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ON JAMES' QUASI-REFLEXIVE BANACH SPACE AS 
A BANACH ALGEBRA 

ALFRED D. ANDREW AND WILLIAM L. GREEN 

1. Introduction. In [4] and [5], R. C. James introduced a non-
reflexive Banach space/which is isometric to its second dual. Developing 
new techniques in the theory of Schauder bases, James identified /**, 
showed that the canonical image of / in J** is of codimension one, and 
proved that J** is isometric to J. 

In Section 2 of this paper we show that 7, equipped with an equivalent 
norm, is a semi-simple (commutative) Banach algebra under point wise 
multiplication, and we determine its closed ideals. We use the Arens mul­
tiplication and the Gelfand transform to identify 7**, which is in fact just 
the algebra obtained from J by adjoining an identity. 

In Section 3, we show that the multiplier algebras of J and of J** can 
be identified isometrically and isomorphically with the Banach algebra 
/**. Throughout the paper, we have tried to use a minimum of basis 
theory, exploiting instead the multiplication on J. From this point of 
view, the choice of the operator norm, where J** is regarded as the multi­
plier algebra of / , is the most natural one. This approach also gives a 
basis-free characterization of the multipliers on / . Indeed, the definition 
of "multiplier" (after [6]) makes no assumption of continuity or linearity 
and no assumption that the multiplier coincides with multiplication by 
a sequence, although all these properties follow immediately from this 
characterization. 

Section 4 is devoted to the characterization of the automorphism 
group Aut(J) of / . We show that every automorphism of / is bounded, 
that each automorphism corresponds to a permutation of the natural 
numbers N, and that the only automorphism of norm less than \^2 is the 
identity. Moreover, a permutation a of N induces an automorphism of J 
if and only if a and a~l satisfy a certain non-overlapping, or non-mixing, 
condition with regard to finite subsets of N. This section also contains a 
discussion of the shift operator and of James' map [5] of /** onto J. This 
latter map is not an isometry when / and /** have the operator norm. 

In Section 5 we discuss topological properties of the group Aut(J) . We 
show that every automorphism of / is the strong operator limit of a se­
quence of automorphisms induced by permutations moving only finitely 
many integers. We provide the permutation group 5^ (N) with a metric 
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which makes it a complete separable topological group. T h e topology 
induced by this metric coincides on bounded subsets of A u t ( J ) with the 
strong operator topology, and the group 

^""(N) = {a (E y(N): a(i) ^ i for only finitely many i\ 

is dense in A u t ( J ) and i n j ^ (N). Since the norm on J may be regarded as 
being induced by a certain generating set for F(N), the results of Sec­
tions 4 and o are a reflection of the close relationship between A u t ( J ) 
and the norm on / . Finally, we obtain a characterization of the strong 
operator relatively compact subgroups of A u t ( 7 ) . 

Our notation will generally follow tha t of [7]. We let lœ = / œ (N) denote 
the Banach *-algebra of all bounded sequences of complex numbers, and 
Co the closed ideal in lœ consisting of all null sequences. We write / for 
the identi ty of lœ, 5m for the characteristic function of the singleton [rn\, 
XA for the characteristic function of a set A C N, and Xm for TTLi at-
W7e shall also find it convenient to have xo = 0 and xœ — 1- If X is a 
Banach space, we use X* for the dual of X, span 5 for the linear span of a 
subset S of X, SS (X) for the Banach algebra of all bounded linear maps 
of X into X, and (when X is complex) XR for the real pa r t of X. In a 
vector lattice, we write x+ and x~~ for the positive and negative par ts of x. 
Throughout this paper, we use the term ' 'projection" to mean an idem-
potent element of an algebra. 

The authors are grateful to E. G. Effros for some helpful suggestions 
and encouragement. They are also indebted to A. J. Lazar and to P. 
Casazza for some discussions concerning the ideals in / and to A. J. 
Lazar and to Bruce Blackadar for some conversations which bear on the 
closing remarks of the paper. W. Green would like to thank the Montana 
State University and its Depar tment of Mathemat ical Sciences for their 
hospitality during the 1979 Montana Sta te University Summer Work­
shop in C*-algebras, where t h e conversations with Professors Lazar and 
Blackadar took place. 

2. J and J** as Banach algebras. If <F = \p} < p2 < . . . < pk] is 
a finite subset of N, and if a Ç lœ, put 

N(a,#) = 0-1 /2 £ \a(Pn.!) - a(pt)\
2 + \a(pk) - a(Pi)\ 1/2 

and let N(a) be the (possibly infinite) supremum of {N(a,F)\, where t^~ 
ranges over all such finite subsets of N. It is well known (and easy to 
verify) tha t if a d lœ and N(a) < oo, then a converges. In particular, 
N(a) — 0 if and only if a is constant . Simple arguments show tha t if a 
has finite support , then N(a) < oo , and tha t N(ôm) = N(xm) — 1 lor 
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all m (z N. T h e proof of the following proposition is routine and well 
known. 

PROPOSITION 2.1. The function N is a norm on the subspace J — { 
N(a) < oo j of Co and a seminorm on the subspace A — J + C l of /,r,, and 
J is complete in N. If a t J and X G C, then N(a + XI) = N(a). In par­
ticular, A = {a Ç lm:N(a) < oo j . 

Remark. Ha f lœ, then 

N(a) ^ suPj,k2-^[2\a(j) - a(k)\*y<*. 

Since (i(j)—^0 whenever a t J, it follows tha t N(a) §: \\a\\01 for all 
a € J. 

The space / was introduced by R. C. James in [4] and [5], and we shall 
refer to it as James ' space. The sequence {dm} is a monotone Schauder 
basis for J [5]. T h a t is, N(a — %ma) —> 0 for all a Ç / , and if m ^ k, 
then N(xma) è 7V(x*«)- In fact, this inequality holds for all complex se­
quences a. Note tha t if a f J, then N(xm.a) converges monotonically up 
to N(a). 

LEMMA 2.2. Let a be a complex sequence. Then a c A if and only if the 
sequence \ iV(xwa) I mç_N is bounded. In particular, if a £ A, then \immN(xm(i ) 
exists. 

Proof. If ,F = {px < p2 < . . . < pk] C N, then for any m ^ pk, we 
have 

N(a,F) = NUrna,^) S. N(Xna). 

T h u s if |A/r(xm^)lm€N *s bounded, then A7(a) < oo , i.e., a (z A. If a = 
a0 + XI with ao G J and X Ç C, then for any m Ç N, we have 

N(aXm) ^ N(aoxm) + N(\Xm) S N(a0) + |X|. 

Let ^4R and / R have the partial orderings (pointwise) which they in­
herit from /œ. 

PROPOSITION 2.3. The (real) vector spaces AR and JR are vector lattices. 
Moreover, N(a+) g N(a), N(cr) è N(a), and N(\a\) è N(a). 

Proof. Let a G AR} and let a = a+ — a~~ be its decomposition in /,,. 
into positive and negative parts . Since 

\a+(j) - a+(k)\ S \a(j) - a(k)\ 

for all j and k in N, it follows tha t N(a+) S N(a). Similar a rguments 
establish the other inequalities. In particular, a+ and a" lie in AR. Since 
a G Co if and only if a+ and a~ lie in CQ, we have a+ and a" in / whenever 
a f J. It follows tha t AR and JR are vector lattices. 
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PROPOSITION 2.4. The Banach space J is a subalgebra of cQ, and if 
a, b 6 Jy then N(ab) g 2N(a)N(b). 

Proof. If x, y G C, then 

\x + ;y|2 ^ |x|2 + 2 Re x;y + M2 â 2(|%|2 + |;y|2), 

so for any i and j in N, we have 

|a(t)ft(t) - a0")&0')l2 = \a(i)b(i) - a(i)b(j) +a(i)b(j) - aU)b(j)\* 

g 2[|a(t)6(t) - a(t)60")|2 + |a(»)&0') - «0>0")l s ] 

S 2[||a|U*|6(t) - 6(j)|2 + |a(t) - a(j)|2 ||&|U*]. 

Now let ^ = {pi < p2 <•••< pk\ Q N be arbitrary. Taking i and j 
to be the appropriate elements of &~ and summing gives us 

2N{ab^Y g 2[||a||œ
2(2iV(6,^)2) + (2iV(a, J02)ll&ll«>2] 

^ SN(a)2N(b)2
t 

since TV dominates || ||œ on J. The proposition follows if we take suprema 
over ^ . 

COROLLARY. The space A is a subalgebra of lœ, and J is an ideal in A. If 
a 6 A and ab = 0 for all b £ J, then a = 0. 

Proof. Let a, b Ç A, and put a = cio + XI and b = bo + nl, with a() 

and &o in J and X and M in C. Then 

N(ab) = N(a0b0 + \bQ + JÛ O + X/xl) = N(a0bQ + X60 + na0) < oo , 

since a0fro + X60 + M̂ O G / . Thus afr 6 ^4, so 4̂ is an algebra. If a G 4̂ 
and b £ J, then a6 G Co and N(ab) < oo , so aft Ç J. Thus / is an ideal in 
A. If aôm = 0 for all w G N, then a = 0. 

By the last proposition and its corollary, the function || || defined by 

||a|| - sup{N(ab): b £ J and N(b) = 1} 

is a norm on A. Since N(a) = limmN(axm) = !!ftl! ~ 2N(a) for all a Ç 7, 
I! || and iV are equivalent on / . Note however that || || is submultiplica-
tive (i.e. \\ab\\ S \\a\\ \\b\\) on J (or on A), while N is not. Indeed, if 
1/2 < 6 < 1 and a = (1, 0, 1, 0, 0, . . . ), then N(a2) > N(a)2. 

Remarks. Note that ||a|| may be computed by taking the supremum 
over all those b in J such that b has finite support and N(b) ^ 1. If a G JR 

then 

||a+|| £ 2N(a+) g 2 A » ^ 2||a||. 

Similarly ||a"H ^ 2||a||, and if b = \a\, then ||6|| ^ 2||a||. 
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LEMMA 2.5. If a G /œ, //zc/z llxm^ll ^ monotone increasing in m. If 
a G /'i, then \\xm<i\\ converges to \\a\\. 

Proof. If a G /œ, if fr G /œ has finite support , and if k ^ m in N, then 
N(xk(io) S N(xmub) ~ N(ab). Taking suprema over those b with N(b) ^ 1 
gives ||x*a|| ^ Hxm l̂l for any a 6 lœ and | | x ^ ! | = lk!l for any a ( i . 
Now fix a G ^4, let e > 0, and choose b with finite suppor t such tha t 
N(b) ^ 1 and ||a|| — e S N(ab). For all sufficiently large m, we have 
N(a-Xmb) = N(ab), and it follows tha t | |axw | | converges to ||a||. 

T H E O R E M 2.6. With the norm j| ||, J and A are commutative Banach 
algebras with isometric involutions (given by complex conjugation). We have 
|| 11! = 1 and \\xm\\ = \ for all m G N, and the sequence \Xm\ is an approxi­
mate identity in J. 

Proof. For all m, we have 1 - N(Xm) ^ llxJ!- Since N{Xma) ^ N(a) 
for all a G J, we have ||xm|| = 1 for all m. Since N and || || are equivalent 
on J and N(ax?n — of) —> 0 for all a G J , Sx™! is an approximate ident i ty 
for J with respect to either of these norms. The rest is immediate. 

If m G N, let em : /œ —> C be evaluation a t m. Clearly em is a character 
on /fri, hence on A and on J, and distinct integers give rise to distinct 
characters on each of these algebras. The (maximal) ideal J of A is the 
kernel of the character a —>\imma(?n), which we denote by eœ. Let N 
have the discrete topology, and let N* = N U joo} be the one point 
compactification of N. 

PROPOSITION 2.7. The algebras J and A are semisimple. We have spec (J) 
= \em:m G N) and spec (A) = \em\m G N*) . The map m —•» em is a 
homeomorphism of N onto spec (J) and of N* onto spec(^l) . 

Proof. Suppose <j>\A —> C is multiplicative. Then on any idempotent of 
A, 0 is either zero or one. In part icular <t>(ôm) = 0 or 1 for any m G N, 
and 4>(ôk + 8m) = 0 or 1 if k ^ m. If 0 is also linear (and hence bounded) 
on A, and if 0(<5OT) = 1, then 0(<5A) must be zero for all k ^ m. T h u s if 
0 ^ 0 on J, then 

</>(«) = tf( ! > ( * ) « * ) = a (w) 

for some m G N, i.e., 0 = em for some m G N. In part icular , 

spec(Z) = {em:m G N j . 

If 0 = 0 on J bu t 0 ^ 0 on A, then 

/ Ç kernel(0) Ç A, 

so J = kernel (0), since the dimension of A /J is 1. T h u s 

spec04) = {em:m G N * } . 
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Since A has an identity, spec (.4) is compact. Since 0 —» (j>(ôm) is weak* 
continuous on 7* or on .4*, and since {0, 1} is discrete, it follows tha t 
spec(7) is discrete and is discretely embedded in spec(^4). By minimality 
of the one point compactification, spec(^4) is homeomorphic to N*. 

T H E O R E M 2.8. Let I be a closed ideal in J. Then I contains a monotone 
increasing approximate identity {4>ni}meN with the following properties: each 
<t>m is a projection such that <j>m ^ Xm, and 

I = {a G J'-<j>m(i = xma for all m G NJ. 

If K = {i G N : 0 m ( i ) = Ofor all m G N} , then 

7 = DieK kernel e{ = {a G J:a(i) = Ofor alii G K\. 

Proof. Let m G N. Since (a(w)_ 1ôm) (a) = ôm whenever a(m) ^ 0, we 
have 8m G 7 if and only if there exists a G I with a (in) 9e 0. Pu t 

where we take <f>m. = 0 if no such 8k lies in I. I t follows readily tha t <t>ma = 
Xma for all a G I and all m G N. Since Xm^ - > ^ in norm for all a G 7, this 
implies t ha t {<£w} is an approximate identi ty for I. Moreover, if a G 7 
with cj)ma = xffl«, then a = lim0ma G 7, since I is a closed ideal. Clearly 
each a G 7 satisfies 0OTa = Xm^ —> « pointwise on N, so each a G 7 
vanishes on X. Suppose conversely tha t a G / and a vanishes on i£. To 
complete the proof, it suffices to show tha t cj)ma = \ma for all m. Let i G N. 
Since \(j>m\ is increasing, <j)m(i) is eventually zero if and only if <j>m(i) is 
zero for all m, if and only if i G K. If cfoa ^ x*ft for some & G N, then 
there exists i ^ k such tha t a (7) ^ 0 and <t>k(i) = 0. If any <f>j+k(i) ?± 0, 
then 5j G 7, which contradicts 0^(7) = 0. Thus </>m(i) is eventually zero, 
so i G K. But then a fails to vanish on K. T h u s we must have <j>ma = xm" 
for all w, i.e., a G 7. 

Thus each closed ideal in 7 is the intersection of the maximal ideals 
which contain it, and the closed ideals in c0 are in one-to-one correspon­
dence, via intersection with 7, with those in 7. By adjoining identities, 
one can show tha t the same assertions hold with J replaced by A and c{) 

replaced by c, the algebra of all convergent sequences. Since we shall 
show in Theorem 2.11 tha t A — 7**, we have the corresponding asser­
tions for 7** and c. 

Theorem 2.8 also asserts tha t each closed ideal in 7 is the span of a sub­
sequence of {<$i}?=i. Hence, by a result of [2], each closed ideal in J is a 
complemented subspace of 7. 

Now consider the dual space 7*, where we compute the norm in 7* as a 
supremum over the unit ball of (7,|| | | ) . If a G A and <£ G 7*, define 
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</>a G J* by (<j)a)(b) = <t>(ab). I t is easy to check t ha t 

M ^ 11*11 !MI 
and that this action of A on J* makes / * into a Banach A -module. If 
<t> G J* and m G N, then 

so </>Xm = 5^T=i 0(5f)ci lies in the span of {em:m G N}. If </> 6 /*, we 
write 0 for the function defined by $(m) = 0(ôm), m G N. 

Remark. The mapping (/> —> 0 is an injective norm decreasing linear 
map of J* into lœ. Since {dm\ is a shrinking basis for / , i.e., the biorthogo-
nal sequence {em:m G N} is a basis for J* [4], each $ lies in c0. It a £ J 
and </> G /*, then 

(0a)A(w) = 0(aoOT) = a(m)$(m), 

so (<£a)" is the product of </> and a in c0. 

PROPOSITION 2.9. The annihilator in J** of spec(J) w zero. 

Proof. By the Hahn-Banach Theorem, this assertion is equivalent to 
norm density of the span of spec (J) in J*. But this follows from Proposi­
tion 2.7 and the fact that {ôm:m G N} is shrinking. 

Recall that the double dual J** of J is a Banach algebra with the Arens 
multiplication [1, pp. 50-51]: if F, G G /** and </> G J*, put 

(Fct>)(a) = F(cf>a), a £ J 

and 

(FG)(4>) = F(G4>). 

In particular, we have 

\(FG)(<t>)\ £ IIFGII W ^ ||F|| ||G|| ||*|| 

for all F and G in J** and all 0 G J*. If F G J**, define A N -> C by 
F(w) = F(*m). Then F G /œ, and it is easy to check that (FG)* = FG 
for all F and G in J**, i.e., that i7 —> .F is an algebra homomorphism. If 
<£ G J* and i7 G J**, we also have (F^Y = F<£. If we identify spec (J) 
with N and the Gelfand transform on J with the identity map, then we 
have a = a for all a G / . 

The following proposition allows us to identify J** as a sequence space. 

PROPOSITION 2.10. The mapping F —> F is a norm decreasing injective 
algebra isomorphism of J** into lœ. Let K be a bounded subset of J**. Then 
the weak* topology coincides on K with the weak topology from spec (J). 
Moreover, F —> F is a weak* homeomorphism of K onto its image in lœ. 
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Proof. T h e injectivity follows immediately from Proposition 2.9, and 
the map F —» F is clearly norm decreasing. We may thus identify /** as 
an algebra with its image in lœ, and spec(J) with N. Since the image of K 
is bounded, and since F —» F is clearly a homeomorphism when K and 
its image have the topology of pointwise convergence on N, it suffices for 
us to check tha t in /** and in lœ this topology coincides on bounded sub­
sets with the weak* topology. Let K be the weak* closure of K, and let 
r be the topology on K of pointwise convergence on N. Since spec(J ) 
separates points of /**, r is Hausdorff. Since the identi ty map is weak* 
— r continuous and K is weak compact, r coincides with the weak* 
topology, as desired. A similar argument establishes the corresponding 
result for bounded subsets of lœ. 

COROLLARY. The Banach algebra J** is commutative and semi-simple 
and contains an identity, whose image in lœ is 1. If F £ /**, then xmF —> F 
weak*, and |[xm^1! ~* \\F\\. In particular, we may identify A with a closed 
*-subalgebra of J**. 

Proof. Commuta t iv i ty and semisimplicity follow from the last propo­
sition, or from [3, Theorem 3.7] and Proposition 2.9. Since J* is separable, 
the weak* topology is first countable on bounded subsets of J**. Since 
{Xm'-m £ N} is uniformly bounded in /**, it has a weak* convergent sub­
sequence. Any limit point e of such a sequence is clearly an identi ty for 
/**, since XmUk) = ejcixm) = 1 whenever m 2t k. But {xm\ is pointwise 
monotone on N, hence is weak* convergent in /**. Thus Xm ~* e weak* 
in J**. Consequently e = 1, since Xm —* 1 weak* in lœ. Since 

||X„*1| è llXmll l|F|| = | |F | | , 

limm | |xm^|| exists and is a t most | |F | | . Since the Arens multiplication is 
weak* continuous in its first variable, xmF —> eF = F weak*, and hence 

limJkmFW è ||F||. 

Thus Hxm^ll converges to \\F\\ for all F £ /**. 
Now the norm in A of any a <E A is also given by lim||xm#||> by Lemma 

2.5. If F e J**, then XmF £ J, so \\xmF\\ = \\(xmF]r\\, and it follows tha t 
| |F| | = \\F\\ whenever F Ç A. Thus we may identify A and J + Ce (as 
Banach subalgebras of J**) . 

T H E O R E M 2.11. If F £ J**, then N(F) < GO. That is, J** = A. 

Proof. For any m Ç N, we have 

N{XmF) ^ \\XmF\\ g \\F\\, 

since ||xm^|| converges up to ||.F||. The result now follows from Lemma 
2.2. 
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COROLLARY. The Banach algebra J** has an isometric involution given by 

a*(m) = a(m)} where a £ / * * and m £ N. 

Proof. From the definition of N, we have easily N(b*) = N(b) for all 
b Ç / . I t then follows directly from the definition of |] || t ha t a —» a* is 
!| | |-isometric, since (a*&)* = a/;*. 

Remarks. In [5], James gave an explicit description of a linear iV-isom-
etry between / and /**. Since J has no identi ty, these spaces cannot be 
isomorphic as algebras. In Section 4, we shall show tha t James ' map is no 
longer an isometry if J and J** have the operator norm || ||. 

If <t> G J*, then $ is positive in c0 if and only if <j)(a*a) ^ 0 for all a (: J. 
Although each a £ J R is the difference of two positive elements of / R , the 
corresponding decomposition in J* does not hold [8, Remarks after 
Corollary 9, p. 198]. 

3. Mul t ip l i e r s of / a n d of /**. In this section we show tha t the 
multiplier algebras of J and of J** are J**. 

A multiplier T on a Banach algebra A is a mapping T'.A —» A such tha t 
a(Tb) = (Ta)b for all a and b in A, and a multiplier is necessarily boun­
ded and linear [6, p. 13]. T h e multiplier algebra M (A) is the subalgebra 
(with the inherited norm) of 38(A) consisting of all multipliers on A. 
Since J** is commuta t ive and has an identi ty, the regular representation 
of J** on itself is an isometric isomorphism of / ** onto M(J**) [6, pp. 
15-16]. By the corollary to Proposition 2.4 this representat ion also em­
beds J** injectively into M(J). Let us write ( temporari ly) || \\Mu) f ° r the 
norm in M (J), and (as usual) || || for the norm in /**. Let a Ç 7**. Since 
/ ** and M(J**) are isometric, 

lk|| è IMUu) è sup{| |axm | | :m £ N} = ||a||. 

T h u s the norms from /**, M ( /**), and I f (J) all coincide on / * * if we 
identify J** with its images in the other algebras. 

Since we may identify spec(J ) with N , there is a natura l one-to-one 
algebra homomorphism, say T—>mTl of M (J) into lœ such tha t for all 
a Ç J, Ta = mTa [6, Theorem 1.2.2, p. 19]. 

T H E O R E M 3.1. The representation 

a —-> multiplication by a 

of J** on J is an isometric algebra isomorphism of J** onto M (J) with in­
verse T —> mT. 

Proof. Since we have 

N(mTXk) è \\mTx*\\ ^ l|7x*|| è \\T\\M(J)\\Xk\\ = \\T\\mJh 

the sequence N(mTXk) is bounded, and mT lies in J**, by Theorem 2.11 
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and Lemma 2.2. It is easy to check that the map T —> mT is an algebra 
homomorphism, and its image is clearly /** = / + Cl . The rest of the 
theorem now follows from the fact that the composition T—> mT —> 
multiplication by mT is the identity map on M(J). 

Remark. If % € J** is idempotent, then the corresponding multiplier T 
is also idempotent. Moreover, T has norm one precisely when % has the 
form Xk — Xn, where k and n lie in N U {0, GO } with n < k. 

THEOREM 3.2. Let T be a multiplier operator with corresponding se­
quence mT = \mT(i)} d J**. Then 

(a) T is compact if and only if mT £ / ; 
(b) T = \I + S, where I is the identity, X £ C, and S is a compact 

multiplier. 

Proof. If mT G / , then T is the norm limit of the finite rank multi­
pliers XnmT, and is hence compact. On the other hand, suppose mT (? / . 
Since mT(i) converges, there exist e > 0 and n Ç N such that k > n im­
plies \mT(k)\ > e. But then {Tôi}i^n has no norm convergent subse­
quence. This proves (a). Part (b) follows immediately from part (a) and 
Theorem 3.1. 

Remarks. If {xn} is a Schauder basis for a Banach space, then a scalar 
sequence {bn) is said to be a multiplier sequence for \xn} if the convergence 
of y^AvXn implies that of /,bnanxn. A basis is said to be unconditional if 
its space of multiplier sequences is isomorphic to lœ under the obvious 
map. If a basis is conditional it is generally difficult to identify its multi­
plier sequences, and it is well known that the unit vector basis {8n} for / 
is conditional. It follows, however, from Theorem 3.1 that the multi­
pliers for the algebra J correspond to the multiplier sequences for the 
basis {8n}, and these sequences are precisely the elements of /**. We note 
that the definition of a multiplier on the algebra J is basis-free in the 
sense that it depends only on the multiplication in / . 

4. Endomorphisms and automorphisms of / . In this section we 
will be interested chiefly in maps which are algebra endomorphisms of / 
and of /**. Any such map must take indempotents (i.e., characteristic 
functions) to idempotents. If, moreover, \p is an idempotent in J, then 
\\\p\\ ^ N(\f/) ^ -y/2unless \f/ has the form \m — x* for some non-negative 
integers m and k. These facts will enable us to show that no non-trivial 
automorphism of / or of /** can have norm less than \ /2-

PROPOSITION 4.1. Let T:J—>J be a bounded linear map which takes 
{ôm:m £ N\ into itself, let J have either the norm N or the norm \\\\, and let 
\\T\\ denote the operator norm of T acting on J. If \\T\\ < \/2, then for each 
m Ç N, there exists K N such that {T(8m), T(8m+i)} = {8k, 8k+i\. 
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Proof. Let J be equipped with the norm TV. If T(8m) and T(ôm+i) are 
not adjacent, then 

V2 g N(T(ôm) + T(ôm+1)) g \\T\\N(ôm + ôm+1) = | | r | | . 

T h e proof in the case of || || is identical. 

COROLLARY. Let T be a bounded linear map of J onto J which permutes 
{àm:m G N ) . / / | | r | | < v % then T is the identity map. 

Proof. Let a be the permuta t ion of N induced by T. If a is not the 
identi ty, then there exists a least integer j such t ha t a(j + 1) < a(j). By 
the last proposition, a (J + 1) = <?(j) — 1. Bu t then <r(j — 1), which 
must be adjacent to o-(j), is a(j) + 1. Since then a(j) < <r(j — 1), we 
have contradicted the minimali ty of 7. 

L E M M A 4.2. Le/ a be an algebra endomorphism of J. Then a is monotone 
on the idempotents in J. If a is an automorphism, then a permutes 
\ôm:m e N } . 

Proof. T h e first assertion follows from the fact t ha t the ordering on 
the idempotents in / is determined by the ring s t ruc ture of / . If a is in-
vertible, then a must take minimal non-zero idempotents to minimal 
non-zero idempotents , i.e., a mus t map {ôm:m G Nj into itself. 

PROPOSITION 4.3. If a is an automorphism of J, then a has a unique 
extension to an automorphism of J**, and conversely every automorphism of 
J** carries J into J. Every automorphism of J (or of J**) is bounded. 

Proof. I t is easy to check t ha t if a is an au tomorphism of / , then 
a (a + M) = a (a) + XI, where a ^ J and X G C, defines an automor­
phism of J**. Clearly this is the only linear extension of a to / ** which 
fixes the identi ty of /**. If a is an automorphism of /**, then for each 
</> Ç spec (J**), </> o a £ spec ( /**). T h u s a induces a map of spec( /**) 
into itself which is easily seen to be weak* continuous. Since a~l is also an 
automorphism, this induced map is a homeomorphism. I t therefore 
carries eOT to eœ, since every other point of spec( /**) is isolated. But 
J = kernel of eœ, so a carries / into / . 

T o show o: is continuous, it suffices to show a has a closed graph. 
Let an —> a and a(an) —» x (in norm) in / . Then an —» a and a(an) —> x 
pointwise on N. For each <j> £ spec (J), 4> o a(an) —•> </> o a(a), since 
4> o a G spec ( J ) . T h u s a(an) —> a(a) pointwise on N, so a (a) = x, and the 
graph of a is closed. 

T H E O R E M 4.4. / / a is an automorphism of J or of / * * , and if \\a\\ < 

V % then a is the identity map. 

Proof. Apply Lemma 4.2 and the corollary to Proposition 4 .1 . 
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Remarks. If a G / and m £ N, then for each automorphism a of / , we 
have 

m   

fc-1 

Since Xm&* —> a* and a is bounded, a (a*) = a (a)*. That is, every auto­
morphism of / is a *-automorphism. 

We remarked in Lemma 4.2 that every automorphism of / corresponds 
to a permutation of N. Let a- be a permutation of N, and let Ta be the 
map of Ie0 which it induces. We now derive necessary and sufficient con­
ditions for Ta to be bounded on / . 

We shall find it convenient to use an equivalent norm on / , defined as 
follows. Let G = [pi < p2 < . . . < pin) C N and define 

r n 

M(a, G) = M r \a(p2t-i) - a(p2i)\ 

Let 

M (a) = $up{M(a, G):n, G = {pi < . . . < p2n}}-

For integers m, n, we denote the interval (min(m, n), max(w, n)) by 
(m, n). 

Definition 4.5. The set G = {pi < . . . < p2n\ is non-overlapping for 
a if i 9^ j implies 

(<7p2i-l,(Tp2i) H (ap2j-U(Tp2j) = 0 . 

If G is non-overlapping for a~l, then both G and a~lG may be used in 
the computation of M (a). Specifically 

PROPOSITION 4.6. / / G is non-overlapping for a"1, then 

M(a, a~lG) = M(7>, G) for all a G / . 

Proof. Since G is non-overlapping for a'*1, the sum 

n 

]C |a(o-_1£2z-i) — a(a~1p2i)\ 
L z = l 

is permissible in the computation of M (a). We have, moreover, 

M(Taa,G)2 = Z |r*a(/>2i-i) - 7>(£2 ; ) |2 

n 

= X |a(o-~V2z-i) - a(<T~1p2i)\
2 = M (a, o-_1G)2. 

2 = 1 

The main result concerning operators induced by permutations is 

THEOREM 4.7. Tff is a bounded operator on J if and only if there exists 
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K > 0 such that each G = {pi < . . . < p2n] is the disjoint union of sets 
Gi, . . . , G i with I ^ K such that 

(1) p2i-i G Gk if and only if p2i £ Gk} 

(2) each Gk is non-overlapping for <r~l. 

The proof of this theorem will be accomplished in several lemmas. The 
point of the non-overlapping condition is that it limits the shuffling of 
disjoint blocks of unit vectors 8k. This will be made explicit in Lemmas 
4.10 and 4.11. Lemma 4.8 provides the "if part" of Theorem 4.7. 

LEMMA 4.8. Let a be a permutation of N, and suppose there exists K 
such that each G — \p\ < . . . < p2n] may be written as the disjoint union 
of sets Gi, . . . , Gi, I ^ K, satisfying (1) and (2). Then Ta is a bounded 
algebra endomorphism of J. 

Proof. For a £ / , and G = {pi < . . . < p2n\, 

M(Taa,G)2 = J2 \TMp2t-i) - Taa(pu)\
2 

t = l [-lj:P2j£Gi} 

I 

= £ M(Taa, df 
I 

= 22 M (a, a~ GiY, by Proposition 4.6, 

S E M (a)2 g KM(a)\ 

Taking the supremum over G yields H7^|| ^ Kl/2. 

Definition 4.9. Let \tn, n}, {p, q) be pairs of integers. We say a type 1 
overlap occurs if either (a) (w, n) C (p, q) or (b) (p, q) C (w, w). We 
say a /j>̂ £ 2 overlap occurs if (a) and (b) fail, but (m, w) P\ (£, q) ^ 0. 

Lemma 4.10 estimates j[7^|| in the case that a~l produces a chain of 
type 1 overlaps, and Lemma 4.11 estimates ||7^|| if a~1 produces many 
type 2 overlaps. 

LEMMA 4.10. Let a be a permutation of N, let G = {pi < . . . < p2n\, 
and let qt = a~lp{. Suppose that qx < qz < q5 < . . . < qe < g4 < q2-
Then \\Ta\\ g: \fn. 

Proof. Define a 6 J by 

( 0 I > q2n-i 
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Then M (a) = 1, yet 

M(T„a,G)2 = E | ( 7 » ( £ 2 < - i ) - (Taa){pu)\
2 

n 

= 2 kfez-i) - a(q2i)\
2 = ». 

2 = 1 

Hence H^H ^ •>/»• 

LEMMA 4.11. Le/ a be a permutation 0 / N , let 

G = {P! < P2 < . • • < p2n\, 

and let qt = v~lpi. Suppose that each {q2j-\, Ç.2j),j T6 L fe#s ci type 2 oper-

/a£ with (qi, q2). Then \\Ta\\ ^ \/n/2. 

Proof. We suppose without loss of generality tha t qi < q2, and let 

a (z J be defined by 

(0 otherwise. 

Then 

but M(Taa, G) = Vn~. Hence \\Ta\\ ^ v W 2 . 

The next lemma provides the ' 'only if pa r t " of Theorem 4.7. 

LEMMA 4.12. Let a be a permutation of N, and suppose there exists a 
constant k > 0 and a set of integers G — \p\ < p2 < . . . < p2n\ such that 
whenever G is written as the disjoint union of sets Gu i'•• ~ i ~ h satisfying 
(1) and (2) of Theorem 4.7 we have I ^ 24k. Then 

|| r a | | ^ min(-v/3£, 2<*~1)/2). 

Proof. T h e proof depends on producing either a chain of 3k type 1 
overlaps, in which case the first est imate holds, or a situation to which 
Lemma 4.11 applies, in which case the second estimate of \\Ta\\ will be 
shown to hold. As the construction will show, these estimates may be 
significantly improved in some cases. 

LetTT* = \p2i-i, p2i], and let qt = a^pi. Let If-Wi) = \q2i-i — g 2 i | , and 
let > be any linear ordering of {7^)^=1 such tha t TI > TTJ implies I (IT i) ^ 
1(TJ). We choose sets Gu 1 = i ~ I, inductively. Let wi be maximal, and 
put ir 1 C G\. Assume w/ C Gi, 1 ^ i S j , have been chosen so tha t 
7Ti' > 7T2 > . . . > 7r/ and Ui-=i TT/ is non-overlapping for a~l. Let 
TTj+i be the largest pair such tha t Uftî. n/ is non-overlapping for a~l 

and let irj+i C G\. If no such 7rJ+/ exists, the construction of G\ is com­
pleted. Assuming d , . . . , Gj have been chosen, satisfying (1) and (2), 
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and t h a t {7^)^=1 has not been exhausted, let inj+1 be the largest pair 
such t ha t 7Ti;+1 (J_ Gu i S. j> P u t inj+1 C Gj+i, and construct G m in the 
same manner as G\. 

Then G is the disjoint union of sets Gi, . . . , Gz satisfying (1) and (2), 
so by hypothesis, I ^ 24fc. T h e impor tan t aspect of this construction fol­
lows from the use of the linear ordering on {71-^=1, and is t ha t if i < j 
and ir' C G ;, then there exists ir" C Gt such t ha t G~X-K' and <j~lit" over­
lap. T h e ordering also allows the construction of chains of type 1 over­
laps. We use these observations repeatedly to construct a sequence of 
pairs {71-/} to which we may apply either Lemma 4.10 or Lemma 4.11. 

T o this end, let wi Ç da. If there exist 7r2', . . . , n'<&k-\ such tha t 
U<=i l 7r/ satisfies the hypotheses of Lemma 4.11, we have 

| | r , | | ^ [24*-2]1 '2, 

and we are through. Otherwise, there exist j > 2AJc~\ and 7r2' G Gj such 
tha t a~1iT2 and a~1T\ have a type 1 overlap, and 1(T2) > l(iri). 

Continuing, if there exist {ir/} *=3 such tha t U t=i TT/ satisfies the 
hypotheses of Lemma 4.11, we have 

It J- <r\\ — L ^ J > 

and we are through. Otherwise, there exist j > 24/c_2 and -nY c G\ such 
tha t 0— 1TTI , (7~17r2

/, <J~~1TTZ form a chain of type 1 overlaps. 
Continuing as above for a t most 3k steps, we produce either (i) a set 

F = {r2i-i, r2i}i==2 satisfying the hypotheses of Lemma 4.11 or (ii) a set 
F = {r2i_i, r2i}\Li to which the a rgument of Lemma 4.10 applies. In the 
first case we have ||r f f | | ^ \/'2k~l and in the second \\Te\l ^ \/3k. 

Notice now tha t Theorem 4.7 follows from Lemma 4.8 and the contra-
positive of Lemma 4.12. 

COROLLARY 4.13. Let a be a permutation ofN. The following are equiva­
lent: 

(a) Ta is a bounded operator on J, 

(b) SUpm | | r f f(xm) | | < 00, 
(c) SUpm ,n 11 Ta(Xm — Xn)\\ < °°-

Moreover, Ta G Ant (J) if and only if both Ta and Ta-
x satisfy one of condi­

tions (a) , (b) , and (c). 

Proof, (a) =» (b) and (b) => (c) are obvious. T h a t (c) => (a) follows 
from Lemma 4.12 and the proofs of Lemmas 4.10 and 4.11. 

Remark. In particular, Ta Ç A u t ( 7 ) if and only if there exists K > 0 

such t h a t for any projection % 6 / w i t h ||x|| = 1 (or N(x) — 1), we have 

\\T.{x)\\ g X a n d | | r . - . ( x ) | | £K. 
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Theorem 4.7 may also be rephrased to characterize the automorphism 
group of J. We summarize this in 

COROLLARY 4.14. A permutation aofN corresponds to an automorphism 
of J if and only if there exists a constant K > 0 such that any 

F = {p, < . . . < p2n\ 

may be written as disjoint unions 

F = U Ft = U G„ 
1=1 i = l 

where 
(a) l,k ^ K, 
(b) p2i-i G Fj(Gj) ^p2t £ Fj(Gj), and 
(c) each Fj(Gj) is nonoverlapping for a~l(a). 

Remarks. 1. There do exist permutat ions a for which Ta is bounded yet 
7^-i is unbounded as an operator on / . An example is provided by 
taking, for each n, and 1 ^ k S 2n 

«7(2 +k) - \ 3 ( 2 - x ) + 7 - k = 2j. 

Then, considering Ta as an operator on ( / , M), \\Ta\\ ^ 2 by Theorem 
4.7, yet 7V-i is not bounded by Corollary 4.13. The range of Ta is a dense 
subspace of / . 

2. Theorem 4.7 may also be interpreted in terms of Schauder basis 
theory. A basis {xn} for a Banach space X is said to be symmetric if for 
each permutat ion a of N, \xn) is equivalent to {xff(n)}, in the sense tha t a 
series ^anxn converges if and only if Ylan%<r(n) converges. A basis is sym­
metric if and only if the operator Ta defined by Taxn = xa(n) is bounded 
for each permutat ion a of N. The sequence {dn} is known to be a Schauder 
basis for J , and is not symmetric. Theorem 4.7, however, describes the 
symmetry properties of {ôn} by characterizing those permutat ions which 
correspond to bounded operators. 

There exist isometric *-endomorphisms of / and of /** which map these 
algebras properly into themselves. One such endomorphism is a shift 
operator S, which is defined as follows: if a is a sequence, pu t 

(Sa)(1) = Oand (Sa)(i) = a(i - 1) if i > 1. 

Then S is an isometric *-isomorphism of lœ onto lœ(2, 3, 4, . . . ) , and it 
is easy to check tha t N(Sa) = N(a) for all a £ / . Moreover, the inverse 
m a p 5 * : / œ ( 2 , 3, 4, . . .) —» lœ has a unique extension to a *-endomorphism 
of lœ which annihilates <5i. We write 5* for this extension, and it is easy to 
check tha t N(S*a) S N(a) for all a G / . If follows tha t 5 and 5* map / 
into / , and /** into 7**. 
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PROPOSITION 4.15. If a £ /**, then \\Sa\\ = \\a\\ and \\S*a\\ S \\a\\. 

Proof. Let b 6 J. Since Sa(l) = 0, we have (Sa) (SS*b) = (5a)/;. I t 
follows readily tha t 

N((Sa)b) = N(S(aS*b)) g ||a||iV(6), 

i.e., \\Sa\\ S \\a\\. On the other hand, 

N(ab) = N(SaSb) g ||Sa||iV(ô), 

so ||a|| :g ||5a||. 
Now consider S*a. Since (SS*a)b = (SS*)(ab), we have 

N((SS*a)b) ^ N(ab) g !|a||iV(&), 

i.e., ||55*a|| g ||a||. Bu t \\SS*a\\ = ||5*a||, by the first assertion of the 
proposition. 

Suppose now L:J** —-> J is the map defined by L(a) = a — (lim r/)l . 
In [5], James showed tha t the composition L o 5 is an isometry of J** 
onto / , where J has the norm TV. I t follows immediately from the next 
proposition tha t L oS cannot be an isometry when J has the norm || || 
(and / * * has the norm induced by || | | ) . 

PROPOSITION 4.16. Let 0 < e < \ . Let a = ( l , 1 - c , 1, 1, 1, . . . ) , and 

let a' = L oS(a) = (—1, 0, — e, 0, 0, . . . ) . For e sufficiently small, we 
have 

\\a\\2 ^ 1 + 2e2 > ||a'| |2. 

Proof. Let c = (1, 1 - c, 1, 0, 0, . . . ) . Then 

N 2 è Ikll2 è [ W ) / 7 v ( c ) j 2 = [1 + (1 - (1 - e)2)2]/[l + e2] 

- (1 + 4e2 - 4e3 + e 4 ) / ( l + e2) g 1 + 2e2 

for all sufficiently small e. 
Now let 6 £ J with TV (b) S 1. We shall show tha t N(a'b)2 ^ 1 + e2, 

from which the proposition will follow immediately. Let r = b\ and d = 
bz. We may assume r is real and non-negative, and we write 0i and 02 for 
the real and imaginary par t s of 0 respectively. Since 

2N(b)2 è r2 + |0|2 + \r - 0|2 = 2(r2 + |0|2 - r0i), 

we have 

(1) r2 + |0|2 S 1 + r0i. 

Since a'b = ( — r, 0, — e0, 0, 0, . . . ) , we have 

N(a'b)2 = maxfr2 + e2|0|2, %(\r - e0|2 + e2|0|2 + r2), \r - e0|2}. 

Since the second of these quant i t ies is the average of the other two, we 
have 

N(a'b)2 = r2 + €2|0|2 - 2re01 if 0i ^ 0, 
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and 

N(a'by = r2 + e2\e\2 if e1 ^ o. 

ouppose C7i < 0. Then 

N{a'b)2 = r2 + e2\6\2 - 2red1 ^ r2 + \6\2 - 2redl ^ I + rdl -2re6u 

by the inequality (1). But then 

N(a'b)2 ^ 1 + (1 - 2e)rd1 S 1. 

If on the other hand, 0X ^ 0, then 

iV(a^) 2 = r2 + e2|6>|2 g 1 + e2, 

so in any case N(a'b)2 ^ 1 + e2. 

5. Topological properties of the group Aut(J). In this section we 
first prescribe a scheme for associating to each a G 5^(N) a sequence 
{an} of elements of J ^ ( N ) = {a G 5^(N)*.a;(^) ^ i for only finitely many 
i}. We choose our scheme so tha t an will always converge pointwise on 
{àm}?n£N to a, and so tha t a will lie in A u t ( J ) precisely when the approxi­
mating sequences for a and for or1 are uniformly bounded on J. We then 
introduce a topology on A u t ( J ) and use the approximating sequences 
described above to s tudy this topology. 

To avoid higher order subscripts, we shall in this section of the paper 
identify Aut ( / œ ) and <5^(N) completely, writing a a in place of Taa = 
a o a~l whenever a G lœ and a G 5^ (N) . 

Let a G J ^ ( N ) . For each n, define an G J ^ ( N ) as follows. Let An = 
\i rg n\a{i) ^ n} , and let Bn = \i ^ n\a(i) > w}. Define 

(a(*) z G A„ 

^n(^) = \i i> n 
(fn(i) i G Bn, 

where fn is the unique order preserving function from Bn onto {j 5* n : 
7 5̂  a(i)\/i ^ w}. We shall call {an} the sequence of approximators for a. 
Indeed, aw converges pointwise on N to a. For suppose n G N and k ^ 
m a x j a ( l ) , . . . , a(w)}. Then a maps {1, . . . , n\ into {1, . . . , &}, and so 
i ^ n implies ak(i) = a(i), and the pointwise convergence of ak to a 
follows. Note in particular tha t the subgroup J^~(N) is pointwise dense in 

We introduce some terminology which we will use in the proof of the 
following theorem. To each projection % G / , there are associated unique 
sequences of nonnegative integers {pi}n

i=i and {g?n=i with q{ < pi+i < 
qi+i so tha t 

n 

X = / > \Xqi Xpi)} 
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where %o = 0. We shall refer to each summand (xQl — Xvù a s a block, and 
denote by g(x) the number of blocks in this decomposition. Here g(x) = 
n. Notice that for projections x and #, N(xY = g(x), and if x*</> = 0, we 
have g(x + 0) è g(x) + g (<!>)• 

THEOREM 5.1. / / a f y ( N ) induces an automorphism of J, /feew {aw| 
and { (ar1)^ are uniformly bounded in norm, where we compute the norm in 
S§(J). 

Proof. By symmetry it suffices to show that \\an\\ is bounded, and by 
Corollary 4.13 it suffices to show that {N(an(xm))'-n, w G Nj is bounded. 
Now from the definition of an it is clear that for m ^ n, an(xm) — Xm, so 
that N(an{xm)) = 1. Thus we need only show that {N(an(xm))'-'M< < M 
is bounded, and to do this we estimate g(an(xm))- Notice that 

<Xn(Xm) = OLn(xAn H U,. . . ,m} + XBn O {l,...,m}) 

= OLn{xAn H U.. . . .W}) + OLn{xBn C\ {l , . . . ,m}) 

and that 

gipLn(Xm)) S g(0Ln(XAn-C\ {!,...,m))) + g(^n(XBn H U, . . . , ro}) ) -

Now 

« « ( X A n f l U wl ) = X n ' « ( X m ) , 

so that 

^ ( « n ( X A „ n U , . . . , m } ) ) ^ g ( « ( X m ) ) ^ l k l | 2 -

Also, from the order-preserving nature of an on i3w, we see that adjacent 
blocks of an(xBn. n {i,...,m}) a r e separated by a block of a(xw)- Hence 

S(«»(xs„ n il , . . , .))) ^ g(«(x»)) + 1 ^ INI2 + 1. 

Thusg(an(Xl»)) ^ 2 | H | 2 + 1, 
which, by earlier remarks, implies that {||an||} is bounded. 

THEOREM 5.2. Let a e5^(N). Then an-+a pointwise on {<5mJ. Suppose 
there is a net {f3y} in S^'(N) C\ Se (J) such that (3y —» a pointwise on \ôm} 
and such that \/3y\ is uniformly bounded in S3 (J). Then a £ Se {J) and 
fiy —> a strong operator on J. In particular, a Ç Se {J) if and only if \an\ is 
uniformly bounded on J, in which case an —•> a strong operator on J. 

Proof. It was remarked earlier that an converges to a pointwise on 
{8m}. If a Ç J and Xm& = a for some m, there exists A such that y > A 
implies /37 (a) = a (a). It follows that ||a|| ^ lim ||/37[|, so a £ ^ ( J ) . B y a n 
e/3-argument, {(3y\ converges strong operator to a. 

Remark. We may replace {Ôm} in Theorem 5.2 by {xm} or by the set 
of all projections in J, since any projection in J is a finite sum of the 8m. 
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COROLLARY 5.3. Let a £ J^(N). Then a £ Aut(J) if and only if the 
sequences {||an||: n Ç Nj and {\\(prl)n\\\ n £ Nj are bounded. 

Thus a £ <5^(N) lies in Aut( / ) if and only if a and a - 1 are strong 
operator sequential limit points of automorphisms in ^~(N), i.e., of 
automorphisms in the subgroup of 5^ (N) generated by cyclic permuta­
tions of the form pi —> p2 —>•>.-* pn ~* Pi-

We topologize Aut(7) as follows. For each m £ N, define a pseudo-
metric dm on <5^(N) by 

dm(a, fi) = ||ôa(m) — ô/3(W)|| = \\Ta(ôm) — 7^(<5m)||, 

and put 

oo 

Then d is a metric on y (N). Suppose an —> a in j ^ (N) with respect to d. 
Since \ôm} is a norm-discrete subset of / , we have for each m 6 N that 
an(m) is eventually equal to a(m). Thus the topology r on 5^(N) in­
duced by the metric d is just the topology of pointwise convergence, where 
N has the discrete topology. This topology is easily seen to be compatible 
with the group structure, so Aut(7) and j ^ ( N ) are topological groups 
when equipped with d. By continuity of inversion, d is equivalent to the 
metric p, wThere 

p(a,/3) = d(a,(3) + d ( a - 1 , 0 - 1 ) , 

and it is easy to check that$f (N) is p-complete. Thus we have the follow­
ing result. 

THEOREM 5.4. There exists a metric p onS^ÇN), inducing the topology r 
of pointwise convergence, where N has the discrete topology, and satisfying 
the following conditions: 

1) Aut(J) and S^7 (N) are separable metric groups with respect to p; 
2) r coincides on norm bounded subsets of Aut(7) with the strong operator 

topology; 
3) c^"(N) is r-dense in Aut(J) and inJf(N). 

Proof. Condition (3) is easy to verify (use for example the approxi­
mators discussed above) and condition (1) is then established as well. 
Condition (2) follows from Theorem 5.2. 

Remarks. In the definition of the metric d above, we may replace 
{dm} by [xm] or by any enumeration of the set of all projections in / , 
and || || by any equivalent norm, and we obtain an equivalent metric. 

Although «y (N) is p-complete, the following result shows that Aut(7) 
cannot be made complete in any metric which is equivalent to p. 
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T H E O R E M 5.5. In the topology induced by the metric d, A u t ( J ) is of the 
first Baire category in itself. 

Proof. Notice t ha t by Corollary 4.12 

Au t (7 ) = {Ta: supw ! ! r , ( x j j | < oo and supw [ |7>i (xm)|| < oo }. 

Fur thermore, the values of \\T(T(xm)\\ form a discrete set {vi < v2 < . . . !, 
and 

oo oo 

Aut(y) = u n [{r,: \\T.(XM)\\ ^»»} n {r, : | |7Vi(Xm)|| ^ „ | ] . 

Thus it suffices to show tha t the sets 

CO 

An = n [ j r - ||r„(Xm)|| =s »»} n {r, : | |r„-i(Xm)|| =g »„}] 

are closed and nowhere dense. Since for each m the map a —»a(x,„) is 
^-continuous, each ^ is closed. 

Let a G T n , a n d ^ t afc be the kt\\ approximator of a. Then for i > k, 
ak(8i) = 8i. Let f3k Ç A u t ( J ) be induced by a permuta t ion ak such tha t 
0"*W = i if i ^ k or z > 3&, bu t 

Il/3*(x2*- XA-)!i = V £ 

and let Y* = (3kak. Then d(yn, a) —> 0, bu t 

||7*(X2*)II £ V&-

T h u s for k > z>n
2, Y A S An, and it follows tha t An is nowhere dense. 

Theorem 5.4 also allows us to describe the relatively compact sub­
groups of A u t ( J ) . A subset S of 5^ (N) is pointwise relatively compact in 
c5^(N) if and only if each 55m = {ôa^m):a G 5} is norm-relatively compact , 
i.e., finite. If in addit ion S Ç A u t ( J ) and 5 is uniformly bounded in 
norm, then by Theorem 5.4, S is strong operator relatively compact if 
and only if 5 is pointwise relatively compact . By the uniform bounded-
ness principle, any strong operator relatively compact subset of A u t ( 7 ) 
is uniformly bounded in norm. Thus a subgroup G of A u t ( / ) is strong 
operator relatively compact in A u t ( J ) if and only if G is uniformly 
bounded and each orbit Gbm is finite. 

Suppose for example {5 i} ï € N is a disjoint part i t ion of N into finite 
subsets of the form [m + 1, m + 2, . . . , wj, and t ha t for each i, Gt is a 
subgroup of the permuta t ion group on Si. Let G be the subgroup of 
j ^ ( N ) which is generated by the Gt. Then G is pointwise relatively com­
pact in j ^ ( N ) . If a Ç G, then we may write <rasa product aia2 . . . vk with 
<Tj € Gf and i\ < i2 < . . . ik- (Note t ha t a G Gt and r G G;- imply 
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or = TO- if i 9^ j.) Thus 

N(T.(Xm)) = NiTajUJ), 

where m G Stj. By Corollary 4.13 G is strong operator relatively compact 

in Aut(Z) if and only if the sequence defined by 

Bt = sup {NiT.ixin)): * e Gt and m £ N} 

is bounded. This is the case, in particular, if the cardinalities of the St 

are bounded. Suppose on the other hand tha t these cardinalities are 

unbounded. For each k (E N, choose ik and ak in the permutat ion group 

on Sik such tha t \\Tffk\\ ^ k. If each Gik is the group generated by <rk, 

then G is not norm bounded, and hence is not strong operator relatively 

compact. 

Remarks. When each St = {2i — 1, 2i\ and each Gt ~ Z2, G has 

cardinality 2Xo, and in particular A u t ( J ) is uncountable. For each 

a Ç A u t ( / ) , || || o a is a Banach algebra norm on / * * , and by Theorem 

4.4, 

|| || o a = || || o j8 <=> || || o a$~l = || || <=» a = (3. 

Thus / * * has uncountably many distinct (but equivalent) Banach 

algebra norms, each of which takes the value one a t the identi ty. 
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