal lesions in distal nerves
producing a diffuse symmetrical appearance.''

B) Electrophysiology

The electrodiagnostic picture in HNPP reflects single or
multiple focal compressive neuropathies at common entrapment
sites. Focal conduction abnormalities are no different from those
seen in entrapment neuropathies unassociated with HNPP.
Nerve conduction studies demonstrate focal slowing, temporal
dispersion and conduction block, alone or in combina-
tion.!07-120.121 With more severe or chronic focal lesions, axonal
degeneration may develop, resulting in a reduced compound
muscle action potential amplitude stimulating distal to the site of
injury and evidence of denervation on needle examination.
When axon loss is the major finding, localization of the site of
nerve injury may not be possible.

These focal changes are often multiple and may be
asymptomatic.'?> The disorder is often suspected through
detection of multiple asymptomatic abnormalities at sites of
common compression, found during evaluation of a single
symptomatic lesion. With or without associated symptoms,
conduction block may persist over a period of years.'” The
prevalence of conduction block in HNPP is unclear, as the
frequency in published reports varies according to the definition
of block used.'?!

Typically, focal lesions occur against a background of diffuse
polyneuropathy. These generalized changes are characterized by

diffuse slowing of sensory NCV,!07:114123 prolonged distal motor
latencies''*1?2123 and prolonged F latencies.!'*!?3 Evidence of a
focal median neuropathy at the wrist is particularly
common''*123 but the characteristic prolongation of distal motor
latencies is evident even if the median nerve is excluded.'?® This
distal slowing is out of proportion to slowing in proximal
segments, as illustrated by a low terminal latency index.'??
Notably, forelimb motor NCV is relatively spared.!'#122123
Andersson'?? found reduced motor NCV in 31% of HNPP nerves
studied but the overall mean motor velocity was normal. This
contrasted with control groups with CIDP and diabetes, in whom
motor slowing was significantly more frequent.

Given the potential difficulty in recognizing this pattern in
patients in whom HNPP is not suspected, diagnostic criteria have
been proposed. Verhagen'?* has proposed a formula combining
changes in peroneal and ulnar motor NCV with the peroneal
distal motor latency. Gouider!?® found that HNPP was likely
when the following criteria are met: bilateral prolongation of
median distal motor latencies, reduced median sensory NCV in
the palm to wrist segment and either a prolonged peroneal distal
motor latency or reduced peroneal motor NCV.

In patients with HNPP, diffuse conduction abnormalities are
more prominent in cases due to PMP22 point mutations or
insertions than in those with the more common 17pl1.2-12
deletion. Lenssen® described six families with a heterozygous
insertion of six nucleotides at nt276-281 of the PMP22 gene,
resulting in a frame shift. Motor NCVs were slowed in the CMT
1 range and sural sensory responses were usually absent. The
authors suggested these changes reflect not just reduced PMP22
expression but the additional detrimental effect of a truncated
protein on Schwann cell function.

——
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Figure 5: Hereditary neuropathy with liability to pressure palsies. Semithin section of sural nerve
demonstrating several fibres within a fascicle surrounded by focal reduplication of the myelin

sheath (arrows). (Methylene blue, 400X)
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Overall, the electrophysiologic changes in HNPP are consis-
tent with a background, predominantly sensory demyelinating
polyneuropathy, with distal accentuation.'?>123

C) Pathology

Most reports describe sural nerve biopsy findings. Focal
thickening of the myelin sheath is the most distinctive finding
(Figure 5). These were first described by Behse,'"” who called
them “sausages”. They have also been called “tomaculae”.'?
The tomaculae consist of redundant folds or loops of the myelin
sheath, resulting in thickened segments best appreciated in semi-
thin sections and teased fibre preparations.!97126.127 The
redundant loops are continuous with internodal myelin.!?’
Although ultrastructural studies usually demonstrate normal
myelin layering, uncompacted lamellae involving the innermost
layers of the myelin sheath have been described.'”’ Focal myelin
reduplication is not specific to HNPP, and has also been
described in CMT 1A,*° CMT 1B, and CMT 4B (see below).
HNPP pathologic changes also include segmental demyelination
and remyelination.'?”'?” Axonal diameter is reduced adjacent to
tomaculae.'?

DEJERINE-SOTTAS SYNDROME

Dejerine-Sottas syndrome is a rare, severe neuropathy with
onset very early in life and loss of motor function such as
walking at a young age. It is often associated with scoliosis and
nerve hypertrophy is usually easily detectable. Early reports
suggested recessive inheritance but modern molecular studies
have shown most DSS patients have sporadic point mutations in
the genes for P, protein,12%130 pMP2231.132 or EGR2.2” A
phenotype more severe than CMT 1, suggestive of DSS, can also
occur with homozygous expression of CMT 1A or CMT 1B. This
was described prior to linkage studies by Killian'*? in 1979 and
later once the gene abnormalities were recognized.’6:!3
Homozygous 17p11.2-12 duplication patients have four copies
of the PMP22 gene resulting in greater over-expression of the
gene than occurs in CMT 1A, where three copies of the gene are
present. These patients have more severe neuropathy than their
parents and some have NCV less than 10 m/s but the Killian
patients did not exhibit the severity of neuropathy typical of the
DSS patients reported by Dyck, in whom the ability to walk
independently was lost in childhood.

The electrodiagnostic characteristics of DSS were described by
Benstead.'? This study predated identification of the underlying
genetic abnormalities outlined above, and diagnosis was based on
clinical criteria. Eleven unrelated patients with a mean age of 17
years were reported. Nerve conduction abnormalities were
qualitatively similar but more severe than those of a control group
with CMT 1. Upper limb motor amplitudes were severely reduced,
typically to 10% of the lower limit of normal. Motor NCV was
invariably less than 6 m/s, with uniform slowing comparing
multiple nerves. Distal motor latencies were severely increased to
6-7 times normal values. Dispersion was sometimes noted with
proximal stimulation, although in association with very low
amplitude compound muscle action potentials. Sensory responses
were almost always unrecordable. Similar severely reduced
NCVs were noted by others.>>?

A recent statement of criteria for DSS (or HMSN III) has

Volume 28, No. 3 — August 2001

https://doi.org/10.1017/50317167100001347 Published online by Cambridge University Press

LE JOURNAL CANADIEN DES SCIENCES NEUROLOGIQUES

become very important, as evidence for the genetic heterogeneity
for the disorder has appeared. It will not be possible to diagnose
the disorder merely on the basis of a characteristic DNA
abnormality, as several exist.'*® Gabreels-Festen proposed the
HMSN III (DSS) designation be reserved for patients with
congenital or early childhood onset, NCV<7 m/s, virtual absence
of myelin on biopsy and basal lamina onion bulbs.

CONGENITAL HYPOMYELINATION NEUROPATHY

Lyon'? and others'¥-14° described a congenital hypomyelina-

tion neuropathy with features similar to DSS but possibly worse,
in that some patients never walked, which is uncommon in
descriptions of DSS. Infants with CH have severe hypotonia,
weakness, respiratory and swallowing difficulty. Early reports of
CH emphasized the virtual absence of myelin sheaths, with only
multiple layers of basement membrane surrounding large axons
and forming onion bulbs.'* The disorder was considered to
either represent the severest end of the spectrum of patients with
HMSN III or DSS or to be a separate genetic entity with
complete failure of myelin production by Schwann cells.
Mutations of the P, protein®” and EGR2%* have been described in
patients with CH.

CMT 4

A) Clinical

The issue of recessive inheritance has confounded
classification schemes in the past. Though usually referring to
dominantly inherited neuropathies, the HMSN I and II
designations have been used in patients with apparent recessive
inheritance.!! Dejerine-Sottas syndrome was suspected to be
usually recessively inherited based on early kinships.’> Molecular
analysis has demonstrated spontaneous point mutations in
disorders previously thought to be predominantly recessively
inherited."”' Nevertheless, genetic loci have been identified
through homozygosity mapping in kindreds with autosomal
recessive CMT. The first locus mapped was in chromosome
8q13-q21.1 in four Tunisian families.'*! The recessive
demyelinating form of CMT has been designated CMT 4, with
the 8q13-8q21.1 locus assigned CMT 4A. The CMT 4A patients
demonstrated evidence of hypomyelination and basal lamina
onion bulbs on nerve biopsy. Additional loci in other pedigrees
include chromosome 11g23 (CMT 4B),'** 5q23-q33 (CMT
4C),!# 14 8q24 (CMT 4D)'* and 19q13.1-13.3 (CMT 4F).'4
Two autosomal recessive forms of CMT with axonal features
have been mapped to 1g21.2-q21.3'¥7 and 19q13.3.'%  The
autosomal recessive axonal neuropathies are sometimes
designated AR-CMT 2. The recessive neuropathies, in general,
have been severe and have arisen from a broad range of
European and non-European communities. The 8q24 locus has
associated deafness.!*

B) Electrophysiology

Electrophysiological findings reflect the severe nature of these
neuropathies. Quattrone'*’ described the electrophysiology in 10
patients from a family now considered to have CMT 4B. Affected
individuals had a severe demyelinating neuropathy approaching
the degree of changes seen in DSS. Motor NCVs in the upper
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limbs were in the 15-17 m/s range in children, with unrecordable
motor responses in older patients. Sensory responses were
usually absent. Compound muscle action potentials were low in
amplitude and dispersed. Brain stem auditory evoked potentials
revealed prolonged peak 1-3 interpeak latencies.

C) Pathology

Nerve biopsy in Quattrone’s series demonstrated severe
myelinated fibre loss, maximal in older patients.'*® Most fibres
showed focal myelin reduplication (‘“focal folding of the myelin
sheath”). Thin myelin was present surrounding fibres without
reduplication. Occasional onion bulbs were noted. On teased
fibre studies, the areas of focal folding were felt to differ from
classic tomaculae by virtue of their marked nodular irregularity.
These changes were confirmed on electron microscopy.

Focal myelin reduplication has frequently been reported in
association with autosomal recessive CMT.!3%-155 Most patients
have had a neuropathy of congenital or childhood onset with
severe progressive disability and a shortened life span,
overlapping with DSS. Some authors have noted a similar
morphology to the tomaculae of HNPP'3%152 while others have
emphasized morphologic differences.!'#%15

Limited information is available about other CMT 4 subtypes.
Ben Othmane'*! described the conduction slowing, severe
hypomyelination and basal lamina onion bulbs in patients with
CMT 4A. Kessali'* noted typical onion bulbs in patients with
CMT 4C. Characteristic morphologic features of nerve biopsy
specimens have been associated with some recessive loci but the
morphologic abnormalities are not specific to any single
phenotype. For instance, the 1123 locus (CMT 4B) abnormality
produces a severe neuropathy with focally folded myelin.'*
However, focally folded myelin sheaths have also been
associated with a heterozygous dominant point mutation on the
myelin P gene.'”"!>¥ The gene products associated with several
CMT 4 chromosomal loci identified are not known, though some
candidate gene products have been identified.'>

CONCLUSION

Advances in understanding the many faces of CMT have been
rapid, fueled by the progress in correlating clinical presentation
with molecular defect. Some of the CMT phenotypic variability
clinicians detect can be explained by abnormalities in different
target genes, or differences in gene target dosing. There is more
to learn, as there is striking phenotypic variability within and
between families with identical gene defects, as seen in CMT
1A. Identification of gene product abnormalities is the first step
toward developing therapies that will effectively treat CMT.
Already the knowledge available is useful for genetic counseling
and aiding prognosis. For the commoner forms of CMT, such as
CMT 1, CMT X and HNPP, genetic tests are readily available to
the clinician. However, accurate diagnosis and management of
this diverse group of peripheral neuropathies continues to
demand skill and experience in the clinical and
electrophysiological evaluation of neuromuscular disease.
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